
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3522799/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bright Quantum Dot Single-Photon Emitters at Telecom Bands Heterogeneously Integrated on Si. ACS Photonics, 2022, 9, 2273-2279.	3.2	17
2	High-Speed Wide-Field Imaging of Microcircuitry Using Nitrogen Vacancies in Diamond. Physical Review Applied, 2022, 17, .	1.5	8
3	Optimal control of a nitrogen-vacancy spin ensemble in diamond for sensing in the pulsed domain. Physical Review B, 2022, 106, .	1.1	9
4	Detection of biological signals from a live mammalian muscle using an early stage diamond quantum sensor. Scientific Reports, 2021, 11, 2412.	1.6	39
5	In-vitro Recordings of Neural Magnetic Activity From the Auditory Brainstem Using Color Centers in Diamond: A Simulation Study. Frontiers in Neuroscience, 2021, 15, 643614.	1.4	5
6	Laser threshold magnetometry using green-light absorption by diamond nitrogen vacancies in an external cavity laser. Physical Review A, 2021, 103, .	1.0	4
7	Magnetic Field Mapping Around Individual Magnetic Nanoparticle Agglomerates Using Nitrogenâ€Vacancy Centers in Diamond. Particle and Particle Systems Characterization, 2021, 38, 2100011.	1.2	3
8	Nitrogen-vacancy defect emission spectra in the vicinity of an adjustable silver mirror. Materials for Quantum Technology, 2021, 1, 015002.	1.2	1
9	Monolithic integration of InP on Si by molten alloy driven selective area epitaxial growth. Nanoscale, 2020, 12, 23780-23788.	2.8	5
10	Optimization of a Diamond Nitrogen Vacancy Centre Magnetometer for Sensing of Biological Signals. Frontiers in Physics, 2020, 8, .	1.0	22
11	Observation of the magneto-optic Voigt effect in a paramagnetic diamond membrane. Physical Review B, 2020, 101, .	1.1	1
12	Cavity-Enhanced Photon Emission from a Single Germanium-Vacancy Center in a Diamond Membrane. Physical Review Applied, 2020, 13, .	1.5	22
13	Photophysics of quantum emitters in hexagonal boron-nitride nano-flakes. Optics Express, 2020, 28, 7475.	1.7	33
14	Coupling colloidal quantum dots to a dielectric slot-waveguide. Journal of Physics Communications, 2020, 4, 085003.	0.5	0
15	Nanotesla sensitivity magnetic field sensing using a compact diamond nitrogen-vacancy magnetometer. Applied Physics Letters, 2019, 114, .	1.5	73
16	Continuous microwave hole burning and population oscillations in a diamond spin ensemble. Physical Review B, 2019, 100, .	1.1	8
17	Contributed Review: Camera-limits for wide-field magnetic resonance imaging with a nitrogen-vacancy spin sensor. Review of Scientific Instruments, 2018, 89, 031501.	0.6	26
18	Nitrogen-vacancy ensemble magnetometry based on pump absorption. Physical Review B, 2018, 97, .	1.1	16

#	Article	IF	CITATIONS
19	Feasibility and resolution limits of opto-magnetic imaging of neural network activity in brain slices using color centers in diamond. Scientific Reports, 2018, 8, 4503.	1.6	20
20	Clock transition by continuous dynamical decoupling of a three-level system. Scientific Reports, 2018, 8, 14807.	1.6	10
21	Precision temperature sensing in the presence of magnetic field noise and <i>vice-versa</i> using nitrogen-vacancy centers in diamond. Applied Physics Letters, 2018, 113, .	1.5	35
22	Cavity-Enhanced Nitrogen-Vacancy Ensemble Magnetometry. , 2018, , .		0
23	Towards wide-field imaging of brain slices using a quantum diamond microscope (Conference) Tj ETQq1 1 0.7	784314 rgBT	/Overlock 10
24	Qudi: A modular python suite for experiment control and data processing. SoftwareX, 2017, 6, 85-90.	1.2	93
25	Narrow-bandwidth sensing of high-frequency fields with continuous dynamical decoupling. Nature Communications, 2017, 8, 1105.	5.8	45
26	Pump-Enhanced Continuous-Wave Magnetometry Using Nitrogen-Vacancy Ensembles. Physical Review Applied, 2017, 8, .	1.5	31
27	Optimised frequency modulation for continuous-wave optical magnetic resonance sensing using nitrogen-vacancy ensembles. Optics Express, 2017, 25, 14809.	1.7	49
28	Nitrogen-Vacancy Ensemble Magnetometry Based on Pump Absorption. , 2017, , .		0
29	Determining the internal quantum efficiency of shallow-implanted nitrogen-vacancy defects in bulk diamond. Optics Express, 2016, 24, 27715.	1.7	27
30	Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light. Nature Communications, 2016, 7, 13628.	5.8	51
31	Coupling single emitters to quantum plasmonic circuits. Nanophotonics, 2016, 5, 483-495.	2.9	39
32	Increasing the photon collection rate from a single NV center with a silver mirror. Journal of Optics (United Kingdom), 2014, 16, 114017.	1.0	5
33	High-quality MOVPE butt-joint integration of InP/AlGaInAs/InGaAsP-based all-active optical components. Journal of Crystal Growth, 2014, 402, 243-248.	0.7	4
34	Generation and Controlled Routing of Single Plasmons on a Chip. Nano Letters, 2014, 14, 663-669.	4.5	39
35	Resonance Energy Transfer in Hybrid Devices in the Presence of a Surface. Journal of Physical Chemistry C, 2014, 118, 16284-16289.	1.5	2
36	Demonstration of a variable plasmonic beam splitter. Proceedings of SPIE, 2014, , .	0.8	0

#	Article	IF	CITATIONS
37	Design and geometry of hybrid white light-emitted diodes for efficient energy transfer from the quantum well to the nanocrystals. Proceedings of SPIE, 2013, , .	0.8	1
38	Efficient Coupling of a Single Diamond Color Center to Propagating Plasmonic Gap Modes. Nano Letters, 2013, 13, 1221-1225.	4.5	82
39	Large Optical Nonlinearity of Surface Plasmon Modes on Thin Gold Films. Plasmonics, 2013, 8, 1597-1605.	1.8	7
40	Coupling of single quantum emitters to plasmons propagating on mechanically etched wires. Optics Letters, 2013, 38, 3838.	1.7	10
41	Coupling of a single quantum emitter to end-to-end aligned silver nanowires. Applied Physics Letters, 2013, 102, 103106.	1.5	17
42	Propagation of plasmons in designed single crystalline silver nanostructures. Optics Express, 2012, 20, 24614.	1.7	16
43	Continuous-wave spatial quantum correlations of light induced by multiple scattering. Physical Review A, 2012, 86, .	1.0	11
44	Coupling of a Single Nitrogen Vacancy Center to the Gap Modes of a Dual Silver Nanowire System. , 2012, , .		0
45	Controlled Coupling of a Single Nitrogen-Vacancy Center to a Silver Nanowire. Physical Review Letters, 2011, 106, 096801.	2.9	217
46	Controlling the coupling of a single nitrogen vacancy center to a Silver nanowire. , 2011, , .		0
47	Quantum optical coherence can survive photon losses using a continuous-variable quantum erasure-correcting code. Nature Photonics, 2010, 4, 700-705.	15.6	50
48	Continuous-Variable Quantum Erasure Correcting Code. , 2010, , .		0
49	Correlation measurement of squeezed light. Physical Review A, 2009, 79, .	1.0	3
50	Demonstration of quadrature squeezed surface-plasmons in a gold waveguide. , 2009, , .		0
51	Experimental Demonstration of a Quantum Nondemolition Gate. , 2009, , .		Ο
52	Demonstration of Quadrature-Squeezed Surface Plasmons in a Gold Waveguide. Physical Review Letters, 2009, 102, 246802.	2.9	103
53	Experimental demonstration of spatial quantum correlations in multiple scattering media. , 2009, , .		0
54	Electronic noise-free measurements of squeezed light. Optics Letters, 2008, 33, 2395.	1.7	5

#	Article	IF	CITATIONS
55	Demonstration of a Quantum Nondemolition Sum Gate. Physical Review Letters, 2008, 101, 250501.	2.9	106
56	Generation of Non-Classical Surface-Plasmon Polaritons. , 2008, , .		0
57	Demonstration of deterministic and high fidelity squeezing of quantum information. Physical Review A, 2007, 76, .	1.0	80
58	Polarization squeezing with photonic crystal fibers. Laser Physics, 2007, 17, 559-566.	0.6	15