Jordi Cabana

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3522321/jordi-cabana-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

157	8,795	47	91
papers	citations	h-index	g-index
175	10,179	10.9	6.27
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
157	Intercalation of Ca into a Highly Defective Manganese Oxide at Room Temperature. <i>Chemistry of Materials</i> , 2022 , 34, 836-846	9.6	O
156	Nanostructured Conductive Metal Organic Frameworks for Sustainable Low Charge Overpotentials in Li-Air Batteries <i>Small</i> , 2022 , 18, e2102902	11	4
155	NGenE 2021: Electrochemistry Is Everywhere. ACS Energy Letters, 2022, 7, 368-374	20.1	3
154	sxdmA python framework for analysis of Scanning X-Ray Diffraction Microscopy data. <i>Software Impacts</i> , 2021 , 10, 100172	1.8	0
153	Structure design enables stable anionic and cationic redox chemistry in a T2-type Li-excess layered oxide cathode. <i>Science Bulletin</i> , 2021 , 67, 381-381	10.6	2
152	The Quest for Functional Oxide Cathodes for Magnesium Batteries: A Critical Perspective. <i>ACS Energy Letters</i> , 2021 , 6, 1892-1900	20.1	15
151	Structural Evolution of Layered Manganese Oxysulfides during Reversible Electrochemical Lithium Insertion and Copper Extrusion. <i>Chemistry of Materials</i> , 2021 , 33, 3989-4005	9.6	1
150	Achieving stable anionic redox chemistry in Li-excess O2-type layered oxide cathode via chemical ion-exchange strategy. <i>Energy Storage Materials</i> , 2021 , 38, 1-8	19.4	12
149	Database of ab initio L-edge X-ray absorption near edge structure. <i>Scientific Data</i> , 2021 , 8, 153	8.2	4
148	Transmission electron microscopy study of CoMnO catalyst nanoparticles. <i>Microscopy and Microanalysis</i> , 2021 , 27, 2440-2442	0.5	
147	Stabilizing Anionic Redox Chemistry in a Mn-Based Layered Oxide Cathode Constructed by Li-Deficient Pristine State. <i>Advanced Materials</i> , 2021 , 33, e2004280	24	33
146	Elucidation of Active Oxygen Sites upon Delithiation of Li3IrO4. ACS Energy Letters, 2021, 6, 140-147	20.1	5
145	Control of crystal size tailors the electrochemical performance of ⊞/O as a Mg intercalation host. <i>Nanoscale</i> , 2021 , 13, 10081-10091	7.7	1
144	Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution. <i>Nature Materials</i> , 2021 , 20, 353-361	27	47
143	2D Copper Tetrahydroxyquinone Conductive Metal-Organic Framework for Selective CO Electrocatalysis at Low Overpotentials. <i>Advanced Materials</i> , 2021 , 33, e2004393	24	39
142	Investigation of structural defects and beam induced transitions in MgV2O4 nanocrystals using atomic resolved scanning transmission electron microscopy <i>Microscopy and Microanalysis</i> , 2021 , 27, 1502-1503	0.5	
141	Electron-beam-induced Spinel to Defect Rocksalt Phase Transition in MgCrMnO4. <i>Microscopy and Microanalysis</i> , 2020 , 26, 788-790	0.5	1

(2020-2020)

140	Enhanced charge storage of nanometric EVO in Mg electrolytes. <i>Nanoscale</i> , 2020 , 12, 22150-22160	7.7	6
139	Mapping and Metastability of Heterogeneity in LiMn2O4 Battery Electrodes with High Energy Density. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 020526	3.9	4
138	Intercalation of Mg into a Few-Layer Phyllomanganate in Nonaqueous Electrolytes at Room Temperature. <i>Chemistry of Materials</i> , 2020 , 32, 6014-6025	9.6	2
137	Mapping Competitive Reduction upon Charging in LiNi0.8Co0.15Al0.05O2 Primary Particles. <i>Chemistry of Materials</i> , 2020 , 32, 6161-6175	9.6	3
136	Highly Active Rhenium-, Ruthenium-, and Iridium-Based Dichalcogenide Electrocatalysts for Oxygen Reduction and Oxygen Evolution Reactions in Aprotic Media. <i>Chemistry of Materials</i> , 2020 , 32, 2764-277	, 9 .6	14
135	First Example of Protonation of Ruddlesden Popper Sr2IrO4: A Route to Enhanced Water Oxidation Catalysts. <i>Chemistry of Materials</i> , 2020 , 32, 3499-3509	9.6	22
134	Spinel-layered Li1.1[Mn0.6Co0.8Ni0.6]O4-Ihanocrystals: Synthesis and electrochemistry at high potentials. <i>Journal of Solid State Chemistry</i> , 2020 , 288, 121365	3.3	
133	Redox Chemistry and Reversible Structural Changes in Rhombohedral VOF Cathode during Li Intercalation. <i>Inorganic Chemistry</i> , 2020 , 59, 10048-10058	5.1	1
132	Stabilizing Reversible Oxygen Redox Chemistry in Layered Oxides for Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 1903785	21.8	35
131	Exploring Anomalous Charge Storage in Anode Materials for Next-Generation Li Rechargeable Batteries. <i>Chemical Reviews</i> , 2020 , 120, 6934-6976	68.1	196
130	Revealing High Na-Content P2-Type Layered Oxides as Advanced Sodium-Ion Cathodes. <i>Journal of the American Chemical Society</i> , 2020 , 142, 5742-5750	16.4	84
129	Direct Evidence of Charge Transfer upon Anion Intercalation in Graphite Cathodes through New Electronic States: An Experimental and Theoretical Study of Hexafluorophosphate. <i>Chemistry of Materials</i> , 2020 , 32, 2036-2043	9.6	3
128	Machine-Learning-Assisted Synthesis of Polar Racemates. <i>Journal of the American Chemical Society</i> , 2020 , 142, 7555-7566	16.4	15
127	Definition of Redox Centers in Reactions of Lithium Intercalation in LiRuO Polymorphs. <i>Journal of the American Chemical Society</i> , 2020 , 142, 8160-8173	16.4	4
126	Probing Mg Migration in Spinel Oxides. <i>Chemistry of Materials</i> , 2020 , 32, 663-670	9.6	26
125	Probing Electrochemical Mg-Ion Activity in MgCr2⊠VxO4 Spinel Oxides. <i>Chemistry of Materials</i> , 2020 , 32, 1162-1171	9.6	17
124	Does Water Enhance Mg Intercalation in Oxides? The Case of a Tunnel Framework. <i>ACS Energy Letters</i> , 2020 , 5, 3357-3361	20.1	7
123	High Voltage Mg-Ion Battery Cathode via a Solid Solution Cr M n Spinel Oxide. <i>Chemistry of Materials</i> , 2020 , 32, 6577-6587	9.6	23

122	Probing Mg Intercalation in the Tetragonal Tungsten Bronze Framework VNbO. <i>Inorganic Chemistry</i> , 2020 , 59, 9783-9797	5.1	6
121	Charge Transport Properties of Lithium Superoxide in LiD2 Batteries. <i>ACS Applied Energy Materials</i> , 2020 , 3, 12575-12583	6.1	9
120	Elucidating Anionic Redox Chemistry in P3 Layered Cathode for Na-Ion Batteries. <i>ACS Applied Materials & ACS Applied</i> Materials & Material	9.5	9
119	High Capacity for Mg2+ Deintercalation in Spinel Vanadium Oxide Nanocrystals. <i>ACS Energy Letters</i> , 2020 , 5, 2721-2727	20.1	19
118	Synthesis of Antiperovskite Solid Electrolytes: Comparing LiSI, NaSI, and AgSI. <i>Inorganic Chemistry</i> , 2020 , 59, 11244-11247	5.1	11
117	Factors Defining the Intercalation Electrochemistry of CaFe2O4-Type Manganese Oxides. <i>Chemistry of Materials</i> , 2020 , 32, 8203-8215	9.6	3
116	Phase-Dependent Band Gap Engineering in Alloys of Metal-Semiconductor Transition Metal Dichalcogenides. <i>Advanced Functional Materials</i> , 2020 , 30, 2004912	15.6	8
115	Synthesis and Characterization of Core-Shell Nanocrystals of Co-Rich Cathodes. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 050501	3.9	1
114	Structural Changes and Reversibility Upon Deintercalation of Li from LiCoPO Derivatives. <i>ACS Applied Materials & Desiration (Materials & Desiration of Li from LiCoPO Derivatives)</i> 12, 20570-20578	9.5	4
113	Quasi-Binary Transition Metal Dichalcogenide Alloys: Thermodynamic Stability Prediction, Scalable Synthesis, and Application. <i>Advanced Materials</i> , 2020 , 32, e1907041	24	24
112	Tailoring the electrochemical activity of magnesium chromium oxide towards Mg batteries through control of size and crystal structure. <i>Nanoscale</i> , 2019 , 11, 639-646	7.7	19
111	Synthesis and X-ray absorption spectroscopy of potassium transition metal fluoride nanocrystals. <i>CrystEngComm</i> , 2019 , 21, 135-144	3.3	3
110	Charge Transfer Band Gap as an Indicator of Hysteresis in Li-Disordered Rock Salt Cathodes for Li-Ion Batteries. <i>Journal of the American Chemical Society</i> , 2019 , 141, 11452-11464	16.4	51
109	Intercalation of Magnesium into a Layered Vanadium Oxide with High Capacity. <i>ACS Energy Letters</i> , 2019 , 4, 1528-1534	20.1	44
108	Electrochemical Lithium Extraction and Insertion Process of Sol-Gel Synthesized LiMnPO4 via Two-Phase Mechanism. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A1257-A1265	3.9	8
107	Electronic Structure of LiCoO2 Surfaces and Effect of Al Substitution. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 8851-8858	3.8	14
106	Probing Electrochemically Induced Structural Evolution and Oxygen Redox Reactions in Layered Lithium Iridate. <i>Chemistry of Materials</i> , 2019 , 31, 4341-4352	9.6	20
105	Surface Chemistry, Passivation, and Electrode Performance in CoreBhell Architectures of LiCoO2 Nanoplates. <i>ACS Applied Energy Materials</i> , 2019 , 2, 2149-2160	6.1	4

104	Layered Oxide Cathodes for Li-Ion Batteries: Oxygen Loss and Vacancy Evolution. <i>Chemistry of Materials</i> , 2019 , 31, 7790-7798	9.6	43	
103	Exploring the bottlenecks of anionic redox in Li-rich layered sulfides. <i>Nature Energy</i> , 2019 , 4, 977-987	62.3	78	
102	Electronic structure changes upon lithium intercalation into graphite Insights from ex situ and operando x-ray Raman spectroscopy. <i>Carbon</i> , 2019 , 143, 371-377	10.4	13	
101	Effect of Passivating Shells on the Chemistry and Electrode Properties of LiMnO Nanocrystal Heterostructures. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 3823-3833	9.5	11	
100	Changes in Electronic Structure upon Li Deintercalation from LiCoPO4 Derivatives. <i>Chemistry of Materials</i> , 2018 , 30, 1898-1906	9.6	16	
99	Multivalent Electrochemistry of Spinel MgxMn3⊠O4 Nanocrystals. <i>Chemistry of Materials</i> , 2018 , 30, 149	6916504	1 19	
98	Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography. <i>Nature Communications</i> , 2018 , 9, 921	17.4	85	
97	Reversible Mg-Ion Insertion in a Metastable One-Dimensional Polymorph of V2O5. <i>CheM</i> , 2018 , 4, 564-5	585.2	87	
96	Mechanisms of Degradation and Strategies for the Stabilization of Cathode-Electrolyte Interfaces in Li-Ion Batteries. <i>Accounts of Chemical Research</i> , 2018 , 51, 299-308	24.3	70	
95	Electrochemical Reduction of a Spinel-Type Manganese Oxide Cathode in Aqueous Electrolytes with Ca2+ or Zn2+. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 4182-4188	3.8	29	
94	Facet-Dependent Rock-Salt Reconstruction on the Surface of Layered Oxide Cathodes. <i>Chemistry of Materials</i> , 2018 , 30, 692-699	9.6	33	
93	Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries. <i>Energy and Environmental Science</i> , 2018 , 11, 860-871	35.4	139	
92	Nanocrystal heterostructures of LiCoO with conformal passivating shells. <i>Nanoscale</i> , 2018 , 10, 6954-69	6] .7	8	
91	NaV1.25Ti0.75O4: A Potential Post-Spinel Cathode Material for Mg Batteries. <i>Chemistry of Materials</i> , 2018 , 30, 121-128	9.6	33	
90	Effect of Synthetic Parameters on Defects, Structure, and Electrochemical Properties of Layered Oxide LiNi0.80Co0.15Al0.05O2. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A3537-A3543	3.9	5	
89	Control of Size and Composition of Colloidal Nanocrystals of Manganese Oxide. <i>Inorganic Chemistry</i> , 2018 , 57, 12900-12907	5.1	5	
88	Chemical Activity of the Peroxide/Oxide Redox Couple: Case Study of BaRuO in Aqueous and Organic Solvents. <i>Chemistry of Materials</i> , 2018 , 30, 3882-3893	9.6	6	
87	Investigating the Intercalation Chemistry of Alkali Ions in Fluoride Perovskites. <i>Chemistry of Materials</i> , 2017 , 29, 1561-1568	9.6	26	

86	Near-edge X-ray refraction fine structure microscopy. <i>Applied Physics Letters</i> , 2017 , 110, 063101	3.4	30
85	Mechanism of Zn Insertion into Nanostructured EMnO2: A Nonaqueous Rechargeable Zn Metal Battery. <i>Chemistry of Materials</i> , 2017 , 29, 4874-4884	9.6	171
84	Intergranular Cracking as a Major Cause of Long-Term Capacity Fading of Layered Cathodes. <i>Nano Letters</i> , 2017 , 17, 3452-3457	11.5	248
83	Direct characterization of the Li intercalation mechanism into ₩2O5 nanowires using in-situ transmission electron microscopy. <i>Applied Physics Letters</i> , 2017 , 110, 213903	3.4	6
82	Visualization of Electrochemical Reactions in Battery Materials with X-ray Microscopy and Mapping. <i>Chemistry of Materials</i> , 2017 , 29, 3347-3362	9.6	60
81	Nanoscale Detection of Intermediate Solid Solutions in Equilibrated LiFePO Microcrystals. <i>Nano Letters</i> , 2017 , 17, 7364-7371	11.5	22
8o	Degradation Mechanisms of Magnesium Metal Anodes in Electrolytes Based on (CFSO)N at High Current Densities. <i>Langmuir</i> , 2017 , 33, 9398-9406	4	41
79	Control of Chemical Structure in CoreBhell Nanocrystals for the Stabilization of Battery Electrode/Electrolyte Interfaces. <i>Chemistry of Materials</i> , 2017 , 29, 5896-5905	9.6	16
78	Visualization of the Phase Propagation within Carbon-Free Li4Ti5O12 Battery Electrodes. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 29030-29038	3.8	9
77	Lithium Metal-Copper Vanadium Oxide Battery with a Block Copolymer Electrolyte. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A2447-A2455	3.9	11
76	"Rocking-Chair"-Type Metal Hybrid Supercapacitors. <i>ACS Applied Materials & Damp; Interfaces</i> , 2016 , 8, 30853-30862	9.5	54
75	Structure and Sodium Ion Dynamics in Sodium Strontium Silicate Investigated by Multinuclear Solid-State NMR. <i>Chemistry of Materials</i> , 2016 , 28, 3850-3861	9.6	13
74	Graphene quantum dots: structural integrity and oxygen functional groups for high sulfur/sulfide utilization in lithium sulfur batteries. <i>NPG Asia Materials</i> , 2016 , 8, e272-e272	10.3	78
73	Atomic defects during ordering transitions in LiNi0.5Mn1.5O4 and their relationship with electrochemical properties. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 8255-8262	13	26
72	Visualization of electrochemically driven solid-state phase transformations using operando hard X-ray spectro-imaging. <i>Nature Communications</i> , 2015 , 6, 6883	17.4	72
71	Direct Observation of Reversible Magnesium Ion Intercalation into a Spinel Oxide Host. <i>Advanced Materials</i> , 2015 , 27, 3377-84	24	145
70	Effects of crystallinity and impurities on the electrical conductivity of Lillallr (1) thin films. <i>Thin Solid Films</i> , 2015 , 576, 55-60	2.2	47
69	High-voltage cathode materials for lithium-ion batteries: freeze-dried LiMn0.8Fe0.1M0.1PO4/C (M = Fe, Co, Ni, Cu) nanocomposites. <i>Inorganic Chemistry</i> , 2015 , 54, 2671-8	5.1	11

(2014-2015)

68	The formation mechanism of fluorescent metal complexes at the Li(x)Ni(0.5)Mn(1.5)O(4-I)/carbonate ester electrolyte interface. <i>Journal of the American Chemical Society</i> , 2015 , 137, 3533-9	16.4	153
67	Dependence on Crystal Size of the Nanoscale Chemical Phase Distribution and Fracture in LixFePO[] <i>Nano Letters</i> , 2015 , 15, 4282-8	11.5	80
66	Phase-Controlled Electrochemical Activity of Epitaxial Mg-Spinel Thin Films. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 28438-43	9.5	50
65	Nonequilibrium Pathways during Electrochemical Phase Transformations in Single Crystals Revealed by Dynamic Chemical Imaging at Nanoscale Resolution. <i>Advanced Energy Materials</i> , 2015 , 5, 1402040	21.8	37
64	Stabilization of Battery Electrode/Electrolyte Interfaces Employing Nanocrystals with Passivating Epitaxial Shells. <i>Chemistry of Materials</i> , 2015 , 27, 394-399	9.6	16
63	Titanate Anodes for Sodium Ion Batteries. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2014 , 24, 5-14	3.2	64
62	Toward General Rules for the Design of Battery Electrodes Based on Titanium Oxides and Free of Conductive Additives. <i>Energy Technology</i> , 2014 , 2, 383-390	3.5	3
61	Ultrathin Lithium-Ion Conducting Coatings for Increased Interfacial Stability in High Voltage Lithium-Ion Batteries. <i>Chemistry of Materials</i> , 2014 , 26, 3128-3134	9.6	164
60	Effective wrapping of graphene on individual Li4Ti5O12 grains for high-rate Li-ion batteries. Journal of Materials Chemistry A, 2014 , 2, 2023-2027	13	69
59	Finite temperature effects on the X-ray absorption spectra of lithium compounds: first-principles interpretation of X-ray Raman measurements. <i>Journal of Chemical Physics</i> , 2014 , 140, 034107	3.9	33
58	Understanding the defect chemistry of alkali metal strontium silicate solid solutions: insights from experiment and theory. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 17919-17924	13	27
57	X-ray Absorption Spectra of Dissolved Polysulfides in Lithium-Sulfur Batteries from First-Principles. Journal of Physical Chemistry Letters, 2014 , 5, 1547-51	6.4	118
56	Modification of the electrochemical activity of LiMn1.95Si0.05O4 spinel via addition of phases with different physico-chemical properties. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3216	13	1
55	Electroanalytical study of the viability of conversion reactions as energy storage mechanisms. <i>RSC Advances</i> , 2014 , 4, 35988-35996	3.7	21
54	Effect of microstructure and surface impurity segregation on the electrical and electrochemical properties of dense Al-substituted Li7La3Zr2O12. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 172-181	13	136
53	Chemical composition mapping with nanometre resolution by soft X-ray microscopy. <i>Nature Photonics</i> , 2014 , 8, 765-769	33.9	293
52	The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 18294-300	3.6	335
51	Electron Tomography Analysis of Reaction Path during Formation of Nanoporous NiO by Solid State Decomposition. <i>Crystal Growth and Design</i> , 2014 , 14, 2453-2459	3.5	7

50	Surface Chemistry Consequences of Mg-Based Coatings on LiNi0.5Mn1.5O4 Electrode Materials upon Operation at High Voltage. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 10596-10605	3.8	49
49	Fingerprinting Lithium-Sulfur Battery Reaction Products by X-ray Absorption Spectroscopy. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A1100-A1106	3.9	65
48	Lepidocrocite-type Layered Titanate Structures: New Lithium and Sodium Ion Intercalation Anode Materials. <i>Chemistry of Materials</i> , 2014 , 26, 2502-2512	9.6	56
47	Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity. <i>Scientific Reports</i> , 2014 , 4, 7133	4.9	48
46	New materials based on a layered sodium titanate for dual electrochemical Na and Li intercalation systems. <i>Energy and Environmental Science</i> , 2013 , 6, 2538	35.4	163
45	Study of the transition metal ordering in layered Na(x)Ni(x/2)Mn(1-x/2)O2 (2/3 lk ll) and consequences of Na/Li exchange. <i>Inorganic Chemistry</i> , 2013 , 52, 8540-50	5.1	54
44	Effect of Si(IV) substitution on electrochemical, magnetic and spectroscopic performance of nanosized LiMn2\(\mathbb{B}\)SixO4. Journal of Materials Chemistry A, 2013 , 1, 10857	13	14
43	The Effect of Al Substitution on the Chemical and Electrochemical Phase Stability of Orthorhombic LiMnO2. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A46-A52	3.9	14
42	Electrochemical Reactivity with Lithium of Spinel-type ZnFe2』CryO4 (0 lly l2). <i>Journal of Physical Chemistry C</i> , 2013 , 117, 24213-24223	3.8	7
41	Effect of lithium borate addition on the physical and electrochemical properties of the lithium ion conductor Li3.4Si0.4P0.6O4. <i>Solid State Ionics</i> , 2013 , 231, 109-115	3.3	20
40	Monodisperse Sn nanocrystals as a platform for the study of mechanical damage during electrochemical reactions with Li. <i>Nano Letters</i> , 2013 , 13, 1800-5	11.5	126
39	Mesoscale phase distribution in single particles of LiFePO following lithium deintercalation. <i>Chemistry of Materials</i> , 2013 , 25, 1664-1672	9.6	105
38	Carbon-Free TiO2 Battery Electrodes Enabled by Morphological Control at the Nanoscale. <i>Advanced Energy Materials</i> , 2013 , 3, 1286-1291	21.8	35
37	Nanocomposites of Titanium Dioxide and Polystyrene-Poly(ethylene oxide) Block Copolymer as Solid-State Electrolytes for Lithium Metal Batteries. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A1611-A1617	3.9	89
36	Mechanism of Phase Propagation During Lithiation in Carbon-Free Li4Ti5O12 Battery Electrodes. <i>Advanced Functional Materials</i> , 2013 , 23, 1214-1222	15.6	134
35	Characterization of electrode materials for lithium ion and sodium ion batteries using synchrotron radiation techniques. <i>Journal of Visualized Experiments</i> , 2013 , e50594	1.6	8
34	Investigation of cation ordering in triclinic sodium birnessite via 23Na MAS NMR spectroscopy. <i>American Mineralogist</i> , 2012 , 97, 883-889	2.9	13
33	Structural Underpinnings of the Enhanced Cycling Stability upon Al-Substitution in LiNi0.45Mn0.45Co0.1 Algorithms Algorithms Electrode Materials for Li-ion Batteries. <i>Chemistry of Materials</i> , 2012 , 24, 3307-3317	9.6	62

(2009-2012)

32	Composition-structure relationships in the Li-ion battery electrode material LiNi(0.5)Mn(1.5)O(4). <i>Chemistry of Materials</i> , 2012 , 24, 2952-2964	9.6	185
31	Crystal Structure, Physical Properties, and Electrochemistry of Copper Substituted LiFePO4 Single Crystals. <i>Chemistry of Materials</i> , 2012 , 24, 166-173	9.6	29
30	Electronic structure study of ordering and interfacial interaction in graphene/Cu composites. <i>Carbon</i> , 2012 , 50, 5316-5322	10.4	29
29	XAFS Investigations of LiNi0.45Mn0.45Co0.1 AlyO2Positive Electrode Materials. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A1562-A1571	3.9	11
28	Comparison of the Performance of LiNi1/2Mn3/2O4 with Different Microstructures. <i>Journal of the Electrochemical Society</i> , 2011 , 158, A997	3.9	75
27	Effect of ball-milling and lithium insertion on the lithium mobility and structure of Li3Fe2(PO4)3. Journal of Materials Chemistry, 2011 , 21, 10012		20
26	LithiumIbn Batteries: LiB MAS NMR Studies on Materials 2011 ,		1
25	Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. <i>Journal of Synchrotron Radiation</i> , 2011 , 18, 773-81	2.4	200
24	Structural complexity of layered-spinel composite electrodes for Li-ion batteries. <i>Journal of Materials Research</i> , 2010 , 25, 1601-1616	2.5	33
23	MAS NMR Study of the Metastable Solid Solutions Found in the LiFePO4/FePO4 System. <i>Chemistry of Materials</i> , 2010 , 22, 1249-1262	9.6	51
22	Investigation of the Structural Changes in Li[NiyMnyCo(1 \mathbb{Z} y)]O2 (y = 0.05) upon Electrochemical Lithium Deintercalation \mathbb{Z} Chemistry of Materials, 2010 , 22, 1209-1219	9.6	32
21	Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. <i>Advanced Materials</i> , 2010 , 22, E170-92	24	1859
20	Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions (Adv. Mater. 35/2010). <i>Advanced Materials</i> , 2010 , 22, n/a-n/a	24	41
19	Exploring orderdisorder structural transitions in the LiNbND system: The new antifluorite oxynitride Li11NbN4O2. <i>Journal of Solid State Chemistry</i> , 2010 , 183, 1609-1614	3.3	4
18	High rate performance of lithium manganese nitride and oxynitride as negative electrodes in lithium batteries. <i>Electrochemistry Communications</i> , 2010 , 12, 315-318	5.1	31
17	Synthesis, short-range structure, and electrochemical properties of new phases in the Li-Mn-N-O system. <i>Inorganic Chemistry</i> , 2009 , 48, 5141-53	5.1	12
16	The effects of moderate thermal treatments under air on LiFePO4-based nano powders. <i>Journal of Materials Chemistry</i> , 2009 , 19, 3979		98
15	Influence of the Benzoquinone Sorption on the Structure and Electrochemical Performance of the MIL-53(Fe) Hybrid Porous Material in a Lithium-Ion Battery. <i>Chemistry of Materials</i> , 2009 , 21, 1602-1611	9.6	191

14	Structural and Electrochemical Characterization of Composite Layered-Spinel Electrodes Containing Ni and Mn for Li-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2009 , 156, A730	3.9	78
13	Formation of a Complete Solid Solution between the Triphylite and Fayalite Olivine Structures. <i>Chemistry of Materials</i> , 2008 , 20, 6798-6809	9.6	36
12	Towards New Negative Electrode Materials for Li-Ion Batteries: Electrochemical Properties of LiNiN. <i>Chemistry of Materials</i> , 2008 , 20, 1676-1678	9.6	33
11	NMR, PDF and RMC study of the positive electrode material Li(Ni0.5Mn0.5)O2 synthesized by ion-exchange methods. <i>Journal of Materials Chemistry</i> , 2007 , 17, 3167		45
10	Enhanced high rate performance of LiMn2O4 spinel nanoparticles synthesized by a hard-template route. <i>Journal of Power Sources</i> , 2007 , 166, 492-498	8.9	58
9	Intermediate phases during alkali metal intercalation in HfNCl. Solid State Sciences, 2007, 9, 310-317	3.4	2
8	Cation Ordering in Li[NixMnxCo(1½x)]O2-Layered Cathode Materials: A Nuclear Magnetic Resonance (NMR), Pair Distribution Function, X-ray Absorption Spectroscopy, and Electrochemical Study. <i>Chemistry of Materials</i> , 2007 , 19, 6277-6289	9.6	124
7	Electrochemical Insertion of Li into Sr2MO2Cu2S2 (M = Mn, Co, Ni). <i>Materials Research Society Symposia Proceedings</i> , 2006 , 988, 1		1
6	Layered oxysulfides Sr2MnO2Cu2m-0.5Sm+1 (m = 1, 2, and 3) as insertion hosts for Li ion batteries. Journal of the American Chemical Society, 2006 , 128, 13354-5	16.4	41
5	Ex situ NMR and neutron diffraction study of structure and lithium motion in LiMnN. <i>Solid State Ionics</i> , 2005 , 176, 2205-2218	3.3	48
4	Synthesis and Electrochemical Study of Antifluorite-type Phases in the Li-M-N-O (M = Ti, V) Systems. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2005 , 631, 2136-2141	1.3	10
3	Oxynitrides as Electrode Materials for Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2005 , 152, A2246	3.9	18
2	Antifluorite-type lithium chromium oxide nitrides: synthesis, structure, order, and electrochemical properties. <i>Inorganic Chemistry</i> , 2004 , 43, 7050-60	5.1	35
1	The first lithium manganese oxynitride, Li7.9MnN5 \$\sqrt{y}\text{Oy}\$: preparation and use as electrode material in lithium batteries. <i>Journal of Materials Chemistry</i> , 2003 , 13, 2402-2404		34