
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3522139/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using Chlorophyll Fluorescence to Determine the Fate of Photons Absorbed by Phytoplankton in the World's Oceans. Annual Review of Marine Science, 2022, 14, 213-238.	5.1	14
2	The Photophysiological Response of Nitrogen-Limited Phytoplankton to Episodic Nitrogen Supply Associated With Tropical Instability Waves in the Equatorial Atlantic. Frontiers in Marine Science, 2022, 8, .	1.2	3
3	Quantifying structural relationships of metal-binding sites suggests origins of biological electron transfer. Science Advances, 2022, 8, eabj3984.	4.7	24
4	The redox state of the plastoquinone (PQ) pool is connected to thylakoid lipid saturation in a marine diatom. Photosynthesis Research, 2022, 153, 71-82.	1.6	5
5	Light-harvesting complex gene regulation by a MYB-family transcription factor in the marine diatom, Phaeodactylum tricornutum. Photosynthesis Research, 2022, 153, 59-70.	1.6	3
6	Anoxic photochemical weathering of pyrite on Archean continents. Science Advances, 2022, 8, .	4.7	6
7	Using chlorophyll fluorescence kinetics to determine photosynthesis in aquatic ecosystems. Limnology and Oceanography, 2021, 66, 1-13.	1.6	33
8	The spatial network of skeletal proteins in a stony coral. Journal of the Royal Society Interface, 2021, 18, 20200859.	1.5	19
9	Saturation of thylakoidâ€associated fatty acids facilitates bioenergetic coupling in a marine diatom allowing for thermal acclimation. Global Change Biology, 2021, 27, 3133-3144.	4.2	5
10	Integrating on-grid immunogold labeling and cryo-electron tomography to reveal photosystem II structure and spatial distribution in thylakoid membranes. Journal of Structural Biology, 2021, 213, 107746.	1.3	2
11	How corals made rocks through the ages. Global Change Biology, 2020, 26, 31-53.	4.2	60
12	Biophysical analysis of the structural evolution of substrate specificity in RuBisCO. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30451-30457.	3.3	14
13	Photosynthetic energy conversion efficiency in the West Antarctic Peninsula. Limnology and Oceanography, 2020, 65, 2912-2925.	1.6	17
14	Solid-State Phase Transformation and Self-Assembly of Amorphous Nanoparticles into Higher-Order Mineral Structures. Journal of the American Chemical Society, 2020, 142, 12811-12825.	6.6	26
15	Small protein folds at the root of an ancient metabolic network. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7193-7199.	3.3	32
16	Structural and functional analyses of photosystem II in the marine diatom <i>Phaeodactylum tricornutum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17316-17322.	3.3	29
17	De novo design of symmetric ferredoxins that shuttle electrons in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14557-14562.	3.3	41
18	Lhcx proteins provide photoprotection via thermal dissipation of absorbed light in the diatom Phaeodactylum tricornutum. Nature Communications, 2019, 10, 4167.	5.8	84

#	Article	IF	CITATIONS
19	Modular origins of biological electron transfer chains. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1280-1285.	3.3	29
20	Geological and Chemical Factors that Impacted the Biological Utilization of Cobalt in the Archean Eon. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 743-759.	1.3	24
21	Molecular and geochemical perspectives on the influence of CO ₂ on calcification in coral cell cultures. Limnology and Oceanography, 2018, 63, 107-121.	1.6	28
22	Reverse engineering nature. Environmental Microbiology, 2018, 20, 1960-1961.	1.8	0
23	Minimal Heterochiral <i>de Novo</i> Designed 4Fe–4S Binding Peptide Capable of Robust Electron Transfer. Journal of the American Chemical Society, 2018, 140, 11210-11213.	6.6	42
24	Elemental sulfur reduction in the deepâ€sea vent thermophile, <i>Thermovibrio ammonificans</i> . Environmental Microbiology, 2018, 20, 2301-2316.	1.8	16
25	Overexpression of a diacylglycerol acyltransferase gene in <i>Phaeodactylum tricornutum</i> directs carbon towards lipid biosynthesis. Journal of Phycology, 2017, 53, 405-414.	1.0	46
26	Direct measurements of the light dependence of gross photosynthesis and oxygen consumption in the ocean. Limnology and Oceanography, 2017, 62, 1066-1079.	1.6	12
27	Light availability rather than Fe controls the magnitude of massive phytoplankton bloom in the Amundsen Sea polynyas, Antarctica. Limnology and Oceanography, 2017, 62, 2260-2276.	1.6	40
28	Biological control of aragonite formation in stony corals. Science, 2017, 356, 933-938.	6.0	163
29	Nanoscale Visualization of Biomineral Formation in Coral Proto-Polyps. Current Biology, 2017, 27, 3191-3196.e3.	1.8	26
30	Metal availability and the expanding network of microbial metabolisms in the Archaean eon. Nature Geoscience, 2017, 10, 629-636.	5.4	116
31	Effect of cell cycle arrest on intermediate metabolism in the marine diatom <i>Phaeodactylum tricornutum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8007-E8016.	3.3	24
32	What limits photosynthetic energy conversion efficiency in nature? Lessons from the oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160376.	1.8	36
33	Divergent evolutionary histories of DNA markers in a Hawaiian population of the coral <i>Montipora capitata</i> . PeerJ, 2017, 5, e3319.	0.9	3
34	Flux balance analysis of primary metabolism in the diatom <i>Phaeodactylum tricornutum</i> . Plant Journal, 2016, 85, 161-176.	2.8	70
35	Temporal and spatial expression patterns of biomineralization proteins during early development in the stony coral <i>Pocillopora damicornis</i> . Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160322.	1.2	53
36	Evolution of prokaryotic respiratory molybdoenzymes and the frequency of their genomic co-occurrence. FEMS Microbiology Ecology, 2016, 92, fiw187.	1.3	13

PAUL G FALKOWSKI

#	Article	IF	CITATIONS
37	The Role of Microbial Electron Transfer in the Coevolution of the Biosphere and Geosphere. Annual Review of Microbiology, 2016, 70, 45-62.	2.9	82
38	The fate of photons absorbed by phytoplankton in the global ocean. Science, 2016, 351, 264-267.	6.0	68
39	Comparative genomics explains the evolutionary success of reef-forming corals. ELife, 2016, 5, .	2.8	169
40	An <scp>RNA</scp> interference knockâ€down of nitrate reductase enhances lipid biosynthesis in the diatom <i>Phaeodactylum tricornutum</i> . Plant Journal, 2015, 84, 963-973.	2.8	42
41	Remodeling of intermediate metabolism in the diatom <i>Phaeodactylum tricornutum</i> under nitrogen stress. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 412-417.	3.3	218
42	Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature, 2015, 524, 366-369.	13.7	311
43	Continental erosion and the Cenozoic rise of marine diatoms. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4239-4244.	3.3	76
44	Deciphering Primordial Cyanobacterial Genome Functions from Protein Network Analysis. Current Biology, 2015, 25, 628-634.	1.8	35
45	From Light to Life. Origins of Life and Evolution of Biospheres, 2015, 45, 347-350.	0.8	8
46	Immunolocalization of skeletal matrix proteins in tissue and mineral of the coral <i>Stylophora pistillata</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12728-12733.	3.3	87
47	Diatoms: a fossil fuel of the future. Trends in Biotechnology, 2014, 32, 117-124.	4.9	144
48	Evolutionary history of redox metal-binding domains across the tree of life. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7042-7047.	3.3	56
49	The evolution and future of carbonate precipitation in marine invertebrates: Witnessing extinction or documenting resilience in the Anthropocene?. Elementa, 2014, 2, .	1.1	16
50	Cloning and Characterization of Four Novel Coral Acid-Rich Proteins that Precipitate Carbonates InÂVitro. Current Biology, 2013, 23, 1126-1131.	1.8	118
51	Quantum requirements for growth and fatty acid biosynthesis in the marine diatom <i>Phaeodactylum tricornutum</i> (Bacillariophyceae) in nitrogen replete and limited conditions. Journal of Phycology, 2013, 49, 381-388.	1.0	27
52	Proteomic analysis of skeletal organic matrix from the stony coral <i>Stylophora pistillata</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3788-3793.	3.3	177
53	Aragonite Precipitation by "Proto-Polyps―in Coral Cell Cultures. PLoS ONE, 2012, 7, e35049.	1.1	51
54	PHOTOACCLIMATION IN THE PHOTOTROPHIC MARINE CILIATE MESODINIUM RUBRUM (CILIOPHORA)1. Journal of Phycology, 2011, 47, 324-332.	1.0	48

#	Article	IF	CITATIONS
55	The biological and geological contingencies for the rise of oxygen on Earth. Photosynthesis Research, 2011, 107, 7-10.	1.6	15
56	Photosynthetic energy storage efficiency in Chlamydomonas reinhardtii, based on microsecond photoacoustics. Photosynthesis Research, 2011, 108, 215-224.	1.6	5
57	Photosynthetic community responses to upwelling in mesoscale eddies in the subtropical North Atlantic and Pacific Oceans. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 1310-1320.	0.6	98
58	The Microbial Engines That Drive Earth's Biogeochemical Cycles. Science, 2008, 320, 1034-1039.	6.0	2,449
59	Extracellular matrix production and calcium carbonate precipitation by coral cells <i>in vitro</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 54-58.	3.3	98
60	EVOLUTION: Tracing Oxygen's Imprint on Earth's Metabolic Evolution. Science, 2006, 311, 1724-1725.	6.0	139
61	THE ROLE AND EVOLUTION OF SUPEROXIDE DISMUTASES IN ALGAE1. Journal of Phycology, 2005, 41, 453-465.	1.0	179
62	Remote sensing of heterogeneity in photosynthetic efficiency, electron transport and dissipation of excess light in Populus deltoides stands under ambient and elevated CO2 concentrations, and in a tropical forest canopy, using a new laser-induced fluorescence transient device. Global Change Biology, 2005, 11, 1195-1206.	4.2	47
63	A hypothesis of genome structure in marine phytoplankton. Journal of Eukaryotic Microbiology, 2005, 52, 7S-27S.	0.8	Ο
64	Regulation of nitrate reductase inChlamydomonas reinhardtiiby the redox state of the plastoquinone pool. European Journal of Phycology, 2005, 40, 345-352.	0.9	45
65	Plastid Regulation of Lhcb1 Transcription in the Chlorophyte Alga Dunaliella tertiolecta. Plant Physiology, 2004, 136, 3737-3750.	2.3	58
66	The demise of the marine cyanobacterium, <i>Trichodesmium</i> spp., via an autocatalyzed cell death pathway. Limnology and Oceanography, 2004, 49, 997-1005.	1.6	254
67	Development and Application of Variable Chlorophyll Fluorescence Techniques in Marine Ecosystems. , 2004, , 757-778.		34
68	Southern Ocean Iron Enrichment Experiment: Carbon Cycling in High- and Low-Si Waters. Science, 2004, 304, 408-414.	6.0	546
69	Response to Comment on "The Evolution of Modern Eukaryotic Phytoplankton". Science, 2004, 306, 2191c-2191c.	6.0	11
70	The Evolution of Modern Eukaryotic Phytoplankton. Science, 2004, 305, 354-360.	6.0	1,287
71	Discovery of Symbiotic Nitrogen-Fixing Cyanobacteria in Corals. Science, 2004, 305, 997-1000.	6.0	413
72	GENOMICS AND EVOLUTION: Shotgun Sequencing in the Sea: A Blast from the Past?. Science, 2004, 304, 58-60.	6.0	66

#	Article	IF	CITATIONS
73	Postindustrial enhancement of aragonite undersaturation in the upper tropical and subtropical Atlantic Ocean: The role of fossil fuel CO2. Limnology and Oceanography, 2004, 49, 315-321.	1.6	15
74	THE MESOZOIC RADIATION OF EUKARYOTIC ALGAE: THE PORTABLE PLASTID HYPOTHESIS ¹ . Journal of Phycology, 2003, 39, 259-267.	1.0	73
75	THE ELEMENTAL COMPOSITION OF SOME MARINE PHYTOPLANKTON1. Journal of Phycology, 2003, 39, 1145-1159.	1.0	614
76	Greenâ€fluorescent proteins in Caribbean corals. Limnology and Oceanography, 2003, 48, 402-411.	1.6	91
77	The function of plastids in the deepâ€sea benthic foraminifer, <i>Nonionella stella</i> . Limnology and Oceanography, 2002, 47, 1569-1580.	1.6	92
78	Photoreceptors in the cnidarian hosts allow symbiotic corals to sense blue moonlight. Limnology and Oceanography, 2002, 47, 309-315.	1.6	104
79	Representing key phytoplankton functional groups in ocean carbon cycle models: Coccolithophorids. Global Biogeochemical Cycles, 2002, 16, 47-1-47-20.	1.9	234
80	The Ocean's Invisible Forest. Scientific American, 2002, 287, 54-61.	1.0	87
81	Contribution of Aerobic Photoheterotrophic Bacteria to the Carbon Cycle in the Ocean. Science, 2001, 292, 2492-2495.	6.0	400
82	Iron availability, cellular iron quotas, and nitrogen fixation in <i>Trichodesmium</i> . Limnology and Oceanography, 2001, 46, 1249-1260.	1.6	342
83	Photosynthesis and photoprotection in symbiotic corals. Limnology and Oceanography, 2001, 46, 75-85.	1.6	253
84	Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Global Change Biology, 2001, 7, 849-882.	4.2	281
85	OCEANS: Dis-Crediting Ocean Fertilization. Science, 2001, 294, 309-310.	6.0	162
86	Measurement of photosynthetic parameters in benthic organisms in situ using a SCUBAâ€based fast repetition rate fluorometer. Limnology and Oceanography, 2000, 45, 242-245.	1.6	73
87	Rationalizing elemental ratios in unicellular algae. Journal of Phycology, 2000, 36, 3-6.	1.0	201
88	Bioâ€optical properties of the marine diazotrophic cyanobacteria <i>Trichodesmium</i> spp. II. A reflectance model for remote sensing. Limnology and Oceanography, 1999, 44, 618-627.	1.6	89
89	Measuring photosynthetic parameters in individual algal cells by Fast Repetition Rate fluorometry. Photosynthesis Research, 1999, 62, 141-153.	1.6	65
90	Bioâ€optical properties of the marine diazotrophic cyanobacteria <i>Trichodesmium</i> spp. I. Absorption and photosynthetic action spectra. Limnology and Oceanography, 1999, 44, 608-617.	1.6	128

#	Article	IF	CITATIONS
91	DIEL PERIODICITY OF NITRATE REDUCTASE ACTIVITY AND PROTEIN LEVELS IN THE MARINE DIATOM THALASSIOSIRA WEISSFLOGII (BACILLARIOPHYCEAE). Journal of Phycology, 1998, 34, 952-961.	1.0	60
92	Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1367, 88-106.	0.5	759
93	[15] Assessing the potential for chloroplast redox regulation of nuclear gene expression. Methods in Enzymology, 1998, 297, 220-234.	0.4	6
94	Title is missing!. Photosynthesis Research, 1997, 51, 209-222.	1.6	56
95	Chloroplast redox regulation of nuclear gene transcription during photoacclimation. Photosynthesis Research, 1997, 53, 229-241.	1.6	133
96	Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature, 1996, 383, 508-511.	13.7	421
97	Physiological limitation of phytoplankton photosynthesis in the eastern equatorial Pacific determined from variability in the quantum yield of fluorescence. Limnology and Oceanography, 1994, 39, 1061-1074.	1.6	115
98	The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynthesis Research, 1994, 39, 235-258.	1.6	346
99	Iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature, 1994, 371, 145-149.	13.7	332
100	Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnology and Oceanography, 1993, 38, 1646-1665.	1.6	500
101	Iron-Induced Changes in Light Harvesting and Photochemical Energy Conversion Processes in Eukaryotic Marine Algae. Plant Physiology, 1992, 100, 565-575.	2.3	271
102	ACCLIMATION TO SPECTRAL IRRADIANCE IN ALGAE. Journal of Phycology, 1991, 27, 8-14.	1.0	655
103	Effect of iron limitation on photosynthesis in a marine diatom. Limnology and Oceanography, 1991, 36, 1772-1782.	1.6	245
104	PHOTOADAPTATION AND THE "PACKAGE―EFFECT IN DUNALIELLA TERTIOLECTA (CHLOROPHYCEAE)1. Journ of Phycology, 1989, 25, 70-78.	al 1.0	235
105	Relationship of steady-state photosynthesis to fluorescence in eucaryotic algae. Biochimica Et Biophysica Acta - Bioenergetics, 1986, 849, 183-192.	0.5	154
106	Light Harvesting and Utilization by Phytoplankton. Plant and Cell Physiology, 1986, 27, 1335-1349.	1.5	345
107	Growthâ€irradiance relationships in phytoplankton1. Limnology and Oceanography, 1985, 30, 311-321.	1.6	385
108	Light and the Bioenergetics of a Symbiotic Coral. BioScience, 1984, 34, 705-709.	2.2	524

#	ARTICLE	IF	CITATIONS
109	Light-shade adaptation and vertical mixing of marine phytoplankton: A comparative field study. Journal of Marine Research, 1983, 41, 215-237.	0.3	129