Liang-Sheng Liao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3522021/liang-sheng-liao-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 16,798 107 434 h-index g-index citations papers 8.9 20,095 453 7.14 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
434	Segregated array tailoring charge-transfer (CT) degree of organic cocrystal for the efficient near-infrared emission beyond 760[hm <i>Advanced Materials</i> , 2022 , e2107169	24	11
433	Annealing-free perovskite films by EDOT-assisted anti-solvent strategy for flexible indoor and outdoor photovoltaics. <i>Nano Energy</i> , 2022 , 94, 106866	17.1	3
432	Systematic strategy for high-performance small molecular hybrid white OLED via blade coating at ambient condition. <i>Organic Electronics</i> , 2022 , 100, 106366	3.5	O
431	Positive isotope effect in thermally activated delayed fluorescence emitters based on deuterium-substituted donor units. <i>Chemical Engineering Journal</i> , 2022 , 430, 132822	14.7	3
430	Efficient circularly polarized thermally activated delayed fluorescence hetero-[4]helicene with carbonyl-/sulfone-bridged triarylamine structures. <i>Journal of Materials Chemistry C</i> , 2022 , 10, 4393-4401	17.1	2
429	Isomeric thermally activated delayed fluorescence emitters based on a quinolino[3,2,1-de]acridine-5,9-dione multiple resonance core and carbazole substituent. <i>Materials Chemistry Frontiers</i> , 2022 , 6, 966-972	7.8	3
428	Exciplex host coupled with a micro-cavity enabling high efficiency OLEDs with narrow emission profile. <i>Journal of Materials Chemistry C</i> , 2022 , 10, 5666-5671	7.1	
427	Organic white-light sources: multiscale construction of organic luminescent materials from molecular to macroscopic level. <i>Science China Chemistry</i> , 2022 , 65, 740-745	7.9	6
426	Thermally Activated Delayed Fluorescent Gain Materials: Harvesting Triplet Excitons for Lasing <i>Advanced Science</i> , 2022 , e2200525	13.6	3
425	Overcoming Degradation Pathways to Achieve Stable Blue Perovskite Light-Emitting Diodes. <i>ACS Energy Letters</i> , 2022 , 7, 1348-1354	20.1	5
424	In-situ inorganic ligand replenishment enables bandgap stability in mixed-halide perovskite quantum dot solids <i>Advanced Materials</i> , 2022 , e2200854	24	11
423	Unraveling the role of active hydrogen caused by carbonyl groups in surface-defect passivation of perovskite photovoltaics. <i>Nano Energy</i> , 2022 , 97, 107200	17.1	4
422	Shape-engineering of organic heterostructures via a sequential self-assembly strategy for multi-channel photon transportation. <i>Nano Research</i> , 2022 , 15, 3781-3787	10	1
421	Correlation between small polaron tunneling relaxation and donor ionization in Ga2O3. <i>Applied Physics Letters</i> , 2022 , 120, 172105	3.4	
420	Smart Textiles Based on MoS Hollow Nanospheres for Personal Thermal Management. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 48988-48996	9.5	6
419	Spatial donor/acceptor architecture for intramolecular charge-transfer emitter. <i>Chinese Chemical Letters</i> , 2021 , 32, 1245-1248	8.1	5
418	Cascaded Excited-State Intramolecular Proton Transfer Towards Near-Infrared Organic Lasers Beyond 850 nm. <i>Angewandte Chemie</i> , 2021 , 133, 9196-9201	3.6	1

(2021-2021)

417	Cascaded Excited-State Intramolecular Proton Transfer Towards Near-Infrared Organic Lasers Beyond 850 nm. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 9114-9119	16.4	20	
416	Optical waveguides based on one-dimensional organic crystals. <i>PhotoniX</i> , 2021 , 2,	19	18	
415	Organic superstructure microwires with hierarchical spatial organisation. <i>Nature Communications</i> , 2021 , 12, 2252	17.4	14	
414	Lycopene-Based Bionic Membrane for Stable Perovskite Photovoltaics. <i>Advanced Functional Materials</i> , 2021 , 31, 2011242	15.6	20	
413	Highly efficient near-infrared thermally activated delayed fluorescence material based on a spirobifluorene decorated donor. <i>Organic Electronics</i> , 2021 , 91, 106088	3.5	3	
412	Estacked Thermally Activated Delayed Fluorescence Emitters with Alkyl Chain Modulation. <i>CCS Chemistry</i> , 2021 , 3, 1757-1763	7.2	5	
411	Over 800 nm Emission via Harvesting of Triplet Excitons in Exciplex Organic Light-Emitting Diodes. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 6034-6040	6.4	6	
410	All-Inorganic Quantum-Dot LEDs Based on a Phase-Stabilized EcsPbI Perovskite. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 16164-16170	16.4	59	
409	Multi-Layer Estacked Molecules as Efficient Thermally Activated Delayed Fluorescence Emitters. <i>Angewandte Chemie</i> , 2021 , 133, 5273-5279	3.6	8	
408	Waveguiding and Lasing in 2D Organic Semiconductor Znq2. <i>Advanced Photonics Research</i> , 2021 , 2, 200	0 <u>0.5</u> 7	3	
407	Multi-Layer Estacked Molecules as Efficient Thermally Activated Delayed Fluorescence Emitters. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 5213-5219	16.4	35	
406	Asymmetrical planar acridine-based hole-transporting materials for highly efficient perovskite solar cells. <i>Chemical Engineering Journal</i> , 2021 , 413, 127440	14.7	1	
405	Til4-doping induced bulk defects passivation in halide perovskites for high efficient photovoltaic devices. <i>Organic Electronics</i> , 2021 , 88, 105973	3.5		
404	Inverted with power efficiency over 220 lm Wil. Nano Energy, 2021, 82, 105660	17.1	1	
403	Super-Stacking Self-Assembly of Organic Topological Heterostructures. <i>CCS Chemistry</i> , 2021 , 3, 413-424	47.2	25	
402	Fully Bridged Triphenylamine Derivatives as Color-Tunable Thermally Activated Delayed Fluorescence Emitters. <i>Organic Letters</i> , 2021 , 23, 958-962	6.2	25	
401	A narrowband blue circularly polarized thermally activated delayed fluorescence emitter with a hetero-helicene structure. <i>Chemical Communications</i> , 2021 , 57, 11041-11044	5.8	10	
400	Ultra-Bright and Stable Pure Blue Light-Emitting Diode from O, N Co-Doped Carbon Dots. <i>Laser and Photonics Reviews</i> , 2021 , 15, 2000412	8.3	22	

399	Dimers with thermally activated delayed fluorescence (TADF) emission in non-doped device. Journal of Materials Chemistry C, 2021 , 9, 4792-4798	7.1	4
398	Harvesting triplet excitons for near-infrared electroluminescence via thermally activated delayed fluorescence channel. <i>IScience</i> , 2021 , 24, 102123	6.1	9
397	Intramolecular-Locked High Efficiency Ultrapure Violet-Blue (CIE-y . <i>Advanced Functional Materials</i> , 2021 , 31, 2009488	15.6	34
396	Hierarchical Self-Assembly of Organic Core/Multi-Shell Microwires for Trichromatic White-Light Sources. <i>Advanced Materials</i> , 2021 , 33, e2102719	24	19
395	Estacked donor-acceptor molecule to realize hybridized local and charge-transfer excited state emission with multi-stimulus response. <i>Chemical Engineering Journal</i> , 2021 , 418, 129366	14.7	10
394	31.1: Invited Paper: Emitters with Narrow-band Emission: Molecular Design Strategy. <i>Digest of Technical Papers SID International Symposium</i> , 2021 , 52, 414-414	0.5	
393	Efficient and Spectrally Stable Blue Perovskite Light-Emitting Diodes Employing a Cationic Econjugated Polymer. <i>Advanced Materials</i> , 2021 , 33, e2103640	24	18
392	Light-emitting carbon dots extracted from naturally grown torreya grandis seeds. <i>Organic Electronics</i> , 2021 , 96, 106255	3.5	О
391	Research Progress of Intramolecular Estacked Small Molecules for Device Applications. <i>Advanced Materials</i> , 2021 , e2104125	24	21
390	Highly efficient deep-red TADF organic light-emitting diodes via increasing the acceptor strength of fused polycyclic aromatics. <i>Chemical Engineering Journal</i> , 2021 , 424, 130470	14.7	12
389	Fine synthesis of hierarchical CuO/Cu(OH)2 urchin-like nanoparticles for efficient removal of Cr(VI). Journal of Alloys and Compounds, 2021 , 884, 161052	5.7	О
388	Suppressed oxidation of tin perovskite by Catechin for eco-friendly indoor photovoltaics. <i>Applied Physics Letters</i> , 2021 , 118, 023501	3.4	17
387	W18O49/N-doped reduced graphene oxide hybrid architectures for full-spectrum photocatalytic degradation of organic contaminants in water. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 829-835	7.1	4
386	Homoleptic Ir(III) Phosphors with 2-Phenyl-1,2,4-triazol-3-ylidene Chelates for Efficient Blue Organic Light-Emitting Diodes. <i>ACS Applied Materials & Diodes amp; Interfaces</i> , 2021 ,	9.5	5
385	Evolution of pure hydrocarbon hosts: simpler structure, higher performance and universal application in RGB phosphorescent organic light-emitting diodes. <i>Chemical Science</i> , 2020 , 11, 4887-489	4 ^{9.4}	35
384	A Bright and Stable Violet Carbon Dot Light-Emitting Diode. <i>Advanced Optical Materials</i> , 2020 , 8, 20002	2 39 .1	16
383	Organic Lasers Harnessing Excited State Intramolecular Proton Transfer Process. <i>ACS Photonics</i> , 2020 , 7, 1355-1366	6.3	22
382	Acceptor modulation for improving a spiro-type thermally activated delayed fluorescence emitter. Journal of Materials Chemistry C, 2020, 8, 8579-8584	7.1	17

(2020-2020)

381	Indium doped CsPbI3 films for inorganic perovskite solar cells with efficiency exceeding 17%. <i>Nano Research</i> , 2020 , 13, 2203-2208	10	19
380	Highly efficient luminescence from space-confined charge-transfer emitters. <i>Nature Materials</i> , 2020 , 19, 1332-1338	27	182
379	Indoor Thin-Film Photovoltaics: Progress and Challenges. Advanced Energy Materials, 2020, 10, 2000641	21.8	48
378	Micro Organic Light Emitting Diode Arrays by Patterned Growth on Structured Polypyrrole. <i>Advanced Optical Materials</i> , 2020 , 8, 1902105	8.1	9
377	Near-Infrared Organic Single-Crystal Nanolaser Arrays Activated by Excited-State Intramolecular Proton Transfer. <i>Matter</i> , 2020 , 2, 1233-1243	12.7	40
376	Overcoming the energy gap law in near-infrared OLEDs by exciton libration decoupling. <i>Nature Photonics</i> , 2020 , 14, 570-577	33.9	92
375	High-performance organic light-emitting diodes with natural white emission based on thermally activated delayed fluorescence emitters. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 10431-10437	7.1	5
374	Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. <i>Nature Nanotechnology</i> , 2020 , 15, 668-674	28.7	281
373	Two-Dimensional Organic Semiconductor Crystals for Photonics Applications. <i>ACS Applied Nano Materials</i> , 2020 , 3, 1080-1097	5.6	24
372	Fine Synthesis of Longitudinal/Horizontal-Growth Organic Heterostructures for the Optical Logic Gates. <i>Advanced Electronic Materials</i> , 2020 , 6, 1901268	6.4	5
371	High-performance sky-blue phosphorescent organic light-emitting diodes employing wide-bandgap bipolar host materials with thermally activated delayed fluorescence characteristics. <i>Organic Electronics</i> , 2020 , 81, 105660	3.5	7
370	Delayed Fluorescence Emitter Enables Near 17% Efficiency Ternary Organic Solar Cells with Enhanced Storage Stability and Reduced Recombination Energy Loss. <i>Advanced Functional Materials</i> , 2020 , 30, 1909837	15.6	75
369	All-Fluorescence White Organic Light-Emitting Diodes Exceeding 20% EQEs by Rational Manipulation of Singlet and Triplet Excitons. <i>Advanced Functional Materials</i> , 2020 , 30, 1910633	15.6	25
368	Chlorine Vacancy Passivation in Mixed Halide Perovskite Quantum Dots by Organic Pseudohalides Enables Efficient Rec. 2020 Blue Light-Emitting Diodes. <i>ACS Energy Letters</i> , 2020 , 5, 793-798	20.1	100
367	Auger Effect Assisted Perovskite Electroluminescence Modulated by Interfacial Minority Carriers. <i>Advanced Functional Materials</i> , 2020 , 30, 1909222	15.6	18
366	Exciplex-Based Organic Light-Emitting Diodes with Near-Infrared Emission. <i>Advanced Optical Materials</i> , 2020 , 8, 1901917	8.1	15
365	Structurally controlled singlet-triplet splitting for blue star-shaped thermally activated delayed fluorescence emitters incorporating the tricarbazoles-triazine motifs. <i>Organic Electronics</i> , 2020 , 84, 105	783	3
364	Highly efficient exciplex-based OLEDs incorporating a novel electron donor. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 1648-1655	7.8	6

363	Donor-spiro-acceptor architecture for green thermally activated delayed fluorescence (TADF) emitter. <i>Organic Electronics</i> , 2020 , 77, 105520	3.5	8
362	Nondoped organic light-emitting diodes with low efficiency roll-off: the combination of aggregation-induced emission, hybridized local and charge-transfer state as well as high photoluminescence efficiency. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 3079-3087	7.1	16
361	Lead Oxalate-Induced Nucleation Retardation for High-Performance Indoor and Outdoor Perovskite Photovoltaics. <i>ACS Applied Materials & District Materials</i> (12, 836-843)	9.5	9
360	Through Space Charge Transfer for Efficient Sky-Blue Thermally Activated Delayed Fluorescence (TADF) Emitter with Unconjugated Connection. <i>Advanced Optical Materials</i> , 2020 , 8, 1901150	8.1	41
359	Synergistic Effect of Dual Ligands on Stable Blue Quasi-2D Perovskite Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2020 , 30, 1908339	15.6	64
358	Efficient Violet Organic Light-Emitting Diodes with CIEy of 0.02 Based on Spiro Skeleton. <i>Advanced Optical Materials</i> , 2020 , 8, 2001074	8.1	16
357	Circularly Polarized Thermally Activated Delayed Fluorescence Emitters in Through-Space Charge Transfer on Asymmetric Spiro Skeletons. <i>Journal of the American Chemical Society</i> , 2020 , 142, 17756-17	7654	81
356	Organic single-crystalline whispering-gallery mode microlasers with efficient optical gain activated via excited state intramolecular proton transfer luminogens. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 11916-11921	7.1	8
355	Chelating-agent-assisted control of CsPbBr quantum well growth enables stable blue perovskite emitters. <i>Nature Communications</i> , 2020 , 11, 3674	17.4	45
354	Near-Infrared Electroluminescence beyond 800 nm with High Efficiency and Radiance from Anthracene Cored Emitters. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 21578-21584	16.4	20
353	Near-Infrared Electroluminescence beyond 800 nm with High Efficiency and Radiance from Anthracene Cored Emitters. <i>Angewandte Chemie</i> , 2020 , 132, 21762-21768	3.6	8
352	Sky-Blue Thermally Activated Delayed Fluorescence with Intramolecular Spatial Charge Transfer Based on a Dibenzothiophene Sulfone Emitter. <i>Journal of Organic Chemistry</i> , 2020 , 85, 10628-10637	4.2	27
351	Spiro-type host materials with rigidified skeletons for RGB phosphorescent OLEDs. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 12470-12477	7.1	7
350	Real-time interface investigation on degradation mechanism of organic light-emitting diode by in-operando X-ray spectroscopies. <i>Organic Electronics</i> , 2020 , 87, 105901	3.5	1
349	Durable strategies for perovskite photovoltaics. APL Materials, 2020, 8, 100703	5.7	3
348	Highly Efficient Thermally Activated Delayed Fluorescence via an Unconjugated Donor-Acceptor System Realizing EQE of Over 30. <i>Advanced Materials</i> , 2020 , 32, e2003885	24	76
347	Molecular- and Structural-Level Organic Heterostructures for Multicolor Photon Transportation. Journal of Physical Chemistry Letters, 2020 , 11, 7517-7524	6.4	7
346	Construction and optoelectronic applications of organic core/shell micro/nanostructures. <i>Materials Horizons</i> , 2020 , 7, 3161-3175	14.4	9

345	Recent Advances in Organic Whispering-Gallery Mode Lasers. <i>Laser and Photonics Reviews</i> , 2020 , 14, 2000257	8.3	20
344	Efficient All-Inorganic Perovskite Light-Emitting Diodes with Cesium Tungsten Bronze as a Hole-Transporting Layer. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 7624-7629	6.4	6
343	Tin Halide Perovskites: Progress and Challenges. Advanced Energy Materials, 2020, 10, 1902584	21.8	76
342	Progress of Triple Cation Organometal Halide Perovskite Solar Cells. <i>Energy Technology</i> , 2020 , 8, 19008	80 4 5	15
341	Organic heterostructures composed of one- and two-dimensional polymorphs for photonic applications. <i>Science China Chemistry</i> , 2020 , 63, 1477-1482	7.9	26
340	UV-Stable and Highly Efficient Perovskite Solar Cells by Employing Wide Band gap NaTaO as an Electron-Transporting Layer. <i>ACS Applied Materials & Electron States</i> , 12, 21772-21778	9.5	7
339	Multichannel Effect of Triplet Excitons for Highly Efficient Green and Red Phosphorescent OLEDs. <i>Advanced Optical Materials</i> , 2020 , 8, 2000556	8.1	10
338	Charge-Transfer Complexes: Deep-Red/Near-Infrared Electroluminescence from Single-Component Charge-Transfer Complex via Thermally Activated Delayed Fluorescence Channel (Adv. Funct. Mater. 38/2019). <i>Advanced Functional Materials</i> , 2019 , 29, 1970263	15.6	2
337	General Mild Reaction Creates Highly Luminescent Organic-Ligand-Lacking Halide Perovskite Nanocrystals for Efficient Light-Emitting Diodes. <i>Journal of the American Chemical Society</i> , 2019 , 141, 15423-15432	16.4	79
336	Low-temperature solution-processed hybrid interconnecting layer with bulk/interfacial synergistic effect in symmetric tandem organic solar cells. <i>Organic Electronics</i> , 2019 , 75, 105423	3.5	8
335	Hierarchical self-assembly of organic heterostructure nanowires. <i>Nature Communications</i> , 2019 , 10, 383	3917.4	73
334	A decacyclic indacenodithiophene-based non-fullerene electron acceptor with meta-alkyl-phenyl substitutions for polymer solar cells. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 4063-4071	13	13
333	Flower-like MoS2 nanocrystals: a powerful sorbent of Li+ in the Spiro-OMeTAD layer for highly efficient and stable perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3655-3663	13	37
332	High-Quality White Organic Light-Emitting Diodes Composed of Binary Emitters with Color Rendering Index Exceeding 80 by Utilizing Color Remedy Strategy. <i>Advanced Functional Materials</i> , 2019 , 29, 1807541	15.6	35
331	Surface CH3NH3+ to CH3+ Ratio Impacts the Work Function of Solution-Processed and Vacuum-Sublimed CH3NH3PbI3 Thin Films. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1801827	4.6	8
330	Deep-Blue and Hybrid-White Organic Light Emitting Diodes Based on a Twisting Carbazole-Benzofuro[2,3-b]Pyrazine Fluorescent Emitter. <i>Molecules</i> , 2019 , 24,	4.8	12
329	Low-Threshold Organic Lasers Based on Single-Crystalline Microribbons of Aggregation-Induced Emission Luminogens. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 679-684	6.4	17
328	9,9'-Bicarbazole: New Molecular Skeleton for Organic Light-Emitting Diodes. <i>Chemistry - A European Journal</i> , 2019 , 25, 4501-4508	4.8	17

327	In Situ Construction of One-Dimensional Component-Interchange Organic Core/Shell Microrods for Multicolor Continuous-Variable Optical Waveguide. <i>ACS Applied Materials & Discrete Section</i> 11, 5298-5305	9.5	22
326	The roles of thermally activated delayed fluorescence sensitizers for efficient red fluorescent organic light-emitting diodes with DAA type emitters. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 161-167	7.8	11
325	Triplet exciton harvesting by multi-process energy transfer in fluorescent organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 977-985	7.1	21
324	Design and Synthesis of Donor-WAcceptor-Type Dispiro Molecules. <i>Organic Letters</i> , 2019 , 21, 5281-528	46.2	6
323	Transformation from Nonlasing to Lasing in Organic Solid-State through the Cocrystal Engineering. <i>ACS Photonics</i> , 2019 , 6, 1798-1803	6.3	20
322	EGa2O3 Nanocrystals Electron-Transporting Layer for High-Performance Perovskite Solar Cells. <i>Solar Rrl</i> , 2019 , 3, 1900201	7.1	4
321	Recent Advances in 1D Organic Solid-State Lasers. <i>Advanced Functional Materials</i> , 2019 , 29, 1902981	15.6	33
320	Controllable Fabrication of In-Series Organic Heterostructures for Optical Waveguide Application. <i>Advanced Optical Materials</i> , 2019 , 7, 1900373	8.1	16
319	One-shot triphenylamine/phenylketone hybrid as a bipolar host material for efficient red phosphorescent organic light-emitting diodes. <i>Synthetic Metals</i> , 2019 , 254, 42-48	3.6	2
318	Polarized Ferroelectric Polymers for High-Performance Perovskite Solar Cells. <i>Advanced Materials</i> , 2019 , 31, e1902222	24	64
317	Fluorenone-based thermally activated delayed fluorescence materials for orange-red emission. <i>Organic Electronics</i> , 2019 , 73, 240-246	3.5	7
316	A SrGeO3 inorganic electron-transporting layer for high-performance perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 14559-14564	13	7
315	Dibenzothiophene, dibenzofuran and pyridine substituted tetraphenyl silicon derivatives hosts for green phosphorescent organic light-emitting diodes. <i>Organic Electronics</i> , 2019 , 71, 258-265	3.5	2
314	Perovskite Grains Embraced in a Soft Fullerene Network Make Highly Efficient Flexible Solar Cells with Superior Mechanical Stability. <i>Advanced Materials</i> , 2019 , 31, e1901519	24	88
313	High-efficiency exciplex-based white organic light-emitting diodes with a new tripodal material as a co-host. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 7267-7272	7.1	10
312	Organic bulk-heterojunction injected perovskite films for highly efficient solar cells. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 6391-6397	7.1	6
311	Morphology control of CsPbBr3 films by a surface active Lewis base for bright all-inorganic perovskite light-emitting diodes. <i>Applied Physics Letters</i> , 2019 , 114, 163302	3.4	11
310	Incorporating a tercarbazole donor in a spiro-type host material for efficient RGB phosphorescent organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 6714-6720	7.1	29

309	Active whispering-gallery-mode optical microcavity based on self-assembled organic microspheres. Journal of Materials Chemistry C, 2019 , 7, 3443-3446	7.1	23
308	C1-Linked Spirobifluorene Dimers: Pure Hydrocarbon Hosts for High-Performance Blue Phosphorescent OLEDs. <i>Angewandte Chemie</i> , 2019 , 131, 3888-3893	3.6	15
307	Progress of Lead-Free Halide Double Perovskites. <i>Advanced Energy Materials</i> , 2019 , 9, 1803150	21.8	192
306	A sky-blue thermally activated delayed fluorescence emitter based on multimodified carbazole donor for efficient organic light-emitting diodes. <i>Organic Electronics</i> , 2019 , 68, 113-120	3.5	15
305	Composition Stoichiometry of CsAgBiBr Films for Highly Efficient Lead-Free Perovskite Solar Cells. <i>Nano Letters</i> , 2019 , 19, 2066-2073	11.5	148
304	High-efficiency organic light-emitting diodes with exciplex hosts. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 11329-11360	7.1	65
303	Crystalline Liquid-like Behavior: Surface-Induced Secondary Grain Growth of Photovoltaic Perovskite Thin Film. <i>Journal of the American Chemical Society</i> , 2019 , 141, 13948-13953	16.4	96
302	Enhanced Light Utilization in Semitransparent Organic Photovoltaics Using an Optical Outcoupling Architecture. <i>Advanced Materials</i> , 2019 , 31, e1903173	24	64
301	Highly efficient deep-red organic light-emitting diodes using exciplex-forming co-hosts and thermally activated delayed fluorescence sensitizers with extended lifetime. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 9531-9536	7.1	8
300	Tailored Phase Transformation of CsPbIBr Films by Copper(II) Bromide for High-Performance All-Inorganic Perovskite Solar Cells. <i>Nano Letters</i> , 2019 , 19, 5176-5184	11.5	105
299	Planar starburst hole-transporting materials for highly efficient perovskite solar cells. <i>Nano Energy</i> , 2019 , 63, 103865	17.1	23
298	Deep-Red/Near-Infrared Electroluminescence from Single-Component Charge-Transfer Complex via Thermally Activated Delayed Fluorescence Channel. <i>Advanced Functional Materials</i> , 2019 , 29, 190311	125.6	39
297	High-Efficiency Red Organic Light-Emitting Diodes with External Quantum Efficiency Close to 30% Based on a Novel Thermally Activated Delayed Fluorescence Emitter. <i>Advanced Materials</i> , 2019 , 31, e19	02368	152
296	Optimization of Low-Dimensional Components of Quasi-2D Perovskite Films for Deep-Blue Light-Emitting Diodes. <i>Advanced Materials</i> , 2019 , 31, e1904319	24	146
295	Near-Infrared Solid-State Lasers Based on Small Organic Molecules. <i>ACS Photonics</i> , 2019 , 6, 2590-2599	6.3	19
294	Management of Exciton for Highly-Efficient Hybrid White Organic Light-Emitting Diodes with a Non-Doped Blue Emissive Layer. <i>Molecules</i> , 2019 , 24,	4.8	1
293	52.5: High-Quality White Organic Light-Emitting Diodes by Employing Rational Exciplex Allocation and Color Remedy Effect. <i>Digest of Technical Papers SID International Symposium</i> , 2019 , 50, 580-580	0.5	
292	Interfacial engineering for highly efficient quasi-two dimensional organic[horganic hybrid perovskite light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 4344-4349	7.1	26

291	Influence of a lecithin additive on the performance of all-inorganic perovskite light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 2905-2910	7.1	16
290	C1-Linked Spirobifluorene Dimers: Pure Hydrocarbon Hosts for High-Performance Blue Phosphorescent OLEDs. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 3848-3853	16.4	68
289	Highly efficient red thermally activated delayed fluorescence materials based on a cyano-containing planar acceptor. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 15301-15307	7.1	18
288	High transmittance Er-doped ZnO thin films as electrodes for organic light-emitting diodes. <i>Applied Physics Letters</i> , 2019 , 115, 252102	3.4	10
287	Controllable synthesis of barnyardgrass-like CuO/Cu2O heterostructure nanowires for highly sensitive non-enzymatic glucose sensors. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 14874-14880	7.1	20
286	Surfacial ligand management of a perovskite film for efficient and stable light-emitting diodes. Journal of Materials Chemistry C, 2019 , 7, 14725-14730	7.1	3
285	Alleviating Efficiency Roll-Off of Hybrid Single-Emitting Layer WOLED Utilizing Bipolar TADF Material as Host and Emitter. <i>ACS Applied Materials & District Research</i> , 11, 2197-2204	9.5	36
284	The Design of Fused Amine/Carbonyl System for Efficient Thermally Activated Delayed Fluorescence: Novel Multiple Resonance Core and Electron Acceptor. <i>Advanced Optical Materials</i> , 2019 , 7, 1801536	8.1	97
283	Modulation of p-type units in tripodal bipolar hosts towards highly efficient red phosphorescent OLEDs. <i>Dyes and Pigments</i> , 2019 , 162, 632-639	4.6	7
282	Near-infrared non-fullerene acceptors based on dithienyl[1,2-b:4,5-b]benzodithiophene core for high performance PTB7-Th-based polymer solar cells. <i>Organic Electronics</i> , 2019 , 65, 63-69	3.5	9
281	Deep-blue thermally activated delayed fluorescence materials with high glass transition temperature. <i>Journal of Luminescence</i> , 2019 , 206, 146-153	3.8	9
280	N-type Doping of Organic-Inorganic Hybrid Perovskites Toward High-Performance Photovoltaic Devices. <i>Solar Rrl</i> , 2019 , 3, 1800269	7.1	10
279	design of D-FA molecules as universal hosts for monochrome and white phosphorescent organic light-emitting diodes. <i>Chemical Science</i> , 2018 , 9, 4062-4070	9.4	49
278	Tunable Emission Color and Morphology of Organic Microcrystals by a Locrystall Approach. <i>Advanced Optical Materials</i> , 2018 , 6, 1701300	8.1	34
277	The role of fluorine-substitution on the Ebridge in constructing effective thermally activated delayed fluorescence molecules. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 5536-5541	7.1	24
276	Blue thermally activated delayed fluorescence materials based on bi/tri-carbazole derivatives. <i>Organic Electronics</i> , 2018 , 58, 238-244	3.5	3
275	A novel spiro-annulated benzimidazole host for highly efficient blue phosphorescent organic light-emitting devices. <i>Chemical Communications</i> , 2018 , 54, 4541-4544	5.8	22
274	Direct observation of cation-exchange in liquid-to-solid phase transformation in FA1MMAxPbI3 based perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 9081-9088	13	29

(2018-2018)

273	Novel o-D-EA arylamine/arylphosphine oxide hybrid hosts for efficient phosphorescent organic light-emitting diodes. <i>Organic Electronics</i> , 2018 , 56, 186-191	3.5	6
272	Novel tetraarylsilane-based hosts for blue phosphorescent organic light-emitting diodes. <i>Organic Electronics</i> , 2018 , 55, 117-125	3.5	1
271	A blue thermally activated delayed fluorescence emitter developed by appending a fluorene moiety to a carbazole donor with meta-linkage for high-efficiency OLEDs. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 917-922	7.8	31
270	Controlled synthesis of organic single-crystalline nanowires via the synergy approach of the bottom-up/top-down processes. <i>Nanoscale</i> , 2018 , 10, 5140-5147	7.7	16
269	Tilted Spiro-Type Thermally Activated Delayed Fluorescence Host for 100% Exciton Harvesting in Red Phosphorescent Electronics with Ultralow Doping Ratio. <i>Advanced Functional Materials</i> , 2018 , 28, 1706228	15.6	54
268	Spirobi[dibenzo[b,e][1,4]azasiline]: a novel platform for host materials in highly efficient organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 1023-1030	7.1	17
267	Passivated Perovskite Crystallization via g-C3N4 for High-Performance Solar Cells. <i>Advanced Functional Materials</i> , 2018 , 28, 1705875	15.6	158
266	Polyphenylnaphthalene as a Novel Building Block for High-Performance Deep-Blue Organic Light-Emitting Devices. <i>Advanced Optical Materials</i> , 2018 , 6, 1700855	8.1	22
265	Dispiro and Propellane: Novel Molecular Platforms for Highly Efficient Organic Light-Emitting Diodes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 1925-1932	9.5	18
264	Solution processable small molecule based organic light-emitting devices prepared by dip-coating method. <i>Organic Electronics</i> , 2018 , 55, 1-5	3.5	8
263	Efficient near-infrared organic light-emitting diodes based on a bipolar host. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 1407-1412	7.1	6
262	Pb-Sn-Cu Ternary Organometallic Halide Perovskite Solar Cells. <i>Advanced Materials</i> , 2018 , 30, e1800258	24	82
261	N-Type Doping of Fullerenes for Planar Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 875-882	20.1	50
260	Novel carbazole derivatives designed by an ortho-linkage strategy for efficient phosphorescent organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 4300-4307	7.1	12
259	New carbazole-based bipolar hosts for efficient blue phosphorescent organic light-emitting diodes. Organic Electronics, 2018 , 52, 138-145	3.5	15
258	Doped Copper Phthalocyanine via an Aqueous Solution Process for Normal and Inverted Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2018 , 8, 1701688	21.8	64
257	Interface Modification by Ionic Liquid: A Promising Candidate for Indoor Light Harvesting and Stability Improvement of Planar Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2018 , 8, 1801509	21.8	128
256	9-Silafluorene and 9-germafluorene: novel platforms for highly efficient red phosphorescent organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 8144-8151	7.1	16

255	2D Organic Photonics: An Asymmetric Optical Waveguide in Self-Assembled Halogen-Bonded Cocrystals. <i>Angewandte Chemie</i> , 2018 , 130, 11470-11474	3.6	33
254	Enhanced Electrical Property of Compact TiO2 Layer via Platinum Doping for High-Performance Perovskite Solar Cells. <i>Solar Rrl</i> , 2018 , 2, 1800149	7.1	19
253	Thermally activated delayed fluorescence sensitizer for DAA type emitters with orange-red light emission. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 10030-10035	7.1	12
252	2D Organic Photonics: An Asymmetric Optical Waveguide in Self-Assembled Halogen-Bonded Cocrystals. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 11300-11304	16.4	72
251	Organic Nanophotonics: Self-Assembled Single-Crystalline Homo-/Heterostructures for Optical Waveguides. <i>ACS Photonics</i> , 2018 , 5, 3763-3771	6.3	32
250	Recent advances in electron acceptors with ladder-type backbone for organic solar cells. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 17256-17287	13	45
249	High-Efficiency White Organic Light-Emitting Diodes Integrating Gradient Exciplex Allocation System and Novel D-Spiro-A Materials. <i>ACS Applied Materials & Company Co</i>	9.5	36
248	Efficient Near-Infrared Emission by Adjusting the GuestHost Interactions in Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2018 , 28, 1802597	, 15.6	32
247	Management of excitons for highly efficient organic light-emitting diodes with reduced triplet exciton quenching: synergistic effects of exciplex and quantum well structure. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 342-349	7.1	23
246	Graphdiyne-modified cross-linkable fullerene as an efficient electron-transporting layer in organometal halide perovskite solar cells. <i>Nano Energy</i> , 2018 , 43, 47-54	17.1	106
245	Controllable Synthesis of Organic Microcrystals with Tunable Emission Color and Morphology Based on Molecular Packing Mode. <i>Small</i> , 2018 , 14, 1702952	11	20
244	Hole-Transporting Materials Incorporating Carbazole into Spiro-Core for Highly Efficient Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2018 , 29, 1807094	15.6	49
243	Sequential Self-Assembly of 1D Branched Organic Homostructures with Optical Logic Gate Function. <i>Advanced Functional Materials</i> , 2018 , 28, 1804915	15.6	26
242	High-Performance White Organic Light-Emitting Diodes with Simplified Structure Incorporating Novel Exciplex-Forming Host. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 39116-39123	9.5	22
241	Self-Assembled High Quality CsPbBr Quantum Dot Films toward Highly Efficient Light-Emitting Diodes. <i>ACS Nano</i> , 2018 , 12, 9541-9548	16.7	113
240	Rational synthesis of organic single-crystalline microrods and microtubes for efficient optical waveguides. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 9594-9598	7.1	17
239	Highly efficient non-doped deep-blue organic light-emitting diodes by employing a highly rigid skeleton. <i>Dyes and Pigments</i> , 2018 , 158, 396-401	4.6	9
238	Fluorescence/phosphorescence-conversion in self-assembled organic microcrystals. <i>Chemical Communications</i> , 2018 , 54, 5895-5898	5.8	8

237	Doped Charge-Transporting Layers in Planar Perovskite Solar Cells. <i>Advanced Optical Materials</i> , 2018 , 6, 1800276	8.1	56
236	Short-axis substitution approach on ladder-type benzodithiophene-based electron acceptor toward highly efficient organic solar cells. <i>Science China Chemistry</i> , 2018 , 61, 1405-1412	7.9	14
235	A series of spirofluorene-based host materials for efficient phosphorescent organic light-emitting diodes. <i>Organic Electronics</i> , 2018 , 61, 70-77	3.5	10
234	Phosphorescent platinum(II) complexes based on spiro linkage-containing ligands. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 1944-1951	7.1	13
233	Highly Simplified Tandem Organic Light-Emitting Devices Incorporating a Green Phosphorescence Ultrathin Emitter within a Novel Interface Exciplex for High Efficiency. <i>ACS Applied Materials & Interfaces</i> , 2017 , 9, 10955-10962	9.5	48
232	White-Emissive Self-Assembled Organic Microcrystals. <i>Small</i> , 2017 , 13, 1604110	11	37
231	Highly Efficient Deep-Blue Electroluminescence from a Charge-Transfer Emitter with Stable Donor Skeleton. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 7331-7338	9.5	77
230	CHNHPbICl under Different Fabrication Strategies: Electronic Structures and Energy-Level Alignment with an Organic Hole Transport Material. <i>ACS Applied Materials & Description</i> 4, 7859-7865	9.5	17
229	High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinlycarbazole) as a hole-transporting layer. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 5372-5377	7.1	39
228	Over 10% EQE Near-Infrared Electroluminescence Based on a Thermally Activated Delayed Fluorescence Emitter. <i>Advanced Functional Materials</i> , 2017 , 27, 1700986	15.6	175
227	Luminescence-/morphology-modulation of organic microcrystals by a protonation process. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 6661-6666	7.1	7
226	Dibenzo[g,p]chrysene: A new platform for highly efficient red phosphorescent organic light-emitting diodes. <i>Dyes and Pigments</i> , 2017 , 146, 234-239	4.6	17
225	Competition between Arene P erfluoroarene and Charge-Transfer Interactions in Organic Light-Harvesting Systems. <i>Angewandte Chemie</i> , 2017 , 129, 10488-10492	3.6	31
224	Competition between Arene-Perfluoroarene and Charge-Transfer Interactions in Organic Light-Harvesting Systems. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 10352-10356	16.4	105
223	Donor-EAcceptor Molecules for Green Thermally Activated Delayed Fluorescence by Spatially Approaching Spiro Conformation. <i>Organic Letters</i> , 2017 , 19, 3155-3158	6.2	40
222	Aminoborane-based bipolar host material for blue and white-emitting electrophosphorescence devices. <i>Organic Electronics</i> , 2017 , 48, 112-117	3.5	11
221	Polymer as an Additive in the Emitting Layer for High-Performance Quantum Dot Light-Emitting Diodes. <i>ACS Applied Materials & Empty Interfaces</i> , 2017 , 9, 20239-20246	9.5	43
220	Solution-Processed Thermally Activated Delayed Fluorescence Exciplex Hosts for Highly Efficient Blue Organic Light-Emitting Diodes. <i>Advanced Optical Materials</i> , 2017 , 5, 1700012	8.1	21

219	Highly phosphorescent cyclometalated platinum(II) complexes based on 2-phenylbenzimidazole-containing ligands. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 6202-6209	7.1	24
218	A near-infrared non-fullerene electron acceptor for high performance polymer solar cells. <i>Energy and Environmental Science</i> , 2017 , 10, 1610-1620	35.4	238
217	White Organic LED with a Luminous Efficacy Exceeding 100 lm WI without Light Out-Coupling Enhancement Techniques. <i>Advanced Functional Materials</i> , 2017 , 27, 1701314	15.6	134
216	Orthogonally substituted aryl derivatives as bipolar hosts for blue phosphorescent organic light-emitting diodes. <i>Organic Electronics</i> , 2017 , 46, 105-114	3.5	13
215	Solution-Processed Extremely Efficient Multicolor Perovskite Light-Emitting Diodes Utilizing Doped Electron Transport Layer. <i>Advanced Functional Materials</i> , 2017 , 27, 1606874	15.6	73
214	Small Molecule-Polymer Composite Hole-Transporting Layer for Highly Efficient and Stable Perovskite Solar Cells. <i>ACS Applied Materials & Description</i> (2017), 9, 13240-13246	9.5	52
213	Efficient non-doped deep blue organic light emitting diodes with high external quantum efficiency and a low efficiency roll-off based on donor-acceptor molecules. <i>Dyes and Pigments</i> , 2017 , 142, 499-506	4.6	25
212	Highly Simplified Reddish Orange Phosphorescent Organic Light-Emitting Diodes Incorporating a Novel Carrier- and Exciton-Confining Spiro-Exciplex-Forming Host for Reduced Efficiency Roll-off. <i>ACS Applied Materials & Divergaces</i> , 2017 , 9, 2701-2710	9.5	39
211	Facet-Selective Growth of Organic Heterostructured Architectures via Sequential Crystallization of Structurally Complementary EConjugated Molecules. <i>Nano Letters</i> , 2017 , 17, 695-701	11.5	28
210	DAA-Type Emitter Featuring Benzo[c][1,2,5]thiadiazole and Polar C?N Bond as Tandem Acceptor for High-Performance Near-Infrared Organic Light-Emitting Diodes. <i>Advanced Optical Materials</i> , 2017 , 5, 1700566	8.1	14
209	Efficient sky-blue emitting Pt(II) complexes based on imidazo[1,2-f]phenanthridine-containing tetradentate ligands. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 9496-9503	7.1	15
208	Molecular-Oriented Self-Assembly of Small Organic Molecules into Uniform Microspheres. <i>Crystal Growth and Design</i> , 2017 , 17, 4527-4532	3.5	5
207	Isomeric Effects of Solution Processed Ladder-Type Non-Fullerene Electron Acceptors. <i>Solar Rrl</i> , 2017 , 1, 1700107	7.1	41
206	High performance blue quantum dot light-emitting diodes employing polyethylenimine ethoxylated as the interfacial modifier. <i>Nanoscale</i> , 2017 , 9, 14792-14797	7.7	27
205	Flash-evaporated small molecule films toward low-cost and flexible organic light-emitting diodes. Journal of Materials Chemistry C, 2017 , 5, 10721-10727	7.1	17
204	Highly efficient and thickness-tolerable bulk heterojunction polymer solar cells based on P3HT donor and a low-bandgap non-fullerene acceptor. <i>Journal of Power Sources</i> , 2017 , 364, 426-431	8.9	6
203	An Imide-Based Pentacyclic Building Block for n-Type Organic Semiconductors. <i>Chemistry - A European Journal</i> , 2017 , 23, 14723-14727	4.8	10
202	Vacuum-evaporated all-inorganic cesium lead bromine perovskites for high-performance light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 8144-8149	7.1	58

201	High Efficiency Near-Infrared and Semitransparent Non-Fullerene Acceptor Organic Photovoltaic Cells. <i>Journal of the American Chemical Society</i> , 2017 , 139, 17114-17119	16.4	312
200	WO3 nanobelt doped PEDOT:PSS layers for efficient hole-injection in quantum dot light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 12343-12348	7.1	20
199	Design principles of carbazole/dibenzothiophene derivatives as host material in modern efficient organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 6989-6996	7.1	20
198	Highly luminescent platinum(II) complexes based on pyrazolo[1,5-f]phenanthridine-containing ligands. <i>Organic Electronics</i> , 2017 , 50, 473-479	3.5	17
197	Long-lived efficient delayed fluorescence organic light-emitting diodes using n-type hosts. <i>Nature Communications</i> , 2017 , 8, 2250	17.4	120
196	Micro organic light-emitting diodes fabricated through area-selective growth. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 2606-2612	7.8	9
195	A novel electron-acceptor moiety as a building block for efficient donor-acceptor based fluorescent organic lighting-emitting diodes. <i>Chemical Communications</i> , 2016 , 53, 263-265	5.8	19
194	Enhanced crystallization and stability of perovskites by a cross-linkable fullerene for high-performance solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 15088-15094	13	62
193	Simplified Hybrid White Organic Light-Emitting Diodes with a Mixed Fluorescent Blue Emitting Layer for Exciton Managing and Lifetime Improving. <i>Advanced Optical Materials</i> , 2016 , 4, 2051-2056	8.1	29
192	Blue OLEDs: Controlling Synergistic Oxidation Processes for Efficient and Stable Blue Thermally Activated Delayed Fluorescence Devices (Adv. Mater. 35/2016). <i>Advanced Materials</i> , 2016 , 28, 7807-780	o 7 ²⁴	2
191	Thermally Activated Delayed Fluorescence Material as Host with Novel Spiro-Based Skeleton for High Power Efficiency and Low Roll-Off Blue and White Phosphorescent Devices. <i>Advanced Functional Materials</i> , 2016 , 26, 7929-7936	15.6	74
190	Constructing luminescent particle/MOF composites by employing polyvinylpyrrolidone-modified organic crystals as seeds. <i>Chemical Communications</i> , 2016 , 52, 12318-12321	5.8	7
189	New advances in small molecule hole-transporting materials for perovskite solar cells. <i>Chinese Chemical Letters</i> , 2016 , 27, 1293-1303	8.1	16
188	De Novo Design of Boron-Based Host Materials for Highly Efficient Blue and White Phosphorescent OLEDs with Low Efficiency Roll-Off. <i>ACS Applied Materials & Design Research</i> , 8, 20230-6	9.5	38
187	Utilizing 9,10-dihydroacridine and pyrazine-containing donor acceptor host materials for highly efficient red phosphorescent organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 7869-7874	7.1	15
186	An effective host material with thermally activated delayed fluorescence formed by confined conjugation for red phosphorescent organic light-emitting diodes. <i>Chemical Communications</i> , 2016 , 52, 8149-51	5.8	36
185	Non-fullerene polymer solar cells based on a selenophene-containing fused-ring acceptor with photovoltaic performance of 8.6%. <i>Energy and Environmental Science</i> , 2016 , 9, 3429-3435	35.4	154
184	Highly Efficient Blue Phosphorescent Organic Light-Emitting Diodes Employing a Host Material with Small Bandgap. <i>ACS Applied Materials & Diodes</i> , 2016, 8, 16186-91	9.5	43

183	Doped hole injection bilayers for solution processable blue phosphorescent organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 6570-6574	7.1	15
182	The Control of Conjugation Lengths and Steric Hindrance to Modulate Aggregation-Induced Emission with High Electroluminescence Properties and Interesting Optical Properties. <i>Chemistry - A European Journal</i> , 2016 , 22, 916-24	4.8	13
181	A room-temperature CuAlO2 hole interfacial layer for efficient and stable planar perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 1326-1335	13	96
180	Highly phosphorescent platinum(II) complexes based on rigid unsymmetric tetradentate ligands. <i>Organic Electronics</i> , 2016 , 32, 120-125	3.5	26
179	Non-fullerene acceptor with low energy loss and high external quantum efficiency: towards high performance polymer solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 5890-5897	13	202
178	Low-temperature solgel processed AlOx gate dielectric buffer layer for improved performance in pentacene-based OFETs. <i>RSC Advances</i> , 2016 , 6, 28801-28808	3.7	6
177	A new synthesis strategy for acridine derivatives to constructing novel host for phosphorescent organic light-emitting diodes. <i>Dyes and Pigments</i> , 2016 , 126, 131-137	4.6	19
176	Solution-processable iridium phosphors for efficient red and white organic light-emitting diodes with low roll-off. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 1250-1256	7.1	21
175	A surface modification layer capable of tolerating substrate contamination on transparent electrodes of organic electronic devices. <i>Organic Electronics</i> , 2016 , 28, 217-224	3.5	4
174	Controlling Synergistic Oxidation Processes for Efficient and Stable Blue Thermally Activated Delayed Fluorescence Devices. <i>Advanced Materials</i> , 2016 , 28, 7620-5	24	136
173	Novel spiro-based host materials for application in blue and white phosphorescent organic light-emitting diodes. <i>Organic Electronics</i> , 2016 , 37, 108-114	3.5	11
172	Dopant-Free Spiro-Triphenylamine/Fluorene as Hole-Transporting Material for Perovskite Solar Cells with Enhanced Efficiency and Stability. <i>Advanced Functional Materials</i> , 2016 , 26, 1375-1381	15.6	194
171	High Efficiency Pb-In Binary Metal Perovskite Solar Cells. <i>Advanced Materials</i> , 2016 , 28, 6695-703	24	185
170	Enhanced efficiency and stability in organic light-emitting diodes by employing a p-i-n-p structure. <i>Applied Physics Letters</i> , 2016 , 109, 173302	3.4	2
169	Chlorinated indium tin oxide electrode by InCl3 aqueous solution for high-performance organic light-emitting diodes. <i>Applied Physics Letters</i> , 2016 , 108, 153303	3.4	10
168	Efficiency Enhancement of Perovskite Solar Cells by Pumping Away the Solvent of Precursor Film Before Annealing. <i>Nanoscale Research Letters</i> , 2016 , 11, 248	5	9
167	Induced Crystallization of Perovskites by a Perylene Underlayer for High-Performance Solar Cells. <i>ACS Nano</i> , 2016 , 10, 5479-89	16.7	111
166	Tandem Organic Light-Emitting Diodes. <i>Advanced Materials</i> , 2016 , 28, 10381-10408	24	86

(2015-2016)

A fused-ring based electron acceptor for efficient non-fullerene polymer solar cells with small HOMO offset. <i>Nano Energy</i> , 2016 , 27, 430-438	17.1	112
Copper Salts Doped Spiro-OMeTAD for High-Performance Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2016 , 6, 1601156	21.8	172
Perovskite Solar Cells: High Efficiency Pb-In Binary Metal Perovskite Solar Cells (Adv. Mater. 31/2016). <i>Advanced Materials</i> , 2016 , 28, 6767	24	4
Origin of light manipulation in nano-honeycomb structured organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 1666-1671	7.1	15
Spiro-fused N-phenylcarbazole-based host materials for blue phosphorescent organic light-emitting diodes. <i>Organic Electronics</i> , 2015 , 20, 112-118	3.5	18
A low temperature gradual annealing scheme for achieving high performance perovskite solar cells with no hysteresis. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 14424-14430	13	32
Theoretical model for the external quantum efficiency of organic light-emitting diodes and its experimental validation. <i>Organic Electronics</i> , 2015 , 25, 200-205	3.5	11
Strongly phosphorescent platinum(II) complexes supported by tetradentate benzazole-containing ligands. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 8212-8218	7.1	29
High efficiency and low driving voltage blue/white electrophosphorescence enabled by the synergistic combination of singlet and triplet energy of bicarbazole derivatives. <i>Organic Electronics</i> , 2015 , 26, 25-29	3.5	8
A facile way to synthesize high-triplet-energy hosts for blue phosphorescent organic light-emitting diodes with high glass transition temperature and low driving voltage. <i>Dyes and Pigments</i> , 2015 , 122, 6-12	4.6	18
Improved hole interfacial layer for planar perovskite solar cells with efficiency exceeding 15%. <i>ACS Applied Materials & Discrete Applied & Discrete Applied</i>	9.5	108
Efficient blue/white phosphorescent organic light-emitting diodes based on a silicon-based host material via a direct carbonflitrogen bond. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 5347-5353	7.1	15
Origin of Enhanced Hole Injection in Organic Light-Emitting Diodes with an Electron-Acceptor Doping Layer: p-Type Doping or Interfacial Diffusion?. <i>ACS Applied Materials & Diffusion</i> , 11965-71	9.5	35
Planar perovskite solar cells with 15.75% power conversion efficiency by cathode and anode interfacial modification. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 13533-13539	13	111
Design and Synthesis of Pyrimidine-Based Iridium(III) Complexes with Horizontal Orientation for Orange and White Phosphorescent OLEDs. <i>ACS Applied Materials & Design Action Systems</i> (2015), 7, 11007-14	9.5	68
A host material consisting of phosphinic amide for efficient sky-blue phosphorescent organic light-emitting diodes. <i>Synthetic Metals</i> , 2015 , 205, 11-17	3.6	4
Effective host materials for blue/white organic light-emitting diodes by utilizing the twisted conjugation structure in 10-phenyl-9,10-dihydroacridine block. <i>Chemistry - an Asian Journal</i> , 2015 , 10, 1402-9	4.5	27
A stacked Al/Ag anode for short circuit protection in ITO free top-emitting organic light-emitting diodes. <i>RSC Advances</i> , 2015 , 5, 96478-96482	3.7	4
	Copper Salts Doped Spiro-OMeTAD for High-Performance Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1601156 Perovskite Solar Cells: High Efficiency Pb-In Binary Metal Perovskite Solar Cells (Adv. Mater. 31/2016). Advanced Materials, 2016, 28, 6767 Origin of light manipulation in nano-honeycomb structured organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 1666-1671 Spiro-fused N-phenylcarbazole-based host materials for blue phosphorescent organic light-emitting diodes. Organic Electronics, 2015, 20, 112-118 A low temperature gradual annealing scheme for achieving high performance perovskite solar cells with no hysteresis. Journal of Materials Chemistry A, 2015, 3, 14424-14430 Theoretical model for the external quantum efficiency of organic light-emitting diodes and its experimental validation. Organic Electronics, 2015, 25, 200-205 Strongly phosphorescent platinum(II) complexes supported by tetradentate benzazole-containing ligands. Journal of Materials Chemistry C, 2015, 3, 8212-8218 High efficiency and low driving voltage blue/white electrophosphorescence enabled by the synergistic combination of singlet and triplet energy of bicarbazole derivatives. Organic Electronics, 2015, 26, 25-29 A facile way to synthesize high-triplet-energy hosts for blue phosphorescent organic light-emitting diodes with high glass transition temperature and low driving voltage. Dyes and Pigments, 2015, 122, 6-12 Improved hole interfacial layer for planar perovskite solar cells with efficiency exceeding 15%. ACS Applied Materials & Amp; Interfaces, 2015, 7, 9645-51 Efficient blue/white phosphorescent organic light-emitting diodes based on a silicon-based host material via a direct carbonBiltrogen bond. Journal of Materials Chemistry C, 2015, 3, 3547-5353 Origin of Enhanced Hole Injection in Organic Light-Emitting Diodes with an Electron-Acceptor Oping Layer: p-Type Doping or Interfaces, 2015, 7, 9645-51 Fifficient blue/white phosphorescent organic light-emitting diodes based on a silicon	Copper Salts Doped Spiro-OMeTAD for High-Performance Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1601156 Perovskite Solar Cells: High Efficiency Pb-in Binary Metal Perovskite Solar Cells (Adv. Mater. 31/2016). Advanced Materials, 2016, 28, 6767 Origin of light manipulation in nano-honeycomb structured organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 1666-1671 Spiro-fused N-phenylcarbazole-based host materials for blue phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 20, 112-118 Alow temperature gradual annealing scheme for achieving high performance perovskite solar cells with no hysteresis. Journal of Materials Chemistry A, 2015, 3, 14424-14430 Theoretical model for the external quantum efficiency of organic light-emitting diodes and its experimental validation. Organic Electronics, 2015, 25, 200-205 Strongly phosphorescent platinum(II) complexes supported by tetradentate benzazole-containing ligands. Journal of Materials Chemistry C, 2015, 3, 8212-8218 High efficiency and low driving voltage blue/white electrophosphorescence enabled by the synergistic combination of singlet and triplet energy of bicarbazole derivatives. Organic Electronics, 2015, 26, 25-29 A facile way to synthesize high-triplet-energy hosts for blue phosphorescent organic light-emitting diodes with high glass transition temperature and low driving voltage. Dyes and Pigments, 2015, 122, 6-12 Efficient blue/white phosphorescent organic light-emitting diodes based on a silicon-based host material via a direct carbonilitrogen bond. Journal of Materials Chemistry C, 2015, 3, 5347-5353 7.11 Efficient blue/white phosphorescent organic Light-emitting Diodes with an Electron-Acceptor Doping Layer: p-Type Doping Interfaces, 2015, 7, 9645-51 Palanar perovskite solar cells with 15.75%, power conversion efficiency by cathode and anode interfacial modification. Journal of Materials Chemistry A, 2015, 3, 13533-13539 Design and Synthesis of Pyrimidine-Based Iridium(II

147	The study on two kinds of spiro systems for improving the performance of host materials in blue phosphorescent organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 9053-9056	7.1	18
146	Nano-honeycomb structured transparent electrode for enhanced light extraction from organic light-emitting diodes. <i>Applied Physics Letters</i> , 2015 , 106, 223301	3.4	23
145	Inverted and large flexible organic light-emitting diodes with low operating voltage. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 12399-12402	7.1	18
144	Microstructural and electrical properties of CuAlO2 ceramic prepared by a novel solvent-free ester elimination process. <i>Journal of Alloys and Compounds</i> , 2015 , 653, 219-227	5.7	13
143	A solution-processed bathocuproine cathode interfacial layer for high-performance bromine-iodine perovskite solar cells. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 26653-8	3.6	89
142	Orthogonal Molecular Structure for Better Host Material in Blue Phosphorescence and Larger OLED White Lighting Panel. <i>Advanced Functional Materials</i> , 2015 , 25, 645-650	15.6	132
141	Origin of improved stability in green phosphorescent organic light-emitting diodes based on a dibenzofuran/spirobifluorene hybrid host. <i>Applied Physics A: Materials Science and Processing</i> , 2015 , 118, 381-387	2.6	16
140	High efficiency hybrid PEDOT:PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact. <i>Energy and Environmental Science</i> , 2015 , 8, 297-302	35.4	196
139	Conductive Inorganic-Organic Hybrid Distributed Bragg Reflectors. Advanced Materials, 2015, 27, 6696	-7.0.41	13
138	Controllable Perovskite Crystallization by Water Additive for High-Performance Solar Cells. <i>Advanced Functional Materials</i> , 2015 , 25, 6671-6678	15.6	282
137	Pure Hydrocarbon Hosts for 100% Exciton Harvesting in Both Phosphorescent and Fluorescent Light-Emitting Devices. <i>Advanced Materials</i> , 2015 , 27, 4213-7	24	149
136	Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate. <i>Semiconductor Science and Technology</i> , 2015 , 30, 104004	1.8	31
135	An efficient organicIhorganic hybrid hole injection layer for organic light-emitting diodes by aqueous solution doping. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 6218-6223	7.1	18
134	Fluorescent silicon nanoparticles utilized as stable color converters for white light-emitting diodes. <i>Applied Physics Letters</i> , 2015 , 106, 173109	3.4	21
133	Large-Scale Green Synthesis of Fluorescent Carbon Nanodots and Their Use in Optics Applications. <i>Advanced Optical Materials</i> , 2015 , 3, 103-111	8.1	74
132	Inverted planar NH2CH=NH2PbI3 perovskite solar cells with 13.56% efficiency via low temperature processing. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 19745-50	3.6	65
131	Charge-Transfer Emission of Mixed Organic Cocrystal Microtubes over the Whole Composition Range. <i>Chemistry of Materials</i> , 2015 , 27, 1157-1163	9.6	59
130	Rational Design of Dibenzothiophene-Based Host Materials for PHOLEDs. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 2375-2384	3.8	36

129	Spiro-annulated hole-transport material outperforms NPB with higher mobility and stability in organic light-emitting diodes. <i>Dyes and Pigments</i> , 2014 , 107, 15-20	4.6	18	
128	A rational molecular design on choosing suitable spacer for better host materials in highly efficient blue and white phosphorescent organic light-emitting diodes. <i>Organic Electronics</i> , 2014 , 15, 1368-1377	3.5	20	
127	A Novel Route to Surface-Enhanced Raman Scattering: Ag Nanoparticles Embedded in the Nanogaps of a Ag Substrate. <i>Advanced Optical Materials</i> , 2014 , 2, 588-596	8.1	23	
126	Asymmetric design of bipolar host materials with novel 1,2,4-oxadiazole unit in blue phosphorescent device. <i>Organic Letters</i> , 2014 , 16, 1622-5	6.2	46	
125	Synthesis of new bipolar host materials based on 1,2,4-oxadiazole for blue phosphorescent OLEDs. <i>Dyes and Pigments</i> , 2014 , 101, 142-149	4.6	33	
124	Highly efficient single-layer organic light-emitting devices based on a bipolar pyrazine/carbazole hybrid host material. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 2488-2495	7.1	61	
123	Clean surface transfer of graphene films via an effective sandwich method for organic light-emitting diode applications. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 201-207	7.1	52	
122	Role of hole injection layer in intermediate connector of tandem organic light-emitting devices. <i>Organic Electronics</i> , 2014 , 15, 3694-3701	3.5	16	
121	Interfacial degradation effects of aqueous solution-processed molybdenum trioxides on the stability of organic solar cells evaluated by a differential method. <i>Applied Physics Letters</i> , 2014 , 105, 113	33 01	19	
120	Aqueous solution-processed MoO3thick films as hole injection and short-circuit barrier layer in large-area organic light-emitting devices. <i>Applied Physics Express</i> , 2014 , 7, 111601	2.4	30	
119	A novel intermediate connector with improved charge generation and separation for large-area tandem white organic lighting devices. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 10403-10408	7.1	51	
118	A rational design of carbazole-based host materials with suitable spacer group towards highly-efficient blue phosphorescence. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 6387	7.1	29	
117	Lithium hydride doped intermediate connector for high-efficiency and long-term stable tandem organic light-emitting diodes. <i>ACS Applied Materials & ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	38	
116	Improved host material for electrophosphorescence by positional engineering of spirobifluorenellarbazole hybrids. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 8736-8744	7.1	20	
115	Control of conjugation degree via position engineering to highly efficient phosphorescent host materials. <i>Organic Letters</i> , 2014 , 16, 3748-51	6.2	43	
114	Two-dimensional optical waveguiding and luminescence vapochromic properties of 8-hydroxyquinoline zinc (Znq2) hexagonal microsheets. <i>Chemical Communications</i> , 2014 , 50, 10812-4	5.8	12	
113	Investigating blue phosphorescent iridium cyclometalated dopant with phenyl-imidazole ligands. <i>Organic Electronics</i> , 2014 , 15, 3127-3136	3.5	32	
112	Host to Guest Energy Transfer Mechanism in Phosphorescent and Fluorescent Organic Light-Emitting Devices Utilizing Exciplex-Forming Hosts. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 240	 0&-240	D12 [©]	

111	Highly efficient inverted polymer solar cells using aqueous ammonia processed ZnO as an electron selective layer. <i>Applied Physics A: Materials Science and Processing</i> , 2014 , 116, 993-999	2.6	
110	Work-function tuneable and aqueous solution-processed Cs2CO3 for high-performance polymer solar cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 9400	13	15
109	Light extraction enhancement from organic light-emitting diodes with randomly scattered surface fixture. <i>Applied Surface Science</i> , 2014 , 314, 858-863	6.7	18
108	Direct comparison of charge transport and electronic traps in polymerfullerene blends under dark and illuminated conditions. <i>Organic Electronics</i> , 2014 , 15, 299-305	3.5	13
107	A simple method for fabricating pl junction photocatalyst CuFe2O4/Bi4Ti3O12 and its photocatalytic activity. <i>Materials Chemistry and Physics</i> , 2014 , 143, 952-962	4.4	66
106	Improved device reliability in organic light emitting devices by controlling the etching of indium zinc oxide anode. <i>Chinese Physics B</i> , 2014 , 23, 118508	1.2	
105	The influence of charge injection from intermediate connectors on the performance of tandem organic light-emitting devices. <i>Journal of Applied Physics</i> , 2014 , 116, 223708	2.5	12
104	Highly stable and efficient tandem organic light-emitting devices with intermediate connectors using lithium amide as n-type dopant. <i>Applied Physics Letters</i> , 2014 , 105, 083301	3.4	17
103	Materials, Designs, Fabrications, and Applications of Organic Electronic Devices. <i>International Journal of Photoenergy</i> , 2014 , 2014, 1-2	2.1	1
102	Low driving voltage simplified tandem organic light-emitting devices by using exciplex-forming hosts. <i>Applied Physics Letters</i> , 2014 , 105, 153302	3.4	21
101	Efficient optical absorption enhancement in organic solar cells by using a 2-dimensional periodic light trapping structure. <i>Applied Physics Letters</i> , 2014 , 104, 243904	3.4	12
100	Heterojunction with Organic Thin Layers on Silicon for Record Efficiency Hybrid Solar Cells. <i>Advanced Energy Materials</i> , 2014 , 4, 1300923	21.8	93
99	Highly efficient phosphorescent organic light-emitting diodes using a homoleptic iridium(III) complex as a sky-blue dopant. <i>Organic Electronics</i> , 2013 , 14, 2596-2601	3.5	86
98	Aqueous solution-processed MoO3 as an effective interfacial layer in polymer/fullerene based organic solar cells. <i>Organic Electronics</i> , 2013 , 14, 657-664	3.5	61
97	DA structured porphyrins for efficient dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 10008	13	58
96	Silicon-based material with spiro-annulated fluorene/triphenylamine as host and exciton-blocking layer for blue electrophosphorescent devices. <i>Chemistry - A European Journal</i> , 2013 , 19, 11791-7	4.8	29
95	Spiro-annulated triarylamine-based hosts incorporating dibenzothiophene for highly efficient single-emitting layer white phosphorescent organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 6575	7.1	46
94	Origin of enhanced electrical and conducting properties in pentacene films doped by molybdenum trioxide. <i>Organic Electronics</i> , 2013 , 14, 2698-2704	3.5	48

(2012-2013)

93	Plasmon resonance enhanced optical absorption in inverted polymer/fullerene solar cells with metal nanoparticle-doped solution-processable TiO2 layer. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 2935-42	9.5	103
92	Bipolar host materials for high efficiency phosphorescent organic light emitting diodes: tuning the HOMO/LUMO levels without reducing the triplet energy in a linear system. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 8177	7.1	61
91	The application of single-layer graphene modified with solution-processed TiOx and PEDOT:PSS as a transparent conductive anode in organic light-emitting diodes. <i>Organic Electronics</i> , 2013 , 14, 3348-335	3 .5	37
90	Aqueous solution-processed GeO2: an anode interfacial layer for high performance and air-stable organic solar cells. <i>ACS Applied Materials & Interfaces</i> , 2013 , 5, 10866-73	9.5	38
89	meta-Linked spirobifluorene/phosphine oxide hybrids as host materials for deep blue phosphorescent organic light-emitting diodes. <i>Organic Electronics</i> , 2013 , 14, 1924-1930	3.5	42
88	Enhancement of electroluminescence efficiency and stability in phosphorescent organic light-emitting diodes with double exciton-blocking layers. <i>Organic Electronics</i> , 2013 , 14, 1177-1182	3.5	32
87	Novel dibenzothiophene based host materials incorporating spirobifluorene for high-efficiency white phosphorescent organic light-emitting diodes. <i>Organic Electronics</i> , 2013 , 14, 902-908	3.5	35
86	Selective growth of dual-color-emitting heterogeneous microdumbbells composed of organic charge-transfer complexes. <i>Journal of the American Chemical Society</i> , 2013 , 135, 3744-7	16.4	100
85	A simple systematic design of phenylcarbazole derivatives for host materials to high-efficiency phosphorescent organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 3967	7.1	45
84	Emissive osmium(II) complexes with tetradentate bis(pyridylpyrazolate) chelates. <i>Inorganic Chemistry</i> , 2013 , 52, 5867-75	5.1	47
83	Highly Efficient White Organic Light-Emitting Diodes with Controllable Excitons Behavior by a Mixed Interlayer between Fluorescence Blue and Phosphorescence Yellow-Emitting Layers. <i>International Journal of Photoenergy</i> , 2013 , 2013, 1-7	2.1	4
82	Dual roles of MoO3-doped pentacene thin films as hole-extraction and multicharge-separation functions in pentacene/C60 heterojunction organic solar cells. <i>Applied Physics Letters</i> , 2013 , 102, 11330	53.4	29
81	Enhanced performance of inverted organic photovoltaic cells using CNTs-TiO(X) nanocomposites as electron injection layer. <i>Nanotechnology</i> , 2013 , 24, 355401	3.4	11
80	Comparative studies on the inorganic and organic p-type dopants in organic light-emitting diodes with enhanced hole injection. <i>Applied Physics Letters</i> , 2013 , 102, 153301	3.4	48
79	Improved cation valence state in molybdenum oxides by ultraviolet-ozone treatments and its applications in organic light-emitting diodes. <i>Applied Physics Letters</i> , 2013 , 102, 233304	3.4	32
78	Enhancement of device efficiency in CuPc/C60 based organic photovoltaic cells by inserting an InCl3 layer. <i>Synthetic Metals</i> , 2012 , 162, 2212-2215	3.6	2
77	Study of hole-injecting properties in efficient, stable, and simplified phosphorescent organic light-emitting diodes by impedance spectroscopy. <i>ACS Applied Materials & District Applied Mate</i>	5 9.5	31
76	Adhesive modification of indium E in-oxide surface for template attachment for deposition of highly ordered nanostructure arrays. <i>Applied Surface Science</i> , 2012 , 258, 8139-8145	6.7	7

75	Mechanistic Investigation of Improved Syntheses of Iridium(III)-Based OLED Phosphors. Organometallics, 2012 , 31, 4349-4355	3.8	33
74	New dibenzofuran/spirobifluorene hybrids as thermally stable host materials for efficient phosphorescent organic light-emitting diodes with low efficiency roll-off. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 14224-8	3.6	34
73	Enhanced hole injection in phosphorescent organic light-emitting diodes by thermally evaporating a thin indium trichloride layer. <i>ACS Applied Materials & Amp; Interfaces</i> , 2012 , 4, 5211-6	9.5	34
72	White-light emitting microtubes of mixed organic charge-transfer complexes. <i>Advanced Materials</i> , 2012 , 24, 5345-51	24	167
71	Surface Plasmon Polariton Enhancement in Blue Organic Light-Emitting Diode: Role of Metallic Cathode. <i>Applied Physics Express</i> , 2012 , 5, 102102	2.4	19
70	SodiumQuinolate Complexes as Efficient Electron Injection Materials for Organic Light-Emitting Diode Devices. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 2433-2438	3.8	13
69	One-pot microwave synthesis of water-dispersible, ultraphoto- and pH-stable, and highly fluorescent silicon quantum dots. <i>Journal of the American Chemical Society</i> , 2011 , 133, 14192-5	16.4	216
68	Highly Luminescent Water-Dispersible Silicon Nanowires for Long-Term Immunofluorescent Cellular Imaging. <i>Angewandte Chemie</i> , 2011 , 123, 3136-3139	3.6	19
67	Highly luminescent water-dispersible silicon nanowires for long-term immunofluorescent cellular imaging. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 3080-3	16.4	56
66	Back Cover: Highly Luminescent Water-Dispersible Silicon Nanowires for Long-Term Immunofluorescent Cellular Imaging (Angew. Chem. Int. Ed. 13/2011). <i>Angewandte Chemie -</i> <i>International Edition</i> , 2011 , 50, 3090-3090	16.4	
65	54.2: Tandem White OLEDs Combining Fluorescent and Phosphorescent Emission. <i>Digest of Technical Papers SID International Symposium</i> , 2008 , 39, 818	0.5	24
64	Operating lifetime recovery in organic light-emitting diodes having an azaaromatic hole-blocking/electron-transporting layer. <i>Journal of Applied Physics</i> , 2008 , 104, 074914	2.5	11
63	17.3: Highly Efficient Fluorescent/Phosphorescent OLED Devices Using Triplet Harvesting. <i>Digest of Technical Papers SID International Symposium</i> , 2008 , 39, 219	0.5	6
62	P-210: Phosphorescence Ranging from Blue to Red from tris-Cyclometalated Iridium (III) Complexes and Application to Organic Light-Emitting Devices. <i>Digest of Technical Papers SID International Symposium</i> , 2008 , 39, 1997	0.5	
61	Tandem Organic Light-Emitting Diode using Hexaazatriphenylene Hexacarbonitrile in the Intermediate Connector. <i>Advanced Materials</i> , 2008 , 20, 324-329	24	224
60	P-169: Efficient, Long-Lifetime OLED Host and Dopant Formulations for Full-Color Displays. <i>Digest of Technical Papers SID International Symposium</i> , 2007 , 38, 830-833	0.5	8
59	30.2: Improving Operating Lifetime of Organic Light-Emitting Diodes with Perylene and Derivatives as Aggregating Light-Emitting-Layer Additives. <i>Digest of Technical Papers SID International Symposium</i> , 2007 , 38, 1188-1192	0.5	4
58	Operating longevity of organic light-emitting diodes with perylene derivatives as aggregating light-emitting-layer additives: Expansion of the emission zone. <i>Journal of Applied Physics</i> , 2006 , 100, 09	4907	22

(2000-2005)

57	Coherence characteristics of electrically excited tandem organic light-emitting diodes. <i>Optics Letters</i> , 2005 , 30, 3072-4	3	33
56	High-efficiency tandem organic light-emitting diodes. <i>Applied Physics Letters</i> , 2004 , 84, 167-169	3.4	357
55	Photoelectron spectroscopic study of iodine- and bromine-treated indium tin oxides and their interfaces with organic films. <i>Chemical Physics Letters</i> , 2003 , 370, 425-430	2.5	22
54	Flat layered structure and improved photoluminescence emission from porous silicon microcavities formed by pulsed anodic etching. <i>Applied Physics A: Materials Science and Processing</i> , 2002 , 74, 807-811	2.6	14
53	Substrate dependence of thermal effect on organic light-emitting films. <i>Chemical Physics Letters</i> , 2002 , 356, 194-200	2.5	8
52	Effects of O, H and N passivation on photoluminescence from porous silicon. <i>Thin Solid Films</i> , 2001 , 388, 271-276	2.2	29
51	Ambient effect on the electronic structures of tris-(8-hydroxyquinoline) aluminum films investigated by photoelectron spectroscopy. <i>Chemical Physics Letters</i> , 2001 , 333, 212-216	2.5	28
50	Microstructure and field-emission characteristics of boron-doped Si nanoparticle chains. <i>Applied Physics Letters</i> , 2001 , 79, 1673-1675	3.4	38
49	Interfacial chemistry of Alq3 and LiF with reactive metals. Journal of Applied Physics, 2001, 89, 2756-276	5 5 2.5	313
48	Real-Time Observation of Temperature Rise and Thermal Breakdown Processes in Organic LEDs Using an IR Imaging and Analysis System. <i>Advanced Materials</i> , 2000 , 12, 265-269	24	160
47	Effect of deposition rate on the morphology, chemistry and electroluminescence of tris-(8-hydroxyqiunoline) aluminum films. <i>Chemical Physics Letters</i> , 2000 , 319, 418-422	2.5	43
46	Interface formation between poly(9,9-dioctylfluorene) and Ca electrode investigated using photoelectron spectroscopy. <i>Chemical Physics Letters</i> , 2000 , 325, 405-410	2.5	21
45	Bulk-quantity GaN nanowires synthesized from hot filament chemical vapor deposition. <i>Chemical Physics Letters</i> , 2000 , 327, 263-270	2.5	117
44	The interface analyses of inorganic layer for organic electroluminescent devices. <i>Displays</i> , 2000 , 21, 79-	8 3 .4	23
43	Electronic structure and energy level alignment of Alq3/Al2O3/Al and Alq3/Al interfaces studied by ultraviolet photoemission spectroscopy. <i>Thin Solid Films</i> , 2000 , 363, 178-181	2.2	33
42	Damage study of ITO under high electric field. <i>Thin Solid Films</i> , 2000 , 363, 240-243	2.2	18
41	Synchrotron radiation photoelectron spectroscopy study of ITO surface. <i>Applied Surface Science</i> , 2000 , 157, 35-38	6.7	6
40	Thin ESiC nanorods and their field emission properties. <i>Chemical Physics Letters</i> , 2000 , 318, 58-62	2.5	105

39	Improvement of interface formation between metal electrode and polymer film by polymer surface modification using ion sputtering. <i>Applied Physics Letters</i> , 2000 , 77, 3191-3193	3.4	9
38	Electronic structure and energy band gap of poly (9,9-dioctylfluorene) investigated by photoelectron spectroscopy. <i>Applied Physics Letters</i> , 2000 , 76, 3582-3584	3.4	66
37	Oxygen effect on the interface formation between calcium and a polyfluorene film. <i>Physical Review B</i> , 2000 , 62, 10004-10007	3.3	20
36	Surface passivation in diamond nucleation. <i>Physical Review B</i> , 2000 , 62, 17134-17137	3.3	5
35	Electronic structure of silicon nanowires: A photoemission and x-ray absorption study. <i>Physical Review B</i> , 2000 , 61, 8298-8305	3.3	68
34	Bubble formation in organic light-emitting diodes. <i>Journal of Applied Physics</i> , 2000 , 88, 2386-2390	2.5	41
33	Photoluminescent (PL) investigation of mesoporous molecular sieve materials. <i>Studies in Surface Science and Catalysis</i> , 1999 , 125, 293-300	1.8	2
32	Ion-beam-induced surface damages on tris-(8-hydroxyquinoline) aluminum. <i>Applied Physics Letters</i> , 1999 , 75, 1619-1621	3.4	75
31	Enhanced hole injection in a bilayer vacuum-deposited organic light-emitting device using a p-type doped silicon anode. <i>Applied Physics Letters</i> , 1999 , 74, 609-611	3.4	74
30	Sputter deposition of cathodes in organic light emitting diodes. <i>Journal of Applied Physics</i> , 1999 , 86, 460) Z.4 61	2 78
29	The electroluminescence from porous ESiC formed on C+ implanted silicon. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1998 , 142, 308-312	1.2	10
28	Photoluminescence from Si-based SiNxOy films. <i>Science Bulletin</i> , 1998 , 43, 124-126		
27	Photoluminescence studies of porous silicon microcavities. <i>Journal of Luminescence</i> , 1998 , 80, 137-140	3.8	7
26	Visible and infrared photoluminescence from Er-doped SiOx. <i>Journal of Luminescence</i> , 1998 , 80, 369-373	3 3.8	9
	• • • • • • • • • • • • • • • • • • •		
25	Strong surface segregation of Sb atoms at low temperatures during Si molecular beam epitaxy. Thin Solid Films, 1998, 336, 236-239	2.2	13
²⁵	Strong surface segregation of Sb atoms at low temperatures during Si molecular beam epitaxy.	2.2	13
	Strong surface segregation of Sb atoms at low temperatures during Si molecular beam epitaxy. <i>Thin Solid Films</i> , 1998 , 336, 236-239 The very strong photoluminescent (PL) effect of mesoporous molecular sieve materials.	2.2	

21	A high-resolution electron microscopy study of blue-light emitting BiC nanoparticles in C+-implanted silicon. <i>Journal of Materials Research</i> , 1997 , 12, 1640-1645	2.5	8
20	Thermal Annealing of Si + Implanted Chemical Vapor Deposition SiO 2. <i>Chinese Physics Letters</i> , 1996 , 13, 397-400	1.8	1
19	Blue luminescence from Si+-implanted SiO2 films thermally grown on crystalline silicon. <i>Applied Physics Letters</i> , 1996 , 68, 850-852	3.4	214
18	The formation and microstructures of Si-based blue-light emitting porous EsiC. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1996 , 119, 505-509	1.2	6
17	Visible electroluminescence from Si+-implanted SiO2 films thermally grown on crystalline Si. <i>Solid State Communications</i> , 1996 , 97, 1039-1042	1.6	38
16	Blue-, green-, and red-light emission from Si+-implanted thermal SiO2 films on crystalline silicon. <i>Journal of Luminescence</i> , 1996 , 68, 199-204	3.8	53
15	Thermal Stability of Blue Emission from Porous ESiC Formed on Crystalline Si by C+ Implantation. <i>Physica Status Solidi A</i> , 1996 , 155, 233-238		5
14	Raman scattering of porous structure formed on C+-implanted silicon. <i>Applied Physics Letters</i> , 1996 , 68, 2091-2093	3.4	23
13	Experimental observation of surface modes of quasifree clusters. <i>Physical Review Letters</i> , 1996 , 76, 604	4- 6 0 ₁ 7	29
12	Correlation of optical and structural properties of porous ESiC formed on silicon by C+-implantation. <i>Solid State Communications</i> , 1995 , 95, 559-562	1.6	11
11	Intense blue emission from porous ESiC formed on C+-implanted silicon. <i>Applied Physics Letters</i> , 1995 , 66, 2382-2384	3.4	134
10	Solvent strategies toward high-performance perovskite light-emitting diodes. <i>Journal of Materials Chemistry C</i> ,	7.1	1
9	Precise synthesis of multilevel branched organic microwires for optical signal processing in the near infrared region. <i>Science China Materials</i> ,1	7.1	1
8	Spiro Compounds for Organic Light-Emitting Diodes. Accounts of Materials Research,	7.5	6
7	Single-Crystal Organic Heterostructure for Single-Mode Unidirectional Whispering-Gallery-Mode Laser. <i>Advanced Optical Materials</i> ,2101931	8.1	3
6	Nicotinamide-Modified PEDOT:PSS for High Performance Indoor and Outdoor Tin Perovskite Photovoltaics. <i>Solar Rrl</i> ,2100713	7.1	3
5	A General Synthetic Approach of Organic Lateral Heterostructures for Optical Signal Converters in All-Color Wavelength. <i>CCS Chemistry</i> ,1-11	7.2	1
4	Efficient Surface-Defect Passivation by Sulfurous-Acyl-Included Small Molecule for High-Performance Perovskite Photovoltaics. <i>Solar Rrl</i> ,2200097	7.1	_

3	Exploring Axial Organic Multiblock Heterostructure Nanowires: Advances in Molecular Design, Synthesis, and Functional Applications. <i>Advanced Functional Materials</i> ,2202364	15.6	3
2	Photoactivated p-Doping of Organic Interlayer Enables Efficient Perovskite/Silicon Tandem Solar Cells. <i>ACS Energy Letters</i> ,1987-1993	20.1	4
1	Highly Efficient Sensitized Chiral Hybridized Local and Charge-Transfer Emitter Circularly Polarized Electroluminescence. <i>Advanced Functional Materials</i> ,2201512	15.6	4