
Michael Maas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3521792/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Arsenic and sulfur nanoparticle synthesis mimicking environmental conditions of submarine shallow-water hydrothermal vents. Journal of Environmental Sciences, 2022, 111, 301-312.	6.1	1
2	Genipin-crosslinked chitosan/alginate/alumina nanocomposite gels for 3D bioprinting. Bioprocess and Biosystems Engineering, 2022, 45, 171-185.	3.4	10
3	Assessment of nanoparticle immersion depth at liquid interfaces from chemically equivalent macroscopic surfaces. Journal of Colloid and Interface Science, 2022, 611, 670-683.	9.4	2
4	3D bioprinting of hydrogel/ceramic composites with hierarchical porosity. Journal of Materials Science, 2022, 57, 3662-3677.	3.7	5
5	Plasmonic porous ceramics based on zirconia-toughened alumina functionalized with silver nanoparticles for surface-enhanced Raman scattering. Open Ceramics, 2022, 9, 100228.	2.0	3
6	Edible high internal phase Pickering emulsion with double-emulsion morphology. Food Hydrocolloids, 2021, 111, 106405.	10.7	53
7	Synergistic and Competitive Adsorption of Hydrophilic Nanoparticles and Oil-Soluble Surfactants at the Oil–Water Interface. Langmuir, 2021, 37, 5659-5672.	3.5	20
8	A versatile ceramic capillary membrane reactor system for continuous enzymeâ€catalyzed hydrolysis. Engineering in Life Sciences, 2021, 21, 527-538.	3.6	3
9	Janus nanoparticles designed for extended cell surface attachment. Nanoscale, 2020, 12, 18938-18949.	5.6	12
10	Enzymatische Hydrolyseprozesse im kontinuierlich betriebenen Keramikkapillarreaktor. Chemie-Ingenieur-Technik, 2020, 92, 1213-1213.	0.8	0
11	Wet-spinning of magneto-responsive helical chitosan microfibers. Beilstein Journal of Nanotechnology, 2020, 11, 991-999.	2.8	5
12	Particle size analysis and characterization of nanodiamond dispersions in water and dimethylformamide by various scattering and diffraction methods. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	15
13	Tailoring electrostatic surface potential and adsorption capacity of porous ceramics by silica-assisted sintering. Materialia, 2020, 12, 100735.	2.7	7
14	Reversible Adsorption of Nanoparticles at Surfactant-Laden Liquid–Liquid Interfaces. Langmuir, 2019, 35, 11089-11098.	3.5	15
15	Selective, Agglomerate-Free Separation of Bacteria Using Biofunctionalized, Magnetic Janus Nanoparticles. ACS Applied Bio Materials, 2019, 2, 3520-3531.	4.6	14
16	Amorphous arsenic sulfide nanoparticles in a shallow water hydrothermal system. Marine Chemistry, 2019, 211, 25-36.	2.3	17
17	Embedding live bacteria in porous hydrogel/ceramic nanocomposites for bioprocessing applications. Bioprocess and Biosystems Engineering, 2019, 42, 1215-1224.	3.4	8
18	Proteolytic ceramic capillary membranes for the production of peptides under flow. Biochemical Engineering Journal, 2019, 147, 89-99.	3.6	17

MICHAEL MAAS

#	Article	IF	CITATIONS
19	Rheology and Biostratigraphy of the Mariana Serpentine Muds Unravel Mud Volcano Evolution. Journal of Geophysical Research: Solid Earth, 2019, 124, 10752-10776.	3.4	8
20	Mineralization of iron oxide by ferritin homopolymers immobilized on SiO ₂ nanoparticles. Bioinspired, Biomimetic and Nanobiomaterials, 2019, 8, 16-27.	0.9	1
21	Hydrophobic ceramic capillary membranes for versatile virus filtration. Journal of Membrane Science, 2019, 570-571, 85-92.	8.2	18
22	Effect of divalent <i>versus</i> monovalent cations on the MS2 retention capacity of amino-functionalized ceramic filters. Physical Chemistry Chemical Physics, 2018, 20, 11215-11223.	2.8	3
23	Nanoscale Janus Particles with Dual Protein Functionalization. Particle and Particle Systems Characterization, 2018, 35, 1700332.	2.3	23
24	Anchoring of Iron Oxyhydroxide Clusters at H and L Ferritin Subunits. ACS Biomaterials Science and Engineering, 2018, 4, 483-490.	5.2	5
25	Flow rate dependent continuous hydrolysis of protein isolates. AMB Express, 2018, 8, 18.	3.0	15
26	Colloidal capsules: nano- and microcapsules with colloidal particle shells. Chemical Society Reviews, 2017, 46, 2091-2126.	38.1	246
27	Chitosan supraparticles with fluorescent silica nanoparticle shells and nanodiamond-loaded cores. Journal of Materials Chemistry B, 2017, 5, 1664-1672.	5.8	8
28	An evaluation of colloidal and crystalline properties of CaCO 3 nanoparticles for biological applications. Materials Science and Engineering C, 2017, 78, 305-314.	7.3	39
29	Electrostatic assembly of zwitterionic and amphiphilic supraparticles. Journal of Colloid and Interface Science, 2017, 501, 256-266.	9.4	20
30	Carbon Nanomaterials as Antibacterial Colloids. Materials, 2016, 9, 617.	2.9	89
31	Self-Assembly and Shape Control of Hybrid Nanocarriers Based on Calcium Carbonate and Carbon Nanodots. Chemistry of Materials, 2016, 28, 3796-3803.	6.7	18
32	Enhanced cell adhesion on bioinert ceramics mediated by the osteogenic cell membrane enzyme alkaline phosphatase. Materials Science and Engineering C, 2016, 69, 184-194.	7.3	18
33	Enhancing Cellular Uptake and Doxorubicin Delivery of Mesoporous Silica Nanoparticles via Surface Functionalization: Effects of Serum. ACS Applied Materials & Interfaces, 2015, 7, 26880-26891.	8.0	69
34	Bifunctional Submicron Colloidosomes Coassembled from Fluorescent and Superparamagnetic Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 118-123.	13.8	49
35	Diamondosomes: Submicron Colloidosomes with Nanodiamond Shells. Particle and Particle Systems Characterization, 2014, 31, 1067-1071.	2.3	16
36	Coacervate-directed synthesis of CaCO ₃ microcarriers for pH-responsive delivery of biomolecules. Journal of Materials Chemistry B, 2014, 2, 7725-7731.	5.8	39

MICHAEL MAAS

#	Article	IF	CITATIONS
37	The contribution of rheology for designing hydroxyapatite biomaterials. Current Opinion in Colloid and Interface Science, 2014, 19, 585-593.	7.4	30
38	Bactericidal Activity of Partially Oxidized Nanodiamonds. ACS Nano, 2014, 8, 6475-6483.	14.6	184
39	Synthesis Route for the Self-Assembly of Submicrometer-Sized Colloidosomes with Tailorable Nanopores. Chemistry of Materials, 2013, 25, 3464-3471.	6.7	47
40	Simultaneous ground and satellite observations of discrete auroral arcs, substorm aurora, and Alfvénic aurora with FAST and THEMIS GBO. Journal of Geophysical Research: Space Physics, 2013, 118, 6998-7010.	2.4	7
41	A critical study: Assessment of the effect of silica particles from 15 to 500Ânm on bacterial viability. Environmental Pollution, 2013, 176, 292-299.	7.5	24
42	Towards the synthesis of hydroxyapatite/protein scaffolds with controlled porosities: Bulk and interfacial shear rheology of a hydroxyapatite suspension with protein additives. Journal of Colloid and Interface Science, 2013, 407, 529-535.	9.4	10
43	Micromolding of Calcium Carbonate Using a Bioâ€Inspired, Coacervationâ€Mediated Process. Journal of the American Ceramic Society, 2013, 96, 736-742.	3.8	15
44	Preparation of Mineralized Nanofibers: Collagen Fibrils Containing Calcium Phosphate. Nano Letters, 2011, 11, 1383-1388.	9.1	71
45	Biomimetic formation of thin, coherent iron oxide films under Langmuir monolayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 354, 149-155.	4.7	7
46	Thin Film Formation of Silica Nanoparticle/Lipid Composite Films at the Fluidâ^'Fluid Interface. Langmuir, 2010, 26, 17867-17873.	3.5	18
47	In situ observation of maghemite nanoparticle adsorption at the water/gas interface. European Physical Journal: Special Topics, 2009, 167, 133-136.	2.6	4
48	A Detailed Study of Closed Calcium Carbonate Films at the Liquidâ^'Liquid Interface. Langmuir, 2009, 25, 2258-2263.	3.5	17
49	In Situ Observation of γ-Fe ₂ O ₃ Nanoparticle Adsorption under Different Monolayers at the Air/Water Interface. Langmuir, 2008, 24, 12958-12962.	3.5	26
50	Formation and Structure of Coherent, Ultra-thin Calcium Carbonate Films below Monolayers of Stearic Acid at the Oil/Water Interface. , 2008, , 11-18.		1
51	On the formation of calcium carbonate thin films under Langmuir monolayers of stearic acid. Colloid and Polymer Science, 2007, 285, 1301-1311.	2.1	23