List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/352179/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Case Report: Repeated Intralesional Injections of Autologous Mesenchymal Stem Cells Combined With Platelet-Rich Plasma for Superficial Digital Flexor Tendon Healing in a Show Jumping Horse. Frontiers in Veterinary Science, 2022, 9, 843131.	0.9	3
2	A Prototype Skin Substitute, Made of Recycled Marine Collagen, Improves the Skin Regeneration of Sheep. Animals, 2021, 11, 1219.	1.0	13
3	Could cold plasma act synergistically with allogeneic mesenchymal stem cells to improve wound skin regeneration in a large size animal model?. Research in Veterinary Science, 2021, 136, 97-110.	0.9	12
4	Repeated intra-articular administration of equine allogeneic peripheral blood-derived mesenchymal stem cells does not induce a cellular and humoral immune response in horses. Veterinary Immunology and Immunopathology, 2021, 239, 110306.	0.5	12
5	Cellular and Humoral Immunogenicity Investigation of Single and Repeated Allogeneic Tenogenic Primed Mesenchymal Stem Cell Treatments in Horses Suffering From Tendon Injuries. Frontiers in Veterinary Science, 2021, 8, 789293.	0.9	5
6	Autologous Platelet-Rich Plasma Enhances the Healing of Large Cutaneous Wounds in Dogs. Frontiers in Veterinary Science, 2020, 7, 575449.	0.9	20
7	Large Animal Models in Regenerative Medicine and Tissue Engineering: To Do or Not to Do. Frontiers in Bioengineering and Biotechnology, 2020, 8, 972.	2.0	120
8	Wnt/β-Catenin and Hippo Pathway Deregulation in Mammary Tumors of Humans, Dogs, and Cats. Veterinary Pathology, 2020, 57, 774-790.	0.8	9
9	From Food Waste to Innovative Biomaterial: Sea Urchin-Derived Collagen for Applications in Skin Regenerative Medicine. Marine Drugs, 2020, 18, 414.	2.2	46
10	An Assay System to Evaluate Riboflavin/UV-A Corneal Phototherapy Efficacy in a Porcine Corneal Organ Culture Model. Animals, 2020, 10, 730.	1.0	5
11	Efficacy of Bioactive Glass Nanofibers Tested for Oral Mucosal Regeneration in Rabbits with Induced Diabetes. Materials, 2020, 13, 2603.	1.3	15
12	Wound healing improvement in large animals using an indirect helium plasma treatment. Clinical Plasma Medicine, 2020, 17-18, 100095.	3.2	17
13	Hyaluronic acid, Manuka honey and Acemannan gel: Wound-specific applications for skin lesions. Research in Veterinary Science, 2020, 129, 82-89.	0.9	22
14	Age-dependent variations in the expression of myosin isoforms and myogenic factors during the involution of the proximal sesamoidean ligament of sheep. Research in Veterinary Science, 2019, 124, 270-279.	0.9	3
15	The natural involution of the sheep proximal sesamoidean ligament is due to depletion of satellite cells and simultaneous proliferation of fibroblasts: Ultrastructural evidence. Research in Veterinary Science, 2019, 124, 106-111.	0.9	3
16	Muscle spindles of the rat sternomastoid muscle. European Journal of Translational Myology, 2018, 28, 7904.	0.8	15
17	Allogeneic mesenchymal stem cells improve the wound healing process of sheep skin. BMC Veterinary Research, 2018, 14, 202.	0.7	50
18	Investigations of the corneal epithelium in Veterinary Medicine: State of the art on corneal stem cells found in different mammalian species and their putative application. Research in Veterinary Science, 2018, 118, 502-507.	0.9	4

#	Article	IF	CITATIONS
19	Cytology of the healthy canine and feline ocular surface: comparison between cytobrush and impression technique. Veterinary Clinical Pathology, 2017, 46, 164-171.	0.3	16
20	Morphological description of limbal epithelium: searching for stem cells crypts in the dog, cat, pig, cow, sheep and horse. Veterinary Research Communications, 2017, 41, 169-173.	0.6	13
21	Covalently bound DNA on naked iron oxide nanoparticles: Intelligent colloidal nano-vector for cell transfection. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2802-2810.	1.1	38
22	Tat-MyoD fused proteins, together with C2c12 conditioned medium, are able to induce equine adult mesenchimal stem cells towards the myogenic fate. Veterinary Research Communications, 2017, 41, 211-217.	0.6	5
23	A mini-review of TAT-MyoD fused proteins: state of the art and problems to solve. European Journal of Translational Myology, 2017, 27, 6039.	0.8	2
24	Tenogenic induction of equine mesenchymal stem cells by means of growth factors and low-level laser technology. Veterinary Research Communications, 2016, 40, 39-48.	0.6	29
25	Wound-healing markers after autologous and allogeneic epithelial-like stem cell treatment. Cytotherapy, 2016, 18, 562-569.	0.3	4
26	Effect of MLS [®] Laser Therapy with Different Dose Regimes for the Treatment of Experimentally Induced Tendinopathy in Sheep: Pilot Study. Photomedicine and Laser Surgery, 2015, 33, 154-163.	2.1	11
27	Might the Masson trichrome stain be considered a useful method for categorizing experimental tendon lesions?. Histology and Histopathology, 2015, 30, 963-9.	0.5	15
28	Successful recellularization of human tendon scaffolds using adipose-derived mesenchymal stem cells and collagen gel. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 612-619.	1.3	63
29	Primary Hypothyroidism and Thyroid Goiter in an Adult Cat. Journal of Veterinary Internal Medicine, 2014, 28, 682-686.	0.6	12
30	Equine Epidermis: A Source of Epithelial-Like Stem/Progenitor Cells with In Vitro and In Vivo Regenerative Capacities. Stem Cells and Development, 2014, 23, 1134-1148.	1.1	22
31	Production, Characterization and Biocompatibility of Marine Collagen Matrices from an Alternative and Sustainable Source: The Sea Urchin Paracentrotus lividus. Marine Drugs, 2014, 12, 4912-4933.	2.2	71
32	Treatments of the injured tendon in Veterinary Medicine: from scaffolds to adult stem cells. Histology and Histopathology, 2014, 29, 417-22.	0.5	11
33	Description of a double centrifugation tube method for concentrating canine platelets. BMC Veterinary Research, 2013, 9, 146.	0.7	22
34	Autologous bone marrow mesenchymal stromal cells for regeneration of injured equine ligaments and tendons: A clinical report. Research in Veterinary Science, 2013, 95, 272-277.	0.9	56
35	Effects of in vivo applications of peripheral bloodâ€derived mesenchymal stromal cells (PBâ€MSCs) and platletâ€rich plasma (PRP) on experimentally injured deep digital flexor tendons of sheep. Journal of Orthopaedic Research, 2013, 31, 306-314.	1.2	66
36	Analysis of neuromuscular junctions and effects of anabolic steroid administration in the SOD1G93A mouse model of ALS. Molecular and Cellular Neurosciences, 2012, 51, 12-21.	1.0	34

#	Article	IF	CITATIONS
37	Larval development in the feather star <i>Antedon mediterranea</i> . Invertebrate Reproduction and Development, 2012, 56, 124-137.	0.3	8
38	Influence of temperature, time and different media on mesenchymal stromal cells shipped for clinical application. Veterinary Journal, 2012, 194, 121-123.	0.6	25
39	Overexpression of histidine-rich calcium binding protein in equine ventricular myocardium. Veterinary Journal, 2012, 193, 157-161.	0.6	2
40	GDNF family ligand RET receptor in the brain of adult zebrafish. Neuroscience Letters, 2011, 502, 214-218.	1.0	6
41	Canine adipose-derived-mesenchymal stem cells do not lose stem features after a long-term cryopreservation. Research in Veterinary Science, 2011, 91, 18-24.	0.9	122
42	Cryopreservation Does Not Affect the Stem Characteristics of Multipotent Cells Isolated from Equine Peripheral Blood. Tissue Engineering - Part C: Methods, 2010, 16, 771-781.	1.1	80
43	Phenotypic expression of 2b myosin heavy chain isoform: a comparative study among species and different muscles. Veterinary Research Communications, 2009, 33, 105-107.	0.6	2
44	Proteins involved in calcium homeostasis expressed in horse cardiomyocytes. Veterinary Research Communications, 2008, 32, 159-162.	0.6	3
45	Real-time polymerase chain reaction, in situ hybridization and immunohistochemical localization of insulin-like growth factor-I and myostatin during development of Dicentrarchus labrax (Pisces:) Tj ETQq1 1 0.784	431 14 argBT	/Ouerlock 10
46	Myostatin shows a specific expression pattern in pig skeletal and extraocular muscles during pre- and post-natal growth. Differentiation, 2008, 76, 168-181.	1.0	38
47	Expression of the paired box domain Pax7 protein in myogenic cells isolated from the porcine semitendinosus muscle after birth. Tissue and Cell, 2008, 40, 1-6.	1.0	20
48	Embryonic chick cocultures of neuronal and muscle cells. Neurological Research, 2008, 30, 179-182.	0.6	1
49	Hypoxia: the third wheel between nerve and muscle. Neurological Research, 2008, 30, 149-154.	0.6	6
50	Masticatory myosin unveiled: first determination of contractile parameters of muscle fibers from carnivore jaw muscles. American Journal of Physiology - Cell Physiology, 2008, 295, C1535-C1542.	2.1	39
51	Fiber types in canine muscles: myosin isoform expression and functional characterization. American Journal of Physiology - Cell Physiology, 2007, 292, C1915-C1926.	2.1	73
52	The sarcomeric myosin heavy chain gene family in the dog: Analysis of isoform diversity and comparison with other mammalian species. Genomics, 2007, 89, 224-236.	1.3	14
53	Clial cell line-derived neurotrophic factor expression in the retina of adult zebrafish (Danio rerio). Neuroscience Letters, 2007, 429, 156-160.	1.0	7
54	Quantitative RT-PCR analysis and immunohistochemical localization of HSP70 in sea bass Dicentrarchus labrax exposed to transport stress. European Journal of Histochemistry, 2007, 51, 125-35.	0.6	45

#	Article	IF	CITATIONS
55	Cloning and expression of insulin-like growth factors I and II in the shi drum (Umbrina cirrosa). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2006, 144, 137-151.	0.7	37
56	Effect of swimming on myostatin expression in white and red gastrocnemius muscle and in cardiac muscle of rats. Experimental Physiology, 2006, 91, 983-994.	0.9	66
57	Cellular localisation of insulin-like growth factor binding protein-2 (IGFBP-2) during development of the marine fish, Sparus aurata. Cell and Tissue Research, 2005, 319, 121-131.	1.5	8
58	Expression of eight distinct MHC isoforms in bovine striated muscles:evidence for MHC-2B presence only in extraocular muscles. Journal of Experimental Biology, 2005, 208, 4243-4253.	0.8	71
59	Fast fibres in a large animal: fibre types, contractile properties and myosin expression in pig skeletal muscles. Journal of Experimental Biology, 2004, 207, 1875-1886.	0.8	81
60	2B Myosin Heavy Chain Isoform Expression in Bovine Skeletal Muscle. Veterinary Research Communications, 2004, 28, 201-204.	0.6	2
61	Myosin heavy chain 2B isoform is expressed in specialized eye muscles but not in trunk and limb muscles of cattle. European Journal of Histochemistry, 2004, 48, 357-66.	0.6	26
62	Myostatin precursor is present in several tissues in teleost fish: a comparative immunolocalization study. Cell and Tissue Research, 2003, 311, 239-250.	1.5	66
63	Localization of IGF-I, IGF-I receptor, and IGFBP-2 in developing Umbrina cirrosa (Pisces: Osteichthyes). General and Comparative Endocrinology, 2003, 130, 232-244.	0.8	39
64	Expression and cellular localization of insulin-like growth factor-II protein and mRNA in Sparus aurata during development. Journal of Endocrinology, 2003, 178, 285-299.	1.2	44
65	Anbmp2/4is a new member of the transforming growth factor–β superfamily isolated from a crinoid and involved in regeneration. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1341-1347.	1.2	31
66	Expression of transforming growth factor Î ² -like molecules in normal and regenerating arms of the crinoidAntedon mediterranea: immunocytochemical and biochemical evidence. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1741-1747.	1.2	22
67	Changes in Ubiquitin Conjugates and Hsp72 Levels During Arm Regeneration in Echinoderms. Marine Biotechnology, 2001, 3, 4-15.	1.1	14
68	Molecular approach to echinoderm regeneration. Microscopy Research and Technique, 2001, 55, 474-485.	1.2	62
69	PCB exposure and regeneration in crinoids (Echinodermata). Marine Ecology - Progress Series, 2001, 215, 155-167.	0.9	24
70	Regenerative response and endocrine disrupters in crinoid echinoderms: arm regeneration in Antedon mediterranea after experimental exposure to polychlorinated biphenyls. Journal of Experimental Biology, 2001, 204, 835-42.	0.8	23
71	Growth factors, heat-shock proteins and regeneration in echinoderms. Journal of Experimental Biology, 2001, 204, 843-8.	0.8	31
72	Cellular and molecular mechanisms of arm regeneration in crinoid echinoderms: the potential of arm explants. Development Genes and Evolution, 1998, 208, 421-430.	0.4	49

#	Article	IF	CITATIONS
73	Muscle growth in response to changing demands of functions in the teleost Sparus aurata (L.) during development from hatching to juvenile. Anatomy and Embryology, 1998, 198, 487-504.	1.5	41