Jean-Philippe Torre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/352169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insights on the formation and dissociation mechanisms of cyclopentane hydrate obtained by using calorimetry and optical microscopy. Chemical Engineering Research and Design, 2022, 177, 117-122.	5.6	1
2	Ozonized 2-hydroxypropyl-β-cyclodextrins as novel materials with oxidative and bactericidal properties. Carbohydrate Polymers, 2022, 291, 119516.	10.2	2
3	Using Microscopic Observations of Cyclopentane Hydrate Crystal Morphology and Growth Patterns To Estimate the Antiagglomeration Capacity of Surfactants. Energy & Fuels, 2020, 34, 5176-5187.	5.1	6
4	Novel Hydroquinone-Alumina Composites Stabilizing a Guest-Free Clathrate Structure: Applications in Gas Processing. ACS Applied Materials & Interfaces, 2020, 12, 34137-34147.	8.0	1
5	A novel stirred microcalorimetric cell for DSC measurements applied to the study of ice slurries and clathrate hydrates. Chemical Engineering Research and Design, 2020, 160, 465-475.	5.6	5
6	Insights into the Crystal Structure and Clathration Selectivity of Organic Clathrates Formed with Hydroquinone and (CO2 + CH4) Gas Mixtures. Journal of Physical Chemistry C, 2019, 123, 14582-14590.	3.1	11
7	Hydroquinone clathrate based gas separation (HCBGS): Application to the CO2/CH4 gas mixture. Fuel, 2018, 226, 137-147.	6.4	12
8	Phase equilibrium properties of CO 2 /CH 4 mixed gas hydroquinone clathrates: Experimental data and model predictions. Journal of Chemical Thermodynamics, 2018, 116, 230-234.	2.0	10
9	Effects of a Quaternary Ammonium Salt on the Growth, Wettability, and Agglomeration of Structure II Hydrate Crystals. Energy & Fuels, 2018, 32, 12277-12288.	5.1	12
10	Determination of thermophysical properties of cyclopentane hydrate using a stirred calorimetric cell. Journal of Chemical Thermodynamics, 2018, 125, 136-141.	2.0	18
11	Kinetics of CO ₂ Capture by Hydroquinone Clathrates. Industrial & Engineering Chemistry Research, 2018, 57, 8172-8182.	3.7	6
12	Creating innovative composite materials to enhance the kinetics of CO 2 capture by hydroquinone clathrates. Chemical Engineering Journal, 2017, 325, 35-48.	12.7	15
13	Computational study of the interplay between intermolecular interactions and CO ₂ orientations in type I hydrates. Physical Chemistry Chemical Physics, 2017, 19, 3384-3393.	2.8	17
14	Characterization Study of CO ₂ , CH ₄ , and CO ₂ /CH ₄ Hydroquinone Clathrates Formed by Gas–Solid Reaction. Journal of Physical Chemistry C, 2017, 121, 22883-22894.	3.1	15
15	Effect of a Hydrophilic Cationic Surfactant on Cyclopentane Hydrate Crystal Growth at the Water/Cyclopentane Interface. Crystal Growth and Design, 2017, 17, 5098-5107.	3.0	29
16	New Insights on Gas Hydroquinone Clathrates Using in Situ Raman Spectroscopy: Formation/Dissociation Mechanisms, Kinetics, and Capture Selectivity. Journal of Physical Chemistry A, 2017, 121, 5450-5458.	2.5	21
17	Rheological study of CO 2 hydrate slurry in the presence of Sodium Dodecyl Sulfate in a secondary refrigeration loop. Chemical Engineering Science, 2017, 158, 294-303.	3.8	42
18	Experimental Determination of Phase Equilibria and Occupancies for CO ₂ , CH ₄ , and N ₂ Hydroquinone Clathrates. Journal of Chemical & Engineering Data, 2016, 61, 2565-2572.	1.9	18

JEAN-PHILIPPE TORRE

#	Article	IF	CITATIONS
19	CO ₂ –Hydroquinone Clathrate: Synthesis, Purification, Characterization and Crystal Structure. Crystal Growth and Design, 2016, 16, 5330-5338.	3.0	30
20	Influence of the carbon chain length of a sulfate-based surfactant on the formation of CO2, CH4 and CO2–CH4 gas hydrates. Chemical Engineering Science, 2016, 152, 736-745.	3.8	49
21	Revisiting the thermodynamic modelling of type I gas–hydroquinone clathrates. Physical Chemistry Chemical Physics, 2016, 18, 10018-10027.	2.8	18
22	1,3 Dioxolane versus tetrahydrofuran as promoters for CO 2 -hydrate formation: Thermodynamics properties, and kinetics in presence of sodium dodecyl sulfate. Chemical Engineering Science, 2015, 126, 688-697.	3.8	46
23	Molecular dynamics simulation of CO2 hydrates: Prediction of three phase coexistence line. Journal of Chemical Physics, 2015, 142, 124505.	3.0	96
24	DFT calculation of the potential energy landscape topology and Raman spectra of type I CH ₄ and CO ₂ hydrates. Physical Chemistry Chemical Physics, 2015, 17, 6963-6975.	2.8	28
25	Hydrate growth at the interface between water and pure or mixed CO2/CH4 gases: Influence of pressure, temperature, gas composition and water-soluble surfactants. Chemical Engineering Science, 2015, 132, 118-127.	3.8	78
26	Understanding the Phase Behavior of Tetrahydrofuran + Carbon Dioxide, + Methane, and + Water Binary Mixtures from the SAFT-VR Approach. Journal of Physical Chemistry B, 2015, 119, 14288-14302.	2.6	17
27	In situ injection of THF to trigger gas hydrate crystallization: Application to the evaluation of a kinetic hydrate promoter. Chemical Engineering Research and Design, 2014, 92, 1674-1680.	5.6	21
28	Combination of surfactants and organic compounds for boosting CO2 separation from natural gas by clathrate hydrate formation. Fuel, 2014, 122, 206-217.	6.4	82
29	CO ₂ Removal from a CO ₂ –CH ₄ Gas Mixture by Clathrate Hydrate Formation Using THF and SDS as Water-Soluble Hydrate Promoters. Industrial & Engineering Chemistry Research, 2013, 52, 899-910.	3.7	106
30	Carbon dioxide gas hydrate crystallization in porous silica gel particles partially saturated with a surfactant solution. Chemical Engineering Science, 2013, 98, 88-97.	3.8	58
31	Development of a new type of high pressure calorimetric cell, mechanically agitated and equipped with a dynamic pressure control system: Application to the characterization of gas hydrates. Review of Scientific Instruments, 2013, 84, 125107.	1.3	3
32	CO2 enclathration in the presence of water-soluble hydrate promoters: Hydrate phase equilibria and kinetic studies in quiescent conditions. Chemical Engineering Science, 2012, 82, 1-13.	3.8	99
33	Experimental Data, Modeling, and Correlation of Carbon Dioxide Solubility in Aqueous Solutions Containing Low Concentrations of Clathrate Hydrate Promoters: Application to CO ₂ –CH ₄ Gas Mixtures. Industrial & Engineering Chemistry Research, 2012, 51, 3157,3169	3.7	44
34	CO2 capture by hydrate formation in quiescent conditions: In search of efficient kinetic additives. Energy Procedia, 2011, 4, 621-628.	1.8	62
35	Jet injection studies for partially baffled mixing reactors: A general correlation for the jet trajectory and jet penetration depth. Chemical Engineering Research and Design, 2008, 86, 1117-1127.	5.6	5
36	An experimental and CFD study of liquid jet injection into a partially baffled mixing vessel: A contribution to process safety by improving the quenching of runaway reactions. Chemical Engineering Science, 2008, 63, 924-942.	3.8	17

#	Article	IF	CITATIONS
37	An experimental and computational study of the vortex shape in a partially baffled agitated vessel. Chemical Engineering Science, 2007, 62, 1915-1926.	3.8	48
38	Single and multiphase CFD approaches for modelling partially baffled stirred vessels: Comparison of experimental data with numerical predictions. Chemical Engineering Science, 2007, 62, 6246-6262.	3.8	49
39	Transient Hydrodynamics and Free Surface Capture of an Under-Baffled Stirred Tank During Stopping. Chemical Engineering Research and Design, 2007, 85, 626-636.	5.6	11