
Shoshana Yakar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3521612/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fsp27 plays a crucial role in muscle performance. American Journal of Physiology - Endocrinology and Metabolism, 2022, 322, E331-E343.	3.5	2
2	Effects of GH/IGF axis on bone and cartilage. Molecular and Cellular Endocrinology, 2021, 519, 111052.	3.2	57
3	GH directly inhibits steatosis and liver injury in a sex-dependent and IGF1-independent manner. Journal of Endocrinology, 2021, 248, 31-44.	2.6	19
4	Skeletal Response to Insulin in the Naturally Occurring Type 1 Diabetes Mellitus Mouse Model. JBMR Plus, 2021, 5, e10483.	2.7	8
5	Hepatic GH Receptor Signaling Directly Suppresses Hepatic Steatosis and De Novo Lipogenesis, Independent of Changes in Plasma IGF1 and Insulin. Journal of the Endocrine Society, 2021, 5, A48-A48.	0.2	Ο
6	ZYG11A Is Expressed in Epithelial Ovarian Cancer and Correlates With Low Grade Disease. Frontiers in Endocrinology, 2021, 12, 688104.	3.5	4
7	The Olfactory Receptor Gene Product, OR5H2, Modulates Endometrial Cancer Cells Proliferation via Interaction with the IGF1 Signaling Pathway. Cells, 2021, 10, 1483.	4.1	12
8	Sexual dimorphic impact of adultâ€onset somatopause on life span and ageâ€induced osteoarthritis. Aging Cell, 2021, 20, e13427.	6.7	8
9	A systematic review and meta-analysis on the efficacy of stem cell therapy on bone brittleness in mouse models of osteogenesis imperfecta. Bone Reports, 2021, 15, 101108.	0.4	2
10	Induction of somatopause in adult mice compromises bone morphology and exacerbates bone loss during aging. Aging Cell, 2021, 20, e13505.	6.7	6
11	Growth hormone receptor gene disruption in matureâ€adult mice improves male insulin sensitivity and extends female lifespan. Aging Cell, 2021, 20, e13506.	6.7	28
12	Pregnancy-Associated Plasma Protein (PAPP)-A2 in Physiology and Disease. Cells, 2021, 10, 3576.	4.1	15
13	Growth hormone, insulin-like growth factors, and IGF binding proteins. , 2020, , 985-1015.		1
14	Membrane-type 1 Matrix Metalloproteinase Modulates Tissue Homeostasis by a Non-proteolytic Mechanism. IScience, 2020, 23, 101789.	4.1	11
15	International meeting on GH/IGF actions in the shadow of COVID19. Pituitary, 2020, 23, 1-1.	2.9	4
16	Effects of GH/IGF on the Aging Mitochondria. Cells, 2020, 9, 1384.	4.1	30
17	The Effects of 20-kDa Human Placental GH in Male and Female GH-deficient Mice: An Improved Human GH?. Endocrinology, 2020, 161, .	2.8	9
18	SUN-LB52 The Protective Effects of Hepatocyte GH Receptor (GHR) Signaling Against Steatosis and Liver Injury Is Sexually Dimorphic and Autonomous of IGF1. Journal of the Endocrine Society, 2020, 4, .	0.2	0

Shoshana Yakar

#	Article	IF	CITATIONS
19	Identification of ZYG11A as a candidate IGF1-dependent proto-oncogene in endometrial cancer. Oncotarget, 2019, 10, 4437-4448.	1.8	9
20	Genome-Wide Profiling of Laron Syndrome Patients Identifies Novel Cancer Protection Pathways. Cells, 2019, 8, 596.	4.1	28
21	Low IGF-I Bioavailability Impairs Growth and Glucose Metabolism in a Mouse Model of Human PAPPA2 p.Ala1033Val Mutation. Endocrinology, 2019, 160, 1363-1376.	2.8	15
22	Mitochondrial Function Is Compromised in Cortical Bone Osteocytes of Long-Lived Growth Hormone Receptor Null Mice. Journal of Bone and Mineral Research, 2019, 34, 106-122.	2.8	27
23	SAT-176 Cellular Mechanisms of Impaired Bone Remodeling in Type 1 Diabetes Mellitus. Journal of the Endocrine Society, 2019, 3, .	0.2	0
24	40 YEARS OF IGF1: Insulin-like growth factors: actions on the skeleton. Journal of Molecular Endocrinology, 2018, 61, T115-T137.	2.5	142
25	Identification of thioredoxin-interacting protein (TXNIP) as a downstream target for IGF1 action. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1045-1050.	7.1	45
26	Reduced Serum IGF-1 Associated With Hepatic Osteodystrophy Is a Main Determinant of Low Cortical but Not Trabecular Bone Mass. Journal of Bone and Mineral Research, 2018, 33, 123-136.	2.8	18
27	Loss of neutrophil polarization in colon carcinoma liver metastases of mice with an inducible, liver-specific IGF-I deficiency. Oncotarget, 2018, 9, 15691-15704.	1.8	14
28	Ablation of Hepatic Production of the Acid-Labile Subunit in Bovine-GH Transgenic Mice: Effects on Organ and Skeletal Growth. Endocrinology, 2017, 158, 2556-2571.	2.8	10
29	Skeletal growth and bone mineral acquisition in type 1 diabetic children; abnormalities of the GH/IGF-1 axis. Growth Hormone and IGF Research, 2017, 34, 13-21.	1.1	47
30	Hepatic lipid metabolism and non-alcoholic fatty liver disease in aging. Molecular and Cellular Endocrinology, 2017, 455, 115-130.	3.2	101
31	Lactation-Induced Changes in the Volume of Osteocyte Lacunar-Canalicular Space Alter Mechanical Properties in Cortical Bone Tissue. Journal of Bone and Mineral Research, 2017, 32, 688-697.	2.8	75
32	Growth Hormone Control of Hepatic Lipid Metabolism. Diabetes, 2016, 65, 3598-3609.	0.6	90
33	Treatment With Recombinant Human Insulin-Like Growth Factor-1 Improves Growth in Patients With PAPP-A2 Deficiency. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3879-3883.	3.6	40
34	Prostatic Acid Phosphatase Alters the RANKL/OPG System and Induces Osteoblastic Prostate Cancer Bone Metastases. Endocrinology, 2016, 157, 4526-4533.	2.8	19
35	Mutations in pregnancyâ€associated plasma protein A2 cause short stature due to low <scp>IGF</scp> ″ availability. EMBO Molecular Medicine, 2016, 8, 363-374.	6.9	147
36	Osteocyte Apoptosis Caused by Hindlimb Unloading is Required to Trigger Osteocyte RANKL Production and Subsequent Resorption of Cortical and Trabecular Bone in Mice Femurs. Journal of Bone and Mineral Research, 2016, 31, 1356-1365.	2.8	135

SHOSHANA YAKAR

#	Article	IF	CITATIONS
37	DMPâ€1 â€mediated <i>Ghr</i> gene recombination compromises skeletal development and impairs skeletal response to intermittent PTH. FASEB Journal, 2016, 30, 635-652.	0.5	24
38	Does the GH/IGF-1 axis contribute to skeletal sexual dimorphism? Evidence from mouse studies. Growth Hormone and IGF Research, 2016, 27, 7-17.	1.1	32
39	Regulation of skeletal growth and mineral acquisition by the GH/IGF-1 axis: Lessons from mouse models. Growth Hormone and IGF Research, 2016, 28, 26-42.	1.1	106
40	Central effects of humanin on hepatic triglyceride secretion. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E283-E292.	3.5	29
41	Skeletal Response of Male Mice to Anabolic Hormone Therapy in the Absence of thelgfalsGene. Endocrinology, 2014, 155, 987-999.	2.8	5
42	Reductions in serum <scp>IGF</scp> â€l during aging impair health span. Aging Cell, 2014, 13, 408-418.	6.7	56
43	Low levels of plasma IGF-1 inhibit intracortical bone remodeling during aging. Age, 2013, 35, 1691-1703.	3.0	22
44	Serum IGF-1 Is Insufficient to Restore Skeletal Size in the Total Absence of the Growth Hormone Receptor. Journal of Bone and Mineral Research, 2013, 28, 1575-1586.	2.8	28
45	Deletion of Growth Hormone Receptors in Postnatal Skeletal Muscle of Male Mice Does Not Alter Muscle Mass and Response to Pathological Injury. Endocrinology, 2013, 154, 3776-3783.	2.8	26
46	Targeted Loss of GHR Signaling in Mouse Skeletal Muscle Protects Against High-Fat Diet–Induced Metabolic Deterioration. Diabetes, 2012, 61, 94-103.	0.6	64
47	Insulin-Like Growth Factor 1 Physiology. Endocrinology and Metabolism Clinics of North America, 2012, 41, 231-247.	3.2	95
48	Skeletal Muscle Growth Hormone Receptor Signaling Regulates Basal, but Not Fasting-Induced, Lipid Oxidation. PLoS ONE, 2012, 7, e44777.	2.5	22
49	Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nature Medicine, 2012, 18, 1095-1101.	30.7	498
50	The Intricate Role of Growth Hormone in Metabolism. Frontiers in Endocrinology, 2011, 2, 32.	3.5	135
51	Increased serum IGF-1 levels protect the musculoskeletal system but are associated with elevated oxidative stress markers and increased mortality independent of tissue igf1 gene expression. Aging Cell, 2011, 10, 547-550.	6.7	27
52	Growth hormone mediates pubertal skeletal development independent of hepatic IGF-1 production. Journal of Bone and Mineral Research, 2011, 26, 761-768.	2.8	26
53	Unbound (bioavailable) IGF1 enhances somatic growth. DMM Disease Models and Mechanisms, 2011, 4, 649-658.	2.4	25
54	Serum IGF-1 Affects Skeletal Acquisition in a Temporal and Compartment-Specific Manner. PLoS ONE, 2011, 6, e14762.	2.5	42

Shoshana Yakar

#	Article	IF	CITATIONS
55	Growth hormone receptor regulates β cell hyperplasia and glucose-stimulated insulin secretion in obese mice. Journal of Clinical Investigation, 2011, 121, 2422-2426.	8.2	83
56	Growth hormone regulates the balance between bone formation and bone marrow adiposity. Journal of Bone and Mineral Research, 2010, 25, 757-768.	2.8	107
57	Growth hormone protects against ovariectomy-induced bone loss in states of low circulating insulin-like growth factor (IGF-1). Journal of Bone and Mineral Research, 2010, 25, 235-246.	2.8	26
58	Elevated serum IGF-1 levels synergize PTH action on the skeleton only when the tissue IGF-1 axis is intact. Journal of Bone and Mineral Research, 2010, 25, 2051-2058.	2.8	38
59	Elevated serum levels of IGF-1 are sufficient to establish normal body size and skeletal properties even in the absence of tissue IGF-1. Journal of Bone and Mineral Research, 2010, 25, 1257-1266.	2.8	64
60	IGF-1 and bone: New discoveries from mouse models. Journal of Bone and Mineral Research, 2010, 25, 2543-2552.	2.8	117
61	Sex-specific regulation of body size and bone slenderness by the acid labile subunit. Journal of Bone and Mineral Research, 2010, 25, 2059-2068.	2.8	31
62	The Insulin-like Growth Factor-1 Binding Protein Acid-labile Subunit Alters Mesenchymal Stromal Cell Fate. Journal of Biological Chemistry, 2010, 285, 4709-4714.	3.4	20
63	Insulin-Like Growth Factor-I Regulates the Liver Microenvironment in Obese Mice and Promotes Liver Metastasis. Cancer Research, 2010, 70, 57-67.	0.9	96
64	Biological effects of growth hormone on carbohydrate and lipid metabolism. Growth Hormone and IGF Research, 2010, 20, 1-7.	1.1	233
65	Serum complexes of insulinâ€like growth factorâ€1 modulate skeletal integrity and carbohydrate metabolism. FASEB Journal, 2009, 23, 709-719.	0.5	90
66	Bone Marrow Adipogenesis Is Affected by Insulin-Like Growth Factor-1 Complexes. , 2009, , .		0
67	Serum IGF-1 Determines Skeletal Strength by Regulating Subperiosteal Expansion and Trait Interactions. Journal of Bone and Mineral Research, 2009, 24, 1481-1492.	2.8	93
68	Elevated Levels of Insulin-Like Growth Factor (IGF)-I in Serum Rescue the Severe Growth Retardation of IGF-I Null Mice. Endocrinology, 2009, 150, 4395-4403.	2.8	76
69	High-Efficient FLPo Deleter Mice in C57BL/6J Background. PLoS ONE, 2009, 4, e8054.	2.5	67
70	Reduced Susceptibility to Two-Stage Skin Carcinogenesis in Mice with Low Circulating Insulin-Like Growth Factor I Levels. Cancer Research, 2008, 68, 3680-3688.	0.9	60
71	Mechanisms of Disease: metabolic effects of growth hormone and insulin-like growth factor 1. Nature Clinical Practice Endocrinology and Metabolism, 2007, 3, 302-310.	2.8	265
72	The ternary IGF complex influences postnatal bone acquisition and the skeletal response to intermittent parathyroid hormone. Journal of Endocrinology, 2006, 189, 289-299.	2.6	78

SHOSHANA YAKAR

#	Article	IF	CITATIONS
73	The growth hormone-insulin like growth factor axis revisited: lessons from IGF-1 and IGF-1 receptor gene targeting. Pediatric Nephrology, 2005, 20, 251-254.	1.7	40
74	Intact Insulin and Insulin-Like Growth Factor-I Receptor Signaling Is Required for Growth Hormone Effects on Skeletal Muscle Growth and Functionin Vivo. Endocrinology, 2005, 146, 1772-1779.	2.8	82
75	Inhibition of growth hormone action improves insulin sensitivity in liver IGF-1–deficient mice. Journal of Clinical Investigation, 2004, 113, 96-105.	8.2	131
76	Inhibition of growth hormone action improves insulin sensitivity in liver IGF-1–deficient mice. Journal of Clinical Investigation, 2004, 113, 96-105.	8.2	200
77	Insulin-Like Growth Factor-I: Compartmentalization Within the Somatotropic Axis?. Physiology, 2002, 17, 82-85.	3.1	14
78	The Role of Circulating IGF-I: Lessons from Human and Animal Models. Endocrine, 2002, 19, 239-248.	2.2	63
79	Circulating levels of IGF-1 directly regulate bone growth and density. Journal of Clinical Investigation, 2002, 110, 771-781.	8.2	640
80	Circulating levels of IGF-1 directly regulate bone growth and density. Journal of Clinical Investigation, 2002, 110, 771-781.	8.2	469
81	Protein Calorie Restriction Affects Nonhepatic IGF-I Production and the Lymphoid System: Studies Using the Liver-Specific IGF-I Gene-Deleted Mouse Model. Endocrinology, 2002, 143, 2233-2241.	2.8	14
82	The Somatomedin Hypothesis: 2001. Endocrine Reviews, 2001, 22, 53-74.	20.1	1,045
83	Mice Deficient in Liver Production of Insulin-Like Growth Factor I Display Sexual Dimorphism in Growth Hormone-Stimulated Postnatal Growth. Endocrinology, 2000, 141, 4436-4441.	2.8	72
84	Mice Deficient in Liver Production of Insulin-Like Growth Factor I Display Sexual Dimorphism in Growth Hormone-Stimulated Postnatal Growth. Endocrinology, 2000, 141, 4436-4441.	2.8	18