Jianhua Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/352065/publications.pdf

Version: 2024-02-01

87843 95218 5,189 96 38 68 h-index citations g-index papers 105 105 105 6318 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Rapid prototyping of paperâ€based microfluidics with wax for lowâ€cost, portable bioassay. Electrophoresis, 2009, 30, 1497-1500.	1.3	558
2	Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials, 2017, 114, 121-143.	5.7	287
3	Human brain organoid-on-a-chip to model prenatal nicotine exposure. Lab on A Chip, 2018, 18, 851-860.	3.1	227
4	Advances in Hydrogels in Organoids and Organsâ€onâ€ohâechip. Advanced Materials, 2019, 31, e1902042.	11.1	212
5	Microfluidic platform towards point-of-care diagnostics in infectious diseases. Journal of Chromatography A, 2015, 1377, 13-26.	1.8	176
6	A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors. Scientific Reports, 2016, 6, 36670.	1.6	147
7	<i>ln situ</i> differentiation and generation of functional liver organoids from human iPSCs in a 3D perfusable chip system. Lab on A Chip, 2018, 18, 3606-3616.	3.1	147
8	A disease model of diabetic nephropathy in a glomerulus-on-a-chip microdevice. Lab on A Chip, 2017, 17, 1749-1760.	3.1	146
9	Flexible Fabrication of Biomimetic Bambooâ€Like Hybrid Microfibers. Advanced Materials, 2014, 26, 2494-2499.	11.1	142
10	Engineering human islet organoids from iPSCs using an organ-on-chip platform. Lab on A Chip, 2019, 19, 948-958.	3.1	140
11	Engineering stem cell-derived 3D brain organoids in a perfusable organ-on-a-chip system. RSC Advances, 2018, 8, 1677-1685.	1.7	134
12	A 3D human lung-on-a-chip model for nanotoxicity testing. Toxicology Research, 2018, 7, 1048-1060.	0.9	132
13	A 3D human placenta-on-a-chip model to probe nanoparticle exposure at the placental barrier. Toxicology in Vitro, 2019, 54, 105-113.	1.1	131
14	Biomimetic Human Disease Model of SARSâ€CoVâ€2â€Induced Lung Injury and Immune Responses on Organ Chip System. Advanced Science, 2021, 8, 2002928.	5.6	119
15	In situ generation of human brain organoids on a micropillar array. Lab on A Chip, 2017, 17, 2941-2950.	3.1	106
16	A Droplet Microfluidic System to Fabricate Hybrid Capsules Enabling Stem Cell Organoid Engineering. Advanced Science, 2020, 7, 1903739.	5.6	92
17	SARS-CoV-2 induced intestinal responses with a biomimetic human gut-on-chip. Science Bulletin, 2021, 66, 783-793.	4.3	91
18	Simple Spinning of Heterogeneous Hollow Microfibers on Chip. Advanced Materials, 2016, 28, 6649-6655.	11.1	83

#	Article	IF	CITATIONS
19	A cross-talk between epithelium and endothelium mediates human alveolar–capillary injury during SARS-CoV-2 infection. Cell Death and Disease, 2020, 11, 1042.	2.7	83
20	Activation of hypoxia signaling induces phenotypic transformation of glioma cells: implications for bevacizumab antiangiogenic therapy. Oncotarget, 2015, 6, 11882-11893.	0.8	68
21	Oneâ€Step Generation of Core–Shell Gelatin Methacrylate (GelMA) Microgels Using a Droplet Microfluidic System. Advanced Materials Technologies, 2019, 4, 1800632.	3.0	62
22	Potent anti-inflammatory effect of dioscin mediated by suppression ofÂTNF-α-induced VCAM-1, ICAM-1and EL expression via the NF-κB pathway. Biochimie, 2015, 110, 62-72.	1.3	61
23	Probing impaired neurogenesis in human brain organoids exposed to alcohol. Integrative Biology (United Kingdom), 2017, 9, 968-978.	0.6	61
24	A Microfluidic-Based Multi-Shear Device for Investigating the Effects of Low Fluid-Induced Stresses on Osteoblasts. PLoS ONE, 2014, 9, e89966.	1.1	60
25	Placental Barrier-on-a-Chip: Modeling Placental Inflammatory Responses to Bacterial Infection. ACS Biomaterials Science and Engineering, 2018, 4, 3356-3363.	2.6	58
26	HiPSC-derived multi-organoids-on-chip system for safety assessment of antidepressant drugs. Lab on A Chip, 2021, 21, 571-581.	3.1	56
27	Human induced pluripotent stem cell-derived beating cardiac tissues on paper. Lab on A Chip, 2015, 15, 4283-4290.	3.1	53
28	Simultaneous and ultrarapid determination of reactive oxygen species and reduced glutathione in apoptotic leukemia cells by microchip electrophoresis. Electrophoresis, 2005, 26, 1155-1162.	1.3	52
29	A Biomimetic Human Gutâ€onâ€aâ€Chip for Modeling Drug Metabolism in Intestine. Artificial Organs, 2018, 42, 1196-1205.	1.0	50
30	Modeling Human Nonalcoholic Fatty Liver Disease (NAFLD) with an Organoids-on-a-Chip System. ACS Biomaterials Science and Engineering, 2020, 6, 5734-5743.	2.6	50
31	Assessment of Air Pollutant PM2.5 Pulmonary Exposure Using a 3D Lung-on-Chip Model. ACS Biomaterials Science and Engineering, 2020, 6, 3081-3090.	2.6	50
32	Microengineered Multiâ€Organoid System from hiPSCs to Recapitulate Human Liverâ€Islet Axis in Normal and Type 2 Diabetes. Advanced Science, 2022, 9, e2103495.	5.6	49
33	Microfluidic devices for the analysis of apoptosis. Electrophoresis, 2005, 26, 3780-3788.	1.3	47
34	Induction of epithelial-to-mesenchymal transition in proximal tubular epithelial cells on microfluidic devices. Biomaterials, 2014, 35, 1390-1401.	5.7	47
35	A hollow fiber system for simple generation of human brain organoids. Integrative Biology (United) Tj ETQq $1\ 1\ 0$).784314 r 0.6	gBT/Overloci
36	Microfluidic strategies for label-free exosomes isolation and analysis. TrAC - Trends in Analytical Chemistry, 2019, 118, 686-698.	5.8	47

#	Article	IF	Citations
37	Rapid authentication of ginseng species using microchip electrophoresis with laser-induced fluorescence detection. Analytical and Bioanalytical Chemistry, 2005, 381, 812-819.	1.9	43
38	Microdroplet-based universal logic gates by electrorheological fluid. Soft Matter, 2011, 7, 7493.	1.2	42
39	Biomimetic tumor microenvironment on a microfluidic platform. Biomicrofluidics, 2013, 7, 011501.	1.2	41
40	Assessment of metabolism-dependent drug efficacy and toxicity on a multilayer organs-on-a-chip. Integrative Biology (United Kingdom), 2016, 8, 1022-1029.	0.6	41
41	One-step synthesis of composite hydrogel capsules to support liver organoid generation from hiPSCs. Biomaterials Science, 2020, 8, 5476-5488.	2.6	41
42	Neurodevelopmental impairment induced by prenatal valproic acid exposure shown with the human cortical organoid-on-a-chip model. Microsystems and Nanoengineering, 2020, 6, 49.	3.4	39
43	One-Step Generation of Aqueous-Droplet-Filled Hydrogel Fibers as Organoid Carriers Using an All-in-Water Microfluidic System. ACS Applied Materials & Samp; Interfaces, 2021, 13, 3199-3208.	4.0	39
44	Microfluidic device for on-chip isolation and detection of circulating exosomes in blood of breast cancer patients. Biomicrofluidics, 2019, 13, 054113.	1.2	38
45	Native fluorescence detection of flavin derivatives by microchip capillary electrophoresis with laser-induced fluorescence intensified charge-coupled device detection. Journal of Chromatography A, 2004, 1027, 223-229.	1.8	37
46	Simple and fast isolation of circulating exosomes with a chitosan modified shuttle flow microchip for breast cancer diagnosis. Lab on A Chip, 2021, 21, 1759-1770.	3.1	33
47	Catalytic Performance of Monolithic Foam Ni/SiC Catalyst in Carbon dioxide Reforming of Methane to Synthesis Gas. Catalysis Letters, 2008, 120, 111-115.	1.4	31
48	Microfluidic Organs-on-a-Chip for Modeling Human Infectious Diseases. Accounts of Chemical Research, 2021, 54, 3550-3562.	7.6	30
49	Human induced pluripotent stem cells derived endothelial cells mimicking vascular inflammatory response under flow. Biomicrofluidics, 2016, 10, 014106.	1.2	28
50	Bioinspired onion epithelium-like structure promotes the maturation of cardiomyocytes derived from human pluripotent stem cells. Biomaterials Science, 2017, 5, 1810-1819.	2.6	28
51	Assessment of cadmium-induced nephrotoxicity using a kidney-on-a-chip device. Toxicology Research, 2017, 6, 372-380.	0.9	25
52	Engineering Brain Organoids to Probe Impaired Neurogenesis Induced by Cadmium. ACS Biomaterials Science and Engineering, 2018, 4, 1908-1915.	2.6	25
53	Paper supported long-term 3D liver co-culture model for the assessment of hepatotoxic drugs. Toxicology Research, 2018, 7, 13-21.	0.9	25
54	Assessment of hepatic metabolism-dependent nephrotoxicity on an organs-on-a-chip microdevice. Toxicology in Vitro, 2018, 46, 1-8.	1.1	25

#	Article	IF	CITATIONS
55	EGFR signaling confers resistance to BET inhibition in hepatocellular carcinoma through stabilizing oncogenic MYC. Journal of Experimental and Clinical Cancer Research, 2019, 38, 83.	3.5	25
56	Flexible Fabrication of Shapeâ€Controlled Collagen Building Blocks for Selfâ€Assembly of 3D Microtissues. Small, 2015, 11, 3666-3675.	5.2	24
57	A flexible microfluidic strategy to generate grooved microfibers for guiding cell alignment. Biomaterials Science, 2021, 9, 4880-4890.	2.6	23
58	Genotyping the -6A/G functional polymorphism in the core promoter region of angiotensinogen gene by microchip electrophoresis. Electrophoresis, 2005, 26, 219-224.	1.3	21
59	Patterning hypoxic multicellular spheroids in a 3D matrix – a promising method for antiâ€ŧumor drug screening. Biotechnology Journal, 2016, 11, 127-134.	1.8	20
60	A microfluidic strategy to fabricate ultra-thin polyelectrolyte hollow microfibers as 3D cellular carriers. Materials Science and Engineering C, 2019, 104, 109705.	3.8	19
61	Human Organoids and Organsâ€onâ€Chips for Addressing COVIDâ€19 Challenges. Advanced Science, 2022, 9, e2105187.	5.6	19
62	Synthesis of shape-controlled particles based on synergistic effect of geometry confinement, double emulsion template, and polymerization quenching. Microfluidics and Nanofluidics, 2012, 12, 33-39.	1.0	18
63	Simple fabrication of inner chitosanâ€coated alginate hollow microfiber with higher stability. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 2527-2536.	1.6	18
64	DNA diagnosis by capillary electrophoresis and microfabricated electrophoretic devices. Expert Review of Molecular Diagnostics, 2003, 3, 387-394.	1.5	15
65	High throughput generation and trapping of individual agarose microgel using microfluidic approach. Microfluidics and Nanofluidics, 2013, 15, 467-474.	1.0	15
66	A simple photolithography method for microfluidic device fabrication using sunlight as UV source. Microfluidics and Nanofluidics, 2010, 9, 1247-1252.	1.0	14
67	Probing the response of lung tumor cells to inflammatory microvascular endothelial cells on fluidic microdevice. Electrophoresis, 2017, 38, 311-319.	1.3	14
68	Stimulation of chondrocytes and chondroinduced mesenchymal stem cells by osteoinduced mesenchymal stem cells under a fluid flow stimulus on an integrated microfluidic device. Molecular Medicine Reports, 2018, 17, 2277-2288.	1.1	14
69	Amnion-on-a-chip: modeling human amniotic development in mid-gestation from pluripotent stem cells. Lab on A Chip, 2020, 20, 3258-3268.	3.1	14
70	Bezafibrate–mizoribine interaction: Involvement of organic anion transporters OAT1 and OAT3 in rats. European Journal of Pharmaceutical Sciences, 2016, 81, 119-128.	1.9	13
71	Integrated Microfluidic Device for Enrichment and Identification of Circulating Tumor Cells from the Blood of Patients with Colorectal Cancer. Disease Markers, 2019, 2019, 1-9.	0.6	13
72	Flexible Generation of Multiâ€Aqueous Core Hydrogel Capsules Using Microfluidic Aqueous Twoâ€Phase System. Advanced Materials Technologies, 2020, 5, 2000045.	3.0	13

#	Article	IF	CITATIONS
73	Controllable Fabrication of Composite Core–Shell Capsules at a Macroscale as Organoid Biocarriers. ACS Applied Bio Materials, 2021, 4, 1584-1596.	2.3	13
74	Development of micropumpâ€actuated negative pressure pinched injection for parallel electrophoresis on array microfluidic chip. Electrophoresis, 2009, 30, 3053-3057.	1.3	12
75	Probing the Bi-directional Interaction Between Microglia and Gliomas in a Tumor Microenvironment on a Microdevice. Neurochemical Research, 2017, 42, 1478-1487.	1.6	12
76	Advances of Exosomal miRNAs in Breast Cancer Progression and Diagnosis. Diagnostics, 2021, 11, 2151.	1.3	12
77	Malignant Melanoma-Derived Exosomes Induce Endothelial Damage and Glial Activation on a Human BBB Chip Model. Biosensors, 2022, 12, 89.	2.3	12
78	Patterning cell using Si-stencil for high-throughput assay. RSC Advances, 2011, 1, 746.	1.7	11
79	Brain organoid-on-chip system to study the effects of breast cancer derived exosomes on the neurodevelopment of brain. Cell Regeneration, 2022, 11, 7.	1.1	11
80	Controllable synthesis of anisotropic elongated particles using microvalve actuated microfluidic approach. Journal of Materials Chemistry, 2011, 21, 2466.	6.7	10
81	An integrated microfluidic device for characterizing chondrocyte metabolism in response to distinct levels of fluid flow stimulus. Microfluidics and Nanofluidics, 2013, 15, 763-773.	1.0	10
82	Advances in Biosensor Technologies for Infection Diagnostics. Accounts of Chemical Research, 2022, 55, 121-122.	7.6	9
83	Analysis of Caenorhabditis elegans in microfluidic devices. Science China Chemistry, 2012, 55, 484-493.	4.2	8
84	Regulating cell behaviors on micropillar topographies affected by interfacial energy. RSC Advances, 2015, 5, 22916-22922.	1.7	7
85	Bioinspired Engineering of Organ-on-Chip Devices. Advances in Experimental Medicine and Biology, 2019, 1174, 401-440.	0.8	7
86	Establishment of Trophoblastâ€Like Tissue Model from Human Pluripotent Stem Cells in Threeâ€Dimensional Culture System. Advanced Science, 2022, 9, e2100031.	5.6	7
87	Exploration of Exosomal miRNAs from Serum and Synovial Fluid in Arthritis Patients. Diagnostics, 2022, 12, 239.	1.3	7
88	Highly efficient separation of dsDNA fragments on glass chips by using an ultralow viscosity sieving matrix. Journal of Separation Science, 2003, 26, 869-874.	1.3	6
89	Human induced pluripotent stem cell-derived cardiac tissue on a thin collagen membrane with natural microstructures. Biomaterials Science, 2016, 4, 1655-1662.	2.6	6
90	Microengineered hiPSC-Derived 3D Amnion Tissue Model to Probe Amniotic Inflammatory Responses under Bacterial Exposure. ACS Biomaterials Science and Engineering, 2020, 6, 4644-4652.	2.6	5

#	Article	IF	CITATION
91	Epoxidation of electron-deficient $\hat{l}\pm,\hat{l}^2$ -unsaturated carbonyl compounds over Keggin heteropoly compounds with aqueous H ₂ O ₂ . Journal of Chemical Research, 2005, 2005, 716-718.	0.6	4
92	Fluidic Flow Enhances the Differentiation of Placental Trophoblast-Like 3D Tissue from hiPSCs in a Perfused Macrofluidic Device. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	3
93	Microdevices: Flexible Fabrication of Shapeâ€Controlled Collagen Building Blocks for Selfâ€Assembly of 3D Microtissues (Small 30/2015). Small, 2015, 11, 3665-3665.	5.2	2
94	A Portable Device for Simple Exosome Separation from Biological Samples. Micromachines, 2021, 12, 1182.	1.4	2
95	MODIFIED ALGINATE/CHITOSAN HOLLOW MICROFIBER AS A BIOCOMPATIBLE FRAME FOR BLOOD VESSEL RECONSTRUCTION. Nano LIFE, 2012, 02, 1242005.	0.6	1
96	Honeycomb Structures: Facile Synthesis of Biomimetic Honeycomb Material with Biological Functionality (Small 4/2013). Small, 2013, 9, 644-644.	5.2	0