
Evgenii Yu Prosviryakov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3520499/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhomogeneous Couette–Poiseuille shear flow. Procedia Structural Integrity, 2022, 40, 171-179.	0.8	0
2	Features of selecting boundary conditions when describing flows of stratified fluids. Procedia Structural Integrity, 2022, 40, 75-81.	0.8	1
3	Isothermal shear flows of viscous vortex fluids in a thin slit. Procedia Structural Integrity, 2022, 40, 82-89.	0.8	1
4	Exact Solutions to Navier–Stokes Equations Describing a Gradient Nonuniform Unidirectional Vertical Vortex Fluid Flow. Dynamics, 2022, 2, 175-186.	1.2	7
5	Exact Solutions to the Oberbeck–Boussinesq Equations for Shear Flows of a Viscous Binary Fluid with Allowance Made for the Soret Effect. Bulletin of Irkutsk State University, Series Mathematics, 2021, 37, 17-30.	0.3	8
6	Layered Marangoni convection with the Navier slip condition. Sadhana - Academy Proceedings in Engineering Sciences, 2021, 46, 1.	1.3	5
7	Exact Solutions to the Navierâ \in Stokes Equations with Couple Stresses. Symmetry, 2021, 13, 1355.	2.2	17
8	Exact Solutions for Steady Convective Layered Flows with a Spatial Acceleration. Russian Mathematics, 2021, 65, 8-16.	0.4	8
9	Towards understanding the algorithms for solving the Navier–Stokes equations. Fluid Dynamics Research, 2021, 53, 044501.	1.3	27
10	Recovery of radial-axial velocity in axisymmetric swirling flows of a viscous incompressible fluid in the Lagrangian consideration of vorticity evolution. Vestnik Udmurtskogo Universiteta: Matematika, Mekhanika, Komp'yuternye Nauki, 2021, 31, 505-516.	0.2	1
11	Exact solutions for steady convective layered flows with a spatial acceleration. Russian Mathematics, 2021, , 12-22.	0.1	0
12	On the Semi-Analytical Solutions in Hydrodynamics of Ideal Fluid Flows Governed by Large-Scale Coherent Structures of Spiral-Type. Symmetry, 2021, 13, 2307.	2.2	4
13	On Marangoni shear convective flows of inhomogeneous viscous incompressible fluids in view of the Soret effect. Journal of King Saud University - Science, 2020, 32, 3364-3371.	3.5	7
14	Thermocapillary Convection of a Vertical Swirling Liquid. Theoretical Foundations of Chemical Engineering, 2020, 54, 230-239.	0.7	12
15	Đ¢Đ¾Ñ‡Đ½Đ¾Đµ Ñ€ĐµÑ^ĐµĐ½Đ,е ÑƒÑ€Đ°Đ²Đ½ĐµĐ½Đ,Đ¹ ĐĐ°Đ²ÑŒĐµ - Đ¡Ñ,Đ¾ĐºÑа, Đ¾Đ¿Đ,ÑÑ‹Đ	¹² Đº:ÑŽÑ%	₀ееÐįŃ€
16	A Class of Exact Solutions for Two–Dimensional Equations of Geophysical Hydrodynamics with Two Coriolis Parameters. Bulletin of Irkutsk State University, Series Mathematics, 2020, 32, 33-48.	0.3	7
17	Inhomogeneous isothermal equatorial Poiseuille - Ekman flow. AIP Conference Proceedings, 2020, , .	0.4	0
18	Studying the concentration field distribution in shear concentration convective flows of a viscous incompressible fluid in a plane horizontal layer with immobile boundaries. AIP Conference Proceedings, 2020, , .	0.4	0

Evgenii Yu Prosviryakov

#	Article	IF	CITATIONS
19	Exact solution for stable convective concentration flows of a Couette type. Computational Continuum Mechanics, 2020, 13, 337-349.	0.5	2
20	Gradient flow of a non-isothermal fluid under the quadratic heating condition at the upper boundary. AIP Conference Proceedings, 2020, , .	0.4	0
21	Convective Couette-Poiseuille type flows with quadratic heating of one fluid layer boundary. AIP Conference Proceedings, 2020, , .	0.4	0
22	An exact solution for the Rayleigh-Benard convective flow with quadratic heating at the upper boundary of a fluid layer. AIP Conference Proceedings, 2020, , .	0.4	0
23	A layered unidirectional flow of a viscous incompressible fluid induced in a closed layer by a nonuniform distribution of temperature and pressure fields, with allowance for the perfect slip condition. AIP Conference Proceedings, 2020, , .	0.4	1
24	The influence of gradient pressure effects on the velocity field in a three-dimensional convective flow. AIP Conference Proceedings, 2020, , .	0.4	0
25	Large-scale convective Ekman flow of viscous incompressible fluid in the equatorial zone. AIP Conference Proceedings, 2020, , .	0.4	0
26	Nonstationary laminar Bénard-Marangoni convection for Newton-Richmann heat exchange. AIP Conference Proceedings, 2020, , .	0.4	1
27	A three-dimensional model of the Couette-type convective flow with the heating condition at the fluid boundary. AIP Conference Proceedings, 2020, , .	0.4	0
28	Diffusion Poiseuille flow of a viscous incompressible binary fluid in a horizontal layer with motionless boundaries. AIP Conference Proceedings, 2020, , .	0.4	0
29	Analytical study of the Ekman angle for the isothermal flow of a viscous incompressible fluid in view of the Navier boundary condition. AIP Conference Proceedings, 2020, , .	0.4	0
30	An exact solution of the convective Couette flow under the parabolic heating condition at the lower boundary of a fluid layer. AIP Conference Proceedings, 2020, , .	0.4	0
31	Unidirectional convective flow of viscous incompressible fluid in a closed horizontal layer with the perfect slip condition. AIP Conference Proceedings, 2020, , .	0.4	0
32	Inhomogeneous isobaric Poiseuille-Ekman flow of a viscous incompressible fluid. AIP Conference Proceedings, 2020, , .	0.4	0
33	Analysis of non-one-dimensional shear concentration convective flows of a viscous incompressible fluid in a plane horizontal layer with motionless boundaries. AIP Conference Proceedings, 2020, , .	0.4	0
34	New Class of Exact Solutions of Navier–Stokes Equations with Exponential Dependence of Velocity on Two Spatial Coordinates. Theoretical Foundations of Chemical Engineering, 2019, 53, 107-114.	0.7	25
35	Exact Solutions for Layered Three-Dimensional Nonstationary Isobaric Flows of a Viscous Incompressible Fluid. Journal of Applied Mechanics and Technical Physics, 2019, 60, 1031-1037.	0.5	14
36	An exact solution for the description of the gradient flow of a vortex fluid. AIP Conference Proceedings, 2019, , .	0.4	0

Evgenii Yu Prosviryakov

#	Article	IF	CITATIONS
37	Unidirectional Marangoni–Poiseuille flows of a viscous incompressible fluid with the Navier boundary condition. AIP Conference Proceedings, 2019, , .	0.4	3
38	Exact solution of the convective flow of a viscous fluid layer with a heated lower boundary. AIP Conference Proceedings, 2019, , .	0.4	1
39	Unidirectional thermocapillary flows of a viscous incompressible fluid with the Navier boundary condition. , 2019, , .		2
40	Convective Couette-type flows under condition of slip and heating at the lower boundary. AIP Conference Proceedings, 2019, , .	0.4	1
41	Models of matter self-organization in dissipative kinetic processes for obtaining an active biomaterial with transdermal ability to restore and strengthen bone tissue. AIP Conference Proceedings, 2019, , .	0.4	0
42	An inhomogeneous Couette-type flow with a perfect slip condition at the lower boundary of an infinite fluid layer. AIP Conference Proceedings, 2019, , .	0.4	0
43	Unidirectional convective flows of a viscous incompressible fluid with slippage in a closed layer. AIP Conference Proceedings, 2019, , .	0.4	5
44	Layered convective flows of vertically swirling incompressible fluid affected by tangential stresses. AIP Conference Proceedings, 2019, , .	0.4	0
45	Large-scale convection flow of an incompressible fluid on a rotating inclined plane. AIP Conference Proceedings, 2018, , .	0.4	4
46	A new exact solution for convective flows of a rotating viscous incompressible fluid. AIP Conference Proceedings, 2018, , .	0.4	2
47	Investigation of temperature and pressure fields for the Marangoni shear convection of a vertically swirling viscous incompressible fluid. AIP Conference Proceedings, 2018, , .	0.4	3
48	Isobaric vortex flow of a viscous incompressible fluid with the Navier boundary condition. AIP Conference Proceedings, 2018, , .	0.4	4
49	Linear heating of the upper boundary of a fluid layer in the case of stationary nonisothermal Couette flow. AIP Conference Proceedings, 2018, , .	0.4	0
50	Exact solutions for three-dimensional nonlinear flows of a viscous incompressible fluid. AIP Conference Proceedings, 2018, , .	0.4	1
51	Investigation of a velocity field for the Marangoni shear convection of a vertically swirling viscous incompressible fluid. AIP Conference Proceedings, 2018, , .	0.4	5
52	Layered Three-Dimensional Nonuniform Viscous Incompressible Flows. Theoretical Foundations of Chemical Engineering, 2018, 52, 765-770.	0.7	10
53	Ekman Convective Layer Flow of a Viscous Incompressible Fluid. Izvestiya - Atmospheric and Oceanic Physics, 2018, 54, 189-195.	0.9	8
54	Complex large-scale convection of a viscous incompressible fluid with heat exchange according to Newton's law. AIP Conference Proceedings, 2017, , .	0.4	4

#	Article	IF	CITATIONS
55	Convective flow in the solid rotation of a viscous incompressible fluid. AIP Conference Proceedings, 2017, , .	0.4	5
56	Exact solutions for layered large-scale convection induced by tangential stresses specified on the free boundary of a fluid layer. IOP Conference Series: Materials Science and Engineering, 2017, 208, 012010.	0.6	6
57	Waves of pressure in viscous incompressible fluid. AIP Conference Proceedings, 2017, , .	0.4	8
58	Exact solutions for layered thermocapillary convection of a viscous incompressible fluid with specified stresses on the bottom. AIP Conference Proceedings, 2017, , .	0.4	0
59	Exact solution for the layered convection of a viscous incompressible fluid at specified temperature gradients and tangential forces on the free boundary. AIP Conference Proceedings, 2017, , .	0.4	6
60	Simulation of a viscous flow in layered composites in view of the thermocapillary effect. AIP Conference Proceedings, 2017, , .	0.4	2
61	Exact Solutions for Stationary and Unsteady Layered Convection of a Viscous Incompressible Fluid with the Specified Velocities at the Bottom. IOP Conference Series: Materials Science and Engineering, 2017, 208, 012035.	0.6	4
62	Two-dimensional stationary temperature convection in heat transfer on the boundaries of a flat layer of an incompressible fluid. AIP Conference Proceedings, 2016, , .	0.4	0
63	Unsteady layered vortical fluid flows. Fluid Dynamics, 2016, 51, 148-154.	0.9	22
64	Unsteady-state Bénard–Marangoni convection in layered viscous incompressible flows. Theoretical Foundations of Chemical Engineering, 2016, 50, 132-141.	0.7	20
65	A new class of exact solutions for three-dimensional thermal diffusion equations. Theoretical Foundations of Chemical Engineering, 2016, 50, 286-293.	0.7	61
66	Nonuniform convective Couette flow. Fluid Dynamics, 2016, 51, 581-587.	0.9	20
67	Exact solutions to problems on stationary and unsteady layered convection of a viscous incompressible medium. AIP Conference Proceedings, 2016, , .	0.4	4
68	Parabolic convective motion of a fluid cooled from below with the heat exchange at the free boundary. Russian Aeronautics, 2016, 59, 529-535.	0.2	3
69	Stationary nonisothermal Couette flow. Quadratic heating of the upper boundary of the fluid layer. Nelineinaya Dinamika, 2016, , 167-178.	0.3	11
70	Large-scale flows of viscous incompressible vortical fluid. Russian Aeronautics, 2015, 58, 413-418.	0.2	17