Troy A Hornberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3520232/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel insights into the regulation of skeletal muscle protein synthesis as revealed by a new nonradioactive <i>in vivo</i> technique. FASEB Journal, 2011, 25, 1028-1039.	0.2	389
2	CLOCK and BMAL1 regulate <i>MyoD</i> and are necessary for maintenance of skeletal muscle phenotype and function. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19090-19095.	3.3	299
3	Physiological Hypertrophy of the FHL Muscle Following 8 Weeks of Progressive Resistance Exercise in the Rat. Applied Physiology, Nutrition, and Metabolism, 2004, 29, 16-31.	1.7	281
4	The role of skeletal muscle mTOR in the regulation of mechanical loadâ€induced growth. Journal of Physiology, 2011, 589, 5485-5501.	1.3	238
5	Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism. Biochemical Journal, 2004, 380, 795-804.	1.7	216
6	Measuring Protein Synthesis With SUnSET. Exercise and Sport Sciences Reviews, 2013, 41, 107-115.	1.6	199
7	Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle mass. Cellular Signalling, 2011, 23, 1896-1906.	1.7	147
8	The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise. Scientific Reports, 2016, 6, 31142.	1.6	139
9	Regulation of translation factors during hindlimb unloading and denervation of skeletal muscle in rats. American Journal of Physiology - Cell Physiology, 2001, 281, C179-C187.	2.1	133
10	Mechanotransduction and the regulation of mTORC1 signaling in skeletal muscle. International Journal of Biochemistry and Cell Biology, 2011, 43, 1267-1276.	1.2	131
11	The Role of Diacylglycerol Kinase ζ and Phosphatidic Acid in the Mechanical Activation of Mammalian Target of Rapamycin (mTOR) Signaling and Skeletal Muscle Hypertrophy. Journal of Biological Chemistry, 2014, 289, 1551-1563.	1.6	129
12	Bone and skeletal muscle: Key players in mechanotransduction and potential overlapping mechanisms. Bone, 2015, 80, 24-36.	1.4	114
13	The role of raptor in the mechanical loadâ€induced regulation of mTOR signaling, protein synthesis, and skeletal muscle hypertrophy. FASEB Journal, 2019, 33, 4021-4034.	0.2	110
14	Intracellular signaling specificity in response to uniaxial vs. multiaxial stretch: implications for mechanotransduction. American Journal of Physiology - Cell Physiology, 2005, 288, C185-C194.	2.1	109
15	The role of mTOR signaling in the regulation of protein synthesis and muscle mass during immobilization in mice. DMM Disease Models and Mechanisms, 2015, 8, 1059-1069.	1.2	108
16	A Phosphatidylinositol 3-Kinase/Protein Kinase B-independent Activation of Mammalian Target of Rapamycin Signaling Is Sufficient to Induce Skeletal Muscle Hypertrophy. Molecular Biology of the Cell, 2010, 21, 3258-3268.	0.9	102
17	Smad3 Induces Atrogin-1, Inhibits mTOR and Protein Synthesis, and Promotes Muscle Atrophy In Vivo. Molecular Endocrinology, 2013, 27, 1946-1957.	3.7	102
18	G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15756-15761.	3.3	95

TROY A HORNBERGER

#	Article	IF	CITATIONS
19	Mechanical stimuli and nutrients regulate rapamycin-sensitive signaling through distinct mechanisms in skeletal muscle. Journal of Cellular Biochemistry, 2006, 97, 1207-1216.	1.2	88
20	Resistance exercise initiates mechanistic target of rapamycin (mTOR) translocation and protein complex co-localisation in human skeletal muscle. Scientific Reports, 2017, 7, 5028.	1.6	86
21	Yesâ€Associated Protein is upâ€regulated by mechanical overload and is sufficient to induce skeletal muscle hypertrophy. FEBS Letters, 2015, 589, 1491-1497.	1.3	82
22	Identifying the Structural Adaptations that Drive the Mechanical Load-Induced Growth of Skeletal Muscle: A Scoping Review. Cells, 2020, 9, 1658.	1.8	79
23	Eccentric contractions increase the phosphorylation of tuberous sclerosis complexâ€2 (TSC2) and alter the targeting of TSC2 and the mechanistic target of rapamycin to the lysosome. Journal of Physiology, 2013, 591, 4611-4620.	1.3	76
24	Selenoprotein-Deficient Transgenic Mice Exhibit Enhanced Exercise-Induced Muscle Growth. Journal of Nutrition, 2003, 133, 3091-3097.	1.3	74
25	Mechanical Stimulation Induces mTOR Signaling via an ERK-Independent Mechanism: Implications for a Direct Activation of mTOR by Phosphatidic Acid. PLoS ONE, 2012, 7, e47258.	1.1	72
26	Muscle Fiber Type-Dependent Differences in the Regulation of Protein Synthesis. PLoS ONE, 2012, 7, e37890.	1.1	70
27	A map of the phosphoproteomic alterations that occur after a bout of maximalâ€intensity contractions. Journal of Physiology, 2017, 595, 5209-5226.	1.3	70
28	PGCâ€┨α overexpression by <i>in vivo</i> transfection attenuates mitochondrial deterioration of skeletal muscle caused by immobilization. FASEB Journal, 2015, 29, 4092-4106.	0.2	68
29	Urokinase-type plasminogen activator and macrophages are required for skeletal muscle hypertrophy in mice. American Journal of Physiology - Cell Physiology, 2007, 293, C1278-C1285.	2.1	64
30	Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy. Nutrition and Metabolism, 2014, 11, 29.	1.3	60
31	Eukaryotic initiation factor 2B epsilon induces capâ€dependent translation and skeletal muscle hypertrophy. Journal of Physiology, 2011, 589, 3023-3037.	1.3	59
32	Lipid domain–dependent regulation of single-cell wound repair. Molecular Biology of the Cell, 2014, 25, 1867-1876.	0.9	59
33	Aging does not alter the mechanosensitivity of the p38, p70S6k, and JNK2 signaling pathways in skeletal muscle. Journal of Applied Physiology, 2005, 98, 1562-1566.	1.2	53
34	Late progression of renal pathology and cyst enlargement is reduced by rapamycin in a mouse model of nephronophthisis. Kidney International, 2009, 76, 178-182.	2.6	52
35	Muscle intermediate filaments form a stress-transmitting and stress- signaling network in muscle. Journal of Cell Science, 2015, 128, 219-24.	1.2	51
36	A role for Raptor phosphorylation in the mechanical activation of mTOR signaling. Cellular Signalling, 2014, 26, 313-322.	1.7	48

TROY A HORNBERGER

#	Article	IF	CITATIONS
37	The Hippo Signaling Pathway in the Regulation of Skeletal Muscle Mass and Function. Exercise and Sport Sciences Reviews, 2018, 46, 92-96.	1.6	48
38	The mechanical activation of mTOR signaling: an emerging role for late endosome/lysosomal targeting. Journal of Muscle Research and Cell Motility, 2014, 35, 11-21.	0.9	45
39	Prioritization of skeletal muscle growth for emergence from hibernation. Journal of Experimental Biology, 2015, 218, 276-84.	0.8	40
40	Translational Control: Implications for Skeletal Muscle Hypertrophy. Clinical Orthopaedics and Related Research, 2002, 403, S178-S187.	0.7	37
41	Macrophage-Specific Expression of Urokinase-Type Plasminogen Activator Promotes Skeletal Muscle Regeneration. Journal of Immunology, 2011, 187, 1448-1457.	0.4	37
42	Resistance Exercise-Induced Hypertrophy: A Potential Role for Rapamycin-Insensitive mTOR. Exercise and Sport Sciences Reviews, 2019, 47, 188-194.	1.6	37
43	Mapping of the contraction-induced phosphoproteome identifies TRIM28 as a significant regulator of skeletal muscle size and function. Cell Reports, 2021, 34, 108796.	2.9	36
44	A DGKζ-FoxO-ubiquitin proteolytic axis controls fiber size during skeletal muscle remodeling. Science Signaling, 2018, 11, .	1.6	34
45	Isoenergetic Dietary Protein Restriction Decreases Myosin Heavy Chain IIx Fraction and Myosin Heavy Chain Production in Humans. Journal of Nutrition, 2004, 134, 328-334.	1.3	25
46	Identification of mechanically regulated phosphorylation sites on tuberin (TSC2) that control mechanistic target of rapamycin (mTOR) signaling. Journal of Biological Chemistry, 2017, 292, 6987-6997.	1.6	25
47	Multiomics-Identified Intervention to Restore Ethanol-Induced Dysregulated Proteostasis and Secondary Sarcopenia in Alcoholic Liver Disease. Cellular Physiology and Biochemistry, 2021, 55, 91-116.	1.1	24
48	Imaging of protein synthesis with puromycin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E989; author reply E990.	3.3	23
49	The Overlooked Role of Fiber Length in Mechanical Load-Induced Growth of Skeletal Muscle. Exercise and Sport Sciences Reviews, 2019, 47, 258-259.	1.6	23
50	Effects of oral phosphatidic acid feeding with or without whey protein on muscle protein synthesis and anabolic signaling in rodent skeletal muscle. Journal of the International Society of Sports Nutrition, 2015, 12, 32.	1.7	21
51	Insights into the role and regulation of TCTP in skeletal muscle. Oncotarget, 2017, 8, 18754-18772.	0.8	21
52	mTORC1 mediates fiber type-specific regulation of protein synthesis and muscle size during denervation. Cell Death Discovery, 2021, 7, 74.	2.0	20
53	Weight Pulling: A Novel Mouse Model of Human Progressive Resistance Exercise. Cells, 2021, 10, 2459.	1.8	20
54	New roles for Smad signaling and phosphatidic acid in the regulation of skeletal muscle mass. F1000prime Reports, 2014, 6, 20.	5.9	19

TROY A HORNBERGER

#	Article	IF	CITATIONS
55	A deep analysis of the proteomic and phosphoproteomic alterations that occur in skeletal muscle after the onset of immobilization. Journal of Physiology, 2021, 599, 2887-2906.	1.3	13
56	Optimal Temperature for Hypothermia Intervention in Mouse Model of Skeletal Muscle Ischemia Reperfusion Injury. Cellular and Molecular Bioengineering, 2011, 4, 717-723.	1.0	7
57	Commentaries on Viewpoint: The rigorous study of exercise adaptations: Why mRNA might not be enough. Journal of Applied Physiology, 2016, 121, 597-600.	1.2	6
58	Identifying Novel Signaling Pathways: An Exercise Scientists Guide to Phosphoproteomics. Exercise and Sport Sciences Reviews, 2018, 46, 76-85.	1.6	5
59	Temporal mechanically-induced signaling events in bone and dorsal root ganglion neurons after in vivo bone loading. PLoS ONE, 2018, 13, e0192760.	1.1	3
60	The Role of mTOR in Mechanical Load Induced Skeletal Muscle Hypertrophy and Hyperplasia. FASEB Journal, 2011, 25, 1105.1.	0.2	0
61	A Novel DGKK-FoxO-Ubiquitin Proteolytic Axis Controls Fiber Size During Skeletal Muscle Remodeling. SSRN Electronic Journal, 0, , .	0.4	0