
Richard S Judson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3520119/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature, 2000, 403, 623-627.	13.7	4,490
2	Teaching lasers to control molecules. Physical Review Letters, 1992, 68, 1500-1503.	2.9	1,409
3	The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nature Biotechnology, 2010, 28, 827-838.	9.4	795
4	Haplotype Variation and Linkage Disequilibrium in 313 Human Genes. Science, 2001, 293, 489-493.	6.0	768
5	The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. Journal of Cheminformatics, 2017, 9, 61.	2.8	674
6	<i>In Vitro</i> Screening of Environmental Chemicals for Targeted Testing Prioritization: The ToxCast Project. Environmental Health Perspectives, 2010, 118, 485-492.	2.8	519
7	ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology. Chemical Research in Toxicology, 2016, 29, 1225-1251.	1.7	456
8	A large-scale experiment to assess protein structure prediction methods. Proteins: Structure, Function and Bioinformatics, 1995, 23, ii-iv.	1.5	440
9	The Toxicity Data Landscape for Environmental Chemicals. Environmental Health Perspectives, 2009, 117, 685-695.	2.8	418
10	Update on EPA's ToxCast Program: Providing High Throughput Decision Support Tools for Chemical Risk Management. Chemical Research in Toxicology, 2012, 25, 1287-1302.	1.7	410
11	Integration of Dosimetry, Exposure, and High-Throughput Screening Data in Chemical Toxicity Assessment. Toxicological Sciences, 2012, 125, 157-174.	1.4	336
12	OPERA models for predicting physicochemical properties and environmental fate endpoints. Journal of Cheminformatics, 2018, 10, 10.	2.8	326
13	Endocrine Profiling and Prioritization of Environmental Chemicals Using ToxCast Data. Environmental Health Perspectives, 2010, 118, 1714-1720.	2.8	274
14	Spectrum and prevalence of cardiac sodium channel variants among black, white, Asian, and Hispanic individuals: Implications for arrhythmogenic susceptibility and Brugada/long QT syndrome genetic testing. Heart Rhythm, 2004, 1, 600-607.	0.3	273
15	CERAPP: Collaborative Estrogen Receptor Activity Prediction Project. Environmental Health Perspectives, 2016, 124, 1023-1033.	2.8	264
16	Integrated Model of Chemical Perturbations of a Biological Pathway Using 18 <i>In Vitro</i> High-Throughput Screening Assays for the Estrogen Receptor. Toxicological Sciences, 2015, 148, 137-154.	1.4	251
17	The Next Generation Blueprint of Computational Toxicology at the U.S. Environmental Protection Agency. Toxicological Sciences, 2019, 169, 317-332.	1.4	225
18	Screening Chemicals for Estrogen Receptor Bioactivity Using a Computational Model. Environmental Science & Technology, 2015, 49, 8804-8814.	4.6	224

#	Article	IF	CITATIONS
19	Incorporating Human Dosimetry and Exposure into High-Throughput <i>In Vitro</i> Toxicity Screening. Toxicological Sciences, 2010, 117, 348-358.	1.4	222
20	ACToR — Aggregated Computational Toxicology Resource. Toxicology and Applied Pharmacology, 2008, 233, 7-13.	1.3	195
21	Impact of Environmental Chemicals on Key Transcription Regulators and Correlation to Toxicity End Points within EPA's ToxCast Program. Chemical Research in Toxicology, 2010, 23, 578-590.	1.7	190
22	Incorporating High-Throughput Exposure Predictions With Dosimetry-Adjusted <i>In Vitro</i> Bioactivity to Inform Chemical Toxicity Testing. Toxicological Sciences, 2015, 148, 121-136.	1.4	190
23	Chemical Genomics Profiling of Environmental Chemical Modulation of Human Nuclear Receptors. Environmental Health Perspectives, 2011, 119, 1142-1148.	2.8	189
24	Estimating Toxicity-Related Biological Pathway Altering Doses for High-Throughput Chemical Risk Assessment. Chemical Research in Toxicology, 2011, 24, 451-462.	1.7	188
25	Profiling Chemicals Based on Chronic Toxicity Results from the U.S. EPA ToxRef Database. Environmental Health Perspectives, 2009, 117, 392-399.	2.8	187
26	Predictive Models of Prenatal Developmental Toxicity from ToxCast High-Throughput Screening Data. Toxicological Sciences, 2011, 124, 109-127.	1.4	186
27	High Throughput Heuristics for Prioritizing Human Exposure to Environmental Chemicals. Environmental Science & Technology, 2014, 48, 12760-12767.	4.6	185
28	Phenotypic screening of the ToxCast chemical library to classify toxic and therapeutic mechanisms. Nature Biotechnology, 2014, 32, 583-591.	9.4	175
29	The exposure data landscape for manufactured chemicals. Science of the Total Environment, 2012, 414, 159-166.	3.9	171
30	Editor's Highlight: Analysis of the Effects of Cell Stress and Cytotoxicity on <i>In Vitro</i> Assay Activity Across a Diverse Chemical and Assay Space. Toxicological Sciences, 2016, 152, 323-339.	1.4	171
31	Profiling of the Tox21 10K compound library for agonists and antagonists of the estrogen receptor alpha signaling pathway. Scientific Reports, 2014, 4, 5664.	1.6	167
32	tcpl: the ToxCast pipeline for high-throughput screening data. Bioinformatics, 2017, 33, 618-620.	1.8	166
33	Development and Validation of a Computational Model for Androgen Receptor Activity. Chemical Research in Toxicology, 2017, 30, 946-964.	1.7	163
34	Analysis of Eight Oil Spill Dispersants Using Rapid, In Vitro Tests for Endocrine and Other Biological Activity. Environmental Science & Technology, 2010, 44, 5979-5985.	4.6	162
35	Profiling 976 ToxCast Chemicals across 331 Enzymatic and Receptor Signaling Assays. Chemical Research in Toxicology, 2013, 26, 878-895.	1.7	162
36	Computational Toxicology—A State of the Science Mini Review. Toxicological Sciences, 2008, 103, 14-27.	1.4	152

#	Article	IF	CITATIONS
37	The application of time-dependent wavepacket methods to reactive scattering. Computer Physics Communications, 1991, 63, 460-481.	3.0	145
38	The Tox21 10K Compound Library: Collaborative Chemistry Advancing Toxicology. Chemical Research in Toxicology, 2021, 34, 189-216.	1.7	145
39	Linking high resolution mass spectrometry data with exposure and toxicity forecasts to advance high-throughput environmental monitoring. Environment International, 2016, 88, 269-280.	4.8	143
40	Predictive Model of Rat Reproductive Toxicity from ToxCast High Throughput Screening1. Biology of Reproduction, 2011, 85, 327-339.	1.2	142
41	Using <i>in Vitro</i> High Throughput Screening Assays to Identify Potential Endocrine-Disrupting Chemicals. Environmental Health Perspectives, 2013, 121, 7-14.	2.8	134
42	High-Throughput Models for Exposure-Based Chemical Prioritization in the ExpoCast Project. Environmental Science & Technology, 2013, 47, 130711145716006.	4.6	132
43	The predictive power of haplotypes in clinical response. Pharmacogenomics, 2000, 1, 15-26.	0.6	129
44	Activity profiles of 309 ToxCastâ,,¢ chemicals evaluated across 292 biochemical targets. Toxicology, 2011, 282, 1-15.	2.0	124
45	Predicting Hepatotoxicity Using ToxCast <i>in Vitro</i> Bioactivity and Chemical Structure. Chemical Research in Toxicology, 2015, 28, 738-751.	1.7	124
46	Profiling the Reproductive Toxicity of Chemicals from Multigeneration Studies in the Toxicity Reference Database. Toxicological Sciences, 2009, 110, 181-190.	1.4	120
47	CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity. Environmental Health Perspectives, 2020, 128, 27002.	2.8	120
48	Perspectives on validation of high-throughput assays supporting 21st century toxicity testing. ALTEX: Alternatives To Animal Experimentation, 2013, 30, 51-66.	0.9	118
49	Toxicokinetic Triage for Environmental Chemicals. Toxicological Sciences, 2015, 147, 55-67.	1.4	117
50	Profiling the activity of environmental chemicals in prenatal developmental toxicity studies using the U.S. EPA's ToxRefDB. Reproductive Toxicology, 2009, 28, 209-219.	1.3	116
51	A timeâ€dependent wave packet approach to atom–diatom reactive collision probabilities: Theory and application to the H+H2 (J=O) system. Journal of Chemical Physics, 1990, 93, 312-322.	1.2	114
52	<i>In Vitro</i> and Modelling Approaches to Risk Assessment from the U.S. Environmental Protection Agency ToxCast Programme. Basic and Clinical Pharmacology and Toxicology, 2014, 115, 69-76.	1.2	114
53	Exploring consumer exposure pathways and patterns of use for chemicals in the environment. Toxicology Reports, 2015, 2, 228-237.	1.6	113
54	Environmental Impact on Vascular Development Predicted by High-Throughput Screening. Environmental Health Perspectives, 2011, 119, 1596-1603.	2.8	112

#	Article	IF	CITATIONS
55	A hybrid gene selection approach to create the S1500+ targeted gene sets for use in high-throughput transcriptomics. PLoS ONE, 2018, 13, e0191105.	1.1	110
56	In Silico Prediction of Physicochemical Properties of Environmental Chemicals Using Molecular Fingerprints and Machine Learning. Journal of Chemical Information and Modeling, 2017, 57, 36-49.	2.5	106
57	Evaluation of high-throughput genotoxicity assays used in profiling the US EPA ToxCastâ"¢ chemicals. Regulatory Toxicology and Pharmacology, 2009, 55, 188-199.	1.3	105
58	Relative Impact of Incorporating Pharmacokinetics on Predicting In Vivo Hazard and Mode of Action from High-Throughput In Vitro Toxicity Assays. Toxicological Sciences, 2013, 132, 327-346.	1.4	104
59	Aggregating Data for Computational Toxicology Applications: The U.S. Environmental Protection Agency (EPA) Aggregated Computational Toxicology Resource (ACToR) System. International Journal of Molecular Sciences, 2012, 13, 1805-1831.	1.8	103
60	Chemiluminescent Reaction Channel Opened by Photon Absorption During Collision. Physical Review Letters, 1980, 44, 687-690.	2.9	100
61	How many SNPs does a genome-wide haplotype map require?. Pharmacogenomics, 2002, 3, 379-391.	0.6	98
62	Profiling Bioactivity of the ToxCast Chemical Library Using BioMAP Primary Human Cell Systems. Journal of Biomolecular Screening, 2009, 14, 1054-1066.	2.6	96
63	Tiered High-Throughput Screening Approach to Identify Thyroperoxidase Inhibitors Within the ToxCast Phase I and II Chemical Libraries. Toxicological Sciences, 2016, 151, 160-180.	1.4	95
64	Time-dependent wave-packet method for the complete determination ofS-matrix elements for reactive molecular collisions in three dimensions. Physical Review A, 1990, 42, 351-366.	1.0	91
65	Chemical Safety Assessment Using Read-Across: Assessing the Use of Novel Testing Methods to Strengthen the Evidence Base for Decision Making. Environmental Health Perspectives, 2015, 123, 1232-1240.	2.8	89
66	Time dependent threeâ€dimensional body frame quantal wave packet treatment of the H+H2 exchange reaction on the Liu–Siegbahn–Truhlar–Horowitz (LSTH) surface. Journal of Chemical Physics, 1989, 90, 5882-5884.	1.2	85
67	An "EAR―on Environmental Surveillance and Monitoring: A Case Study on the Use of Exposure–Activity Ratios (EARs) to Prioritize Sites, Chemicals, and Bioactivities of Concern in Great Lakes Waters. Environmental Science & Technology, 2017, 51, 8713-8724.	4.6	81
68	Optimal design of external fields for controlling molecular motion: application to rotation. Journal of Molecular Structure, 1990, 223, 425-456.	1.8	79
69	Development of a consumer product ingredient database for chemical exposure screening and prioritization. Food and Chemical Toxicology, 2014, 65, 269-279.	1.8	79
70	High-Throughput Transcriptomics Platform for Screening Environmental Chemicals. Toxicological Sciences, 2021, 181, 68-89.	1.4	79
71	Computational Exposure Science: An Emerging Discipline to Support 21st-Century Risk Assessment. Environmental Health Perspectives, 2016, 124, 697-702.	2.8	74
72	The Next Generation of Risk Assessment Multi-Year Study—Highlights of Findings, Applications to Risk Assessment, and Future Directions. Environmental Health Perspectives, 2016, 124, 1671-1682.	2.8	74

#	Article	IF	CITATIONS
73	Predictive Endocrine Testing in the 21st Century Using <i>in Vitro</i> Assays of Estrogen Receptor Signaling Responses. Environmental Science & Technology, 2014, 48, 8706-8716.	4.6	71
74	Systematically evaluating read-across prediction and performance using a local validity approach characterized by chemical structure and bioactivity information. Regulatory Toxicology and Pharmacology, 2016, 79, 12-24.	1.3	70
75	Time-dependent (wavepacket) quantum approach to reactive scattering: Vibrationally resolved reaction probabilities for F+H2→HF+H. Chemical Physics Letters, 1990, 169, 372-379.	1.2	68
76	Total integral reactive cross sections for F + H2 → HF + H: comparison of converged quantum, quasiclassical trajectory and experimental results. Chemical Physics Letters, 1991, 176, 546-550.	1.2	68
77	Toxicity Data Informatics: Supporting a New Paradigm for Toxicity Prediction. Toxicology Mechanisms and Methods, 2008, 18, 103-118.	1.3	68
78	EADB: An Estrogenic Activity Database for Assessing Potential Endocrine Activity. Toxicological Sciences, 2013, 135, 277-291.	1.4	68
79	In Vitro Perturbations of Targets in Cancer Hallmark Processes Predict Rodent Chemical Carcinogenesis. Toxicological Sciences, 2013, 131, 40-55.	1.4	67
80	Binary Classification of a Large Collection of Environmental Chemicals from Estrogen Receptor Assays by Quantitative Structure–Activity Relationship and Machine Learning Methods. Journal of Chemical Information and Modeling, 2013, 53, 3244-3261.	2.5	66
81	Using ToxCastâ,,¢ Data to Reconstruct Dynamic Cell State Trajectories and Estimate Toxicological Points of Departure. Environmental Health Perspectives, 2016, 124, 910-919.	2.8	65
82	Challenges in IBD Research: Environmental Triggers. Inflammatory Bowel Diseases, 2019, 25, S13-S23.	0.9	62
83	New and confirmatory evidence of an association between APOE genotype and baseline C-reactive protein in dyslipidemic individuals. Atherosclerosis, 2004, 177, 345-351.	0.4	61
84	A comparison of machine learning algorithms for chemical toxicity classification using a simulated multi-scale data model. BMC Bioinformatics, 2008, 9, 241.	1.2	59
85	Considerations for strategic use of high-throughput transcriptomics chemical screening data in regulatory decisions. Current Opinion in Toxicology, 2019, 15, 64-75.	2.6	58
86	Evaluation of 309 Environmental Chemicals Using a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity Assay. PLoS ONE, 2011, 6, e18540.	1.1	57
87	Notes from the SNP vs. haplotype front. Pharmacogenomics, 2001, 2, 7-10.	0.6	56
88	Haplotypes of the cholesteryl ester transfer protein gene predict lipid-modifying response to statin therapy. Pharmacogenomics Journal, 2003, 3, 284-296.	0.9	56
89	A genetic algorithm based method for docking flexible molecules. Computational and Theoretical Chemistry, 1994, 308, 191-206.	1.5	54
90	Bayesian Meta-Analysis of Genetic Association Studies with Different Sets of Markers. American Journal of Human Genetics, 2008, 82, 859-872.	2.6	54

#	Article	IF	CITATIONS
91	Xenobiotic-Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes Modulated by Toxcast Chemicals. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2010, 13, 329-346.	2.9	53
92	Prioritizing Environmental Chemicals for Obesity and Diabetes Outcomes Research: A Screening Approach Using ToxCastâ,,¢ High-Throughput Data. Environmental Health Perspectives, 2016, 124, 1141-1154.	2.8	50
93	Systems Toxicology of Male Reproductive Development: Profiling 774 Chemicals for Molecular Targets and Adverse Outcomes. Environmental Health Perspectives, 2016, 124, 1050-1061.	2.8	49
94	Using Nuclear Receptor Activity to Stratify Hepatocarcinogens. PLoS ONE, 2011, 6, e14584.	1.1	48
95	Moving Toward Integrating Gene Expression Profiling Into High-Throughput Testing: A Gene Expression Biomarker Accurately Predicts Estrogen Receptor I± Modulation in a Microarray Compendium. Toxicological Sciences, 2016, 151, 88-103.	1.4	45
96	Genome-wide evaluation of the public SNP databases. Pharmacogenomics, 2003, 4, 779-789.	0.6	44
97	Dosimetric Anchoring of In Vivo and In Vitro Studies for Perfluorooctanoate and Perfluorooctanesulfonate. Toxicological Sciences, 2013, 136, 308-327.	1.4	44
98	Advancements in Life Cycle Human Exposure and Toxicity Characterization. Environmental Health Perspectives, 2018, 126, 125001.	2.8	44
99	A Novel Framework for Predicting In Vivo Toxicities from In Vitro Data Using Optimal Methods for Dense and Sparse Matrix Reordering and Logistic Regression. Toxicological Sciences, 2010, 118, 251-265.	1.4	42
100	Evidence-based toxicology for the 21st century: Opportunities and challenges. ALTEX: Alternatives To Animal Experimentation, 2013, 30, 74-104.	0.9	42
101	Real-Time Growth Kinetics Measuring Hormone Mimicry for ToxCast Chemicals in T-47D Human Ductal Carcinoma Cells. Chemical Research in Toxicology, 2013, 26, 1097-1107.	1.7	41
102	Timeâ€dependent treatment of scattering: Integral equation approaches using the timeâ€dependent amplitude density. Journal of Chemical Physics, 1990, 92, 4167-4177.	1.2	40
103	Allelic dropout in long QT syndrome genetic testing: A possible mechanism underlying false-negative results. Heart Rhythm, 2006, 3, 815-821.	0.3	40
104	Predictive Models and Computational Toxicology. Methods in Molecular Biology, 2013, 947, 343-374.	0.4	40
105	On selecting a minimal set of inÂvitro assays to reliably determine estrogen agonist activity. Regulatory Toxicology and Pharmacology, 2017, 91, 39-49.	1.3	39
106	High-Throughput H295R Steroidogenesis Assay: Utility as an Alternative and a Statistical Approach to Characterize Effects on Steroidogenesis. Toxicological Sciences, 2018, 162, 509-534.	1.4	39
107	Uncertainty quantification in ToxCast high throughput screening. PLoS ONE, 2018, 13, e0196963.	1.1	37
108	Variability in in vivo studies: Defining the upper limit of performance for predictions of systemic effect levels. Computational Toxicology, 2020, 15, 100126.	1.8	37

#	Article	IF	CITATIONS
109	Systematic Evidence Map for Over One Hundred and Fifty Per- and Polyfluoroalkyl Substances (PFAS). Environmental Health Perspectives, 2022, 130, 56001.	2.8	36
110	Public Databases Supporting Computational Toxicology. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2010, 13, 218-231.	2.9	34
111	Profiling the ToxCast Library With a Pluripotent Human (H9) Stem Cell Line-Based Biomarker Assay for Developmental Toxicity. Toxicological Sciences, 2020, 174, 189-209.	1.4	34
112	Vision of a near future: Bridging the human health–environment divide. Toward an integrated strategy to understand mechanisms across species for chemical safety assessment. Toxicology in Vitro, 2020, 62, 104692.	1.1	33
113	Incorporating exposure information into the toxicological prioritization index decision support framework. Science of the Total Environment, 2012, 435-436, 316-325.	3.9	32
114	A comparison of three timeâ€dependent wave packet methods for calculating electron–atom elastic scattering cross sections. Journal of Chemical Physics, 1991, 94, 3577-3585.	1.2	30
115	Docking-based classification models for exploratory toxicology studies on high-quality estrogenic experimental data. Future Medicinal Chemistry, 2015, 7, 1921-1936.	1.1	30
116	Advancing alternatives analysis: The role of predictive toxicology in selecting safer chemical products and processes. Integrated Environmental Assessment and Management, 2017, 13, 915-925.	1.6	30
117	Ensemble QSAR Modeling to Predict Multispecies Fish Toxicity Lethal Concentrations and Points of Departure. Environmental Science & amp; Technology, 2019, 53, 12793-12802.	4.6	30
118	Empirical models for anatomical and physiological changes in a human mother and fetus during pregnancy and gestation. PLoS ONE, 2019, 14, e0215906.	1.1	30
119	Identification of potential endocrine disrupting chemicals using gene expression biomarkers. Toxicology and Applied Pharmacology, 2019, 380, 114683.	1.3	29
120	High-Throughput Screening to Predict Chemical-Assay Interference. Scientific Reports, 2020, 10, 3986.	1.6	28
121	Prediction of Estrogenic Bioactivity of Environmental Chemical Metabolites. Chemical Research in Toxicology, 2016, 29, 1410-1427.	1.7	26
122	Characterizing cleft palate toxicants using ToxCast data, chemical structure, and the biomedical literature. Birth Defects Research, 2020, 112, 19-39.	0.8	26
123	Evaluation of androgen assay results using a curated Hershberger database. Reproductive Toxicology, 2018, 81, 272-280.	1.3	25
124	Progress in data interoperability to support computational toxicology and chemical safety evaluation. Toxicology and Applied Pharmacology, 2019, 380, 114707.	1.3	25
125	Identifying environmental chemicals as agonists of the androgen receptor by using a quantitative high-throughput screening platform. Toxicology, 2017, 385, 48-58.	2.0	24
126	Predictive Structure-Based Toxicology Approaches To Assess the Androgenic Potential of Chemicals. Journal of Chemical Information and Modeling, 2017, 57, 2874-2884.	2.5	24

#	Article	IF	CITATIONS
127	Development, validation and integration of in silico models to identify androgen active chemicals. Chemosphere, 2019, 220, 204-215.	4.2	23
128	Development of a curated Hershberger database. Reproductive Toxicology, 2018, 81, 259-271.	1.3	22
129	Using chemical structure information to develop predictive models for in vitro toxicokinetic parameters to inform high-throughput risk-assessment. Computational Toxicology, 2020, 16, 100136.	1.8	22
130	Timeâ€dependent treatment of scattering. II. Novel integral equation approach to quantum wave packets. Journal of Chemical Physics, 1990, 93, 5580-5585.	1.2	21
131	Incorporating Biological, Chemical, and Toxicological Knowledge Into Predictive Models of Toxicity. Toxicological Sciences, 2012, 130, 440-441.	1.4	21
132	Exploring non-linear distance metrics in the structure–activity space: QSAR models for human estrogen receptor. Journal of Cheminformatics, 2018, 10, 47.	2.8	21
133	Genetic Algorithms and Their Use in Chemistry. Reviews in Computational Chemistry, 2007, , 1-73.	1.5	17
134	Economic benefits of using adaptive predictive models of reproductive toxicity in the context of a tiered testing program. Systems Biology in Reproductive Medicine, 2012, 58, 3-9.	1.0	17
135	Predicting estrogen receptor activation by a group of substituted phenols: An integrated approach to testing and assessment case study. Regulatory Toxicology and Pharmacology, 2019, 106, 278-291.	1.3	17
136	Structure-based QSAR models to predict repeat dose toxicity points of departure. Computational Toxicology, 2020, 16, 100139.	1.8	17
137	Retrospective mining of toxicology data to discover multispecies and chemical class effects: Anemia as a case study. Regulatory Toxicology and Pharmacology, 2017, 86, 74-92.	1.3	15
138	A systematic evaluation of analogs and automated read-across prediction of estrogenicity: A case study using hindered phenols. Computational Toxicology, 2017, 4, 22-30.	1.8	15
139	Development of a prioritization method for chemical-mediated effects on steroidogenesis using an integrated statistical analysis of high-throughput H295R data. Regulatory Toxicology and Pharmacology, 2019, 109, 104510.	1.3	15
140	Selecting a minimal set of androgen receptor assays for screening chemicals. Regulatory Toxicology and Pharmacology, 2020, 117, 104764.	1.3	15
141	In Silico Study of In Vitro GPCR Assays by QSAR Modeling. Methods in Molecular Biology, 2016, 1425, 361-381.	0.4	14
142	New approach methods for testing chemicals for endocrine disruption potential. Current Opinion in Toxicology, 2018, 9, 40-47.	2.6	14
143	Estimating uncertainty in the context of new approach methodologies for potential use in chemical safety evaluation. Current Opinion in Toxicology, 2019, 15, 40-47.	2.6	14
144	Comparison of Approaches for Determining Bioactivity Hits from High-Dimensional Profiling Data. SLAS Discovery, 2021, 26, 292-308.	1.4	14

#	Article	IF	CITATIONS
145	Pharmacogenetic Issues in Thorough QT Trials. Molecular Diagnosis and Therapy, 2006, 10, 153-162.	1.6	12
146	A mechanistic framework for integrating chemical structure and high-throughput screening results to improve toxicity predictions. Computational Toxicology, 2018, 8, 1-12.	1.8	12
147	Using pathway modules as targets for assay development in xenobiotic screening. Molecular BioSystems, 2012, 8, 531-542.	2.9	11
148	Probabilistic diagram for designing chemicals with reduced potency to incur cytotoxicity. Green Chemistry, 2016, 18, 4461-4467.	4.6	11
149	Editor's Highlight: Negative Predictors of Carcinogenicity for Environmental Chemicals. Toxicological Sciences, 2017, 155, 157-169.	1.4	11
150	Predicting in vivo effect levels for repeat-dose systemic toxicity using chemical, biological, kinetic and study covariates. Archives of Toxicology, 2018, 92, 587-600.	1.9	11
151	Integrating data gap filling techniques: A case study predicting TEFs for neurotoxicity TEQs to facilitate the hazard assessment of polychlorinated biphenyls. Regulatory Toxicology and Pharmacology, 2019, 101, 12-23.	1.3	11
152	Workflow for Defining Reference Chemicals for Assessing Performance of In Vitro Assays. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 261-276.	0.9	11
153	Use of Neural Models of Proliferation and Neurite Outgrowth to Screen Environmental Chemicals in the ToxCast Phase I Library. Applied in Vitro Toxicology, 2015, 1, 131-139.	0.6	10
154	Integrating endocrine-related health effects into comparative human toxicity characterization. Science of the Total Environment, 2021, 762, 143874.	3.9	10
155	Reactive scattering using a mixed quantum-classical paradigm. Chemical Physics Letters, 1991, 179, 385-392.	1.2	9
156	Time dependent integral equation approaches to quantum scattering: Comparative application to atom–rigid rotor multichannel scattering. Journal of Chemical Physics, 1992, 96, 5039-5046.	1.2	9
157	Assessing bioactivity-exposure profiles of fruit and vegetable extracts in the BioMAP profiling system. Toxicology in Vitro, 2019, 54, 41-57.	1.1	8
158	tcplfit2: an R-language general purpose concentration–response modeling package. Bioinformatics, 2022, 38, 1157-1158.	1.8	8
159	Combining phenotypic profiling and targeted RNA-Seq reveals linkages between transcriptional perturbations and chemical effects on cell morphology: Retinoic acid as an example. Toxicology and Applied Pharmacology, 2022, 444, 116032.	1.3	8
160	Coupled molecular design diagrams to guide safer chemical design with reduced likelihood of perturbing the NRF2-ARE antioxidant pathway and inducing cytotoxicity. Green Chemistry, 2016, 18, 6387-6394.	4.6	7
161	Inelastic probabilities above the three-body breakup threshold via a projection operator formalism. Chemical Physics Letters, 1991, 181, 151-156.	1.2	6
162	Using Multiple Drug Exposure Levels to Optimize Power in Pharmacogenetic Trials. Journal of Clinical Pharmacology, 2003, 43, 816-824.	1.0	6

#	Article	IF	CITATIONS
163	Comment on "On the Utility of ToxCast™ and ToxPi as Methods for Identifying New Obesogens― Environmental Health Perspectives, 2017, 125, A8-A11.	2.8	6
164	Health effects of toxicants: Online knowledge support. Life Sciences, 2016, 145, 284-293.	2.0	4
165	Using Molecular Dynamics to Predict Factors Affecting Binding Strength and Magnetic Relaxivity of MRI Contrast Agents. Journal of Molecular Modeling, 1996, 2, 160-174.	0.8	3
166	Modeling In Vitro Cell-Based Assays Experiments. Developments in Environmental Modelling, 2012, 25, 51-71.	0.3	3
167	Genetic Targets of Acute Toluene Inhalation inDrosophila melanogaster. Toxicological Sciences, 2016, 156, kfw243.	1.4	3
168	Predicting molecular initiating events using chemical target annotations and gene expression. BioData Mining, 2022, 15, 7.	2.2	3
169	Restoring value to stalled Phase II compounds: the case for developing a novel compound for depression using pharmacogenetics. Pharmacogenomics, 2005, 6, 95-100.	0.6	2
170	Pharmacogenomics in Drug Development. , 2005, , 83-103.		2
171	Pharmacogenomics in Drug Development and Clinical Research. , 2008, , 677-690.		1