
Hanna M Pituch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3519855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clostridium difficile infection in Europe: a hospital-based survey. Lancet, The, 2011, 377, 63-73.	6.3	924
2	Clostridium difficile infection: review. European Journal of Clinical Microbiology and Infectious Diseases, 2019, 38, 1211-1221.	1.3	391
3	Underdiagnosis of Clostridium difficile across Europe: the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID). Lancet Infectious Diseases, The, 2014, 14, 1208-1219.	4.6	308
4	Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes. Clinical Microbiology and Infection, 2015, 21, 248.e9-248.e16.	2.8	218
5	Multidrug resistance in European Clostridium difficile clinical isolates. Journal of Antimicrobial Chemotherapy, 2011, 66, 2227-2234.	1.3	177
6	Fluoroquinolone resistance in Clostridium difficile isolates from a prospective study of C. difficile infections in Europe. Journal of Medical Microbiology, 2008, 57, 784-789.	0.7	112
7	How to: Surveillance of Clostridium difficile infections. Clinical Microbiology and Infection, 2018, 24, 469-475.	2.8	68
8	Clostridium difficile is no longer just a nosocomial infection or an infection of adults. International Journal of Antimicrobial Agents, 2009, 33, S42-S45.	1.1	67
9	Standardised surveillance of Clostridium difficile infection in European acute care hospitals: a pilot study, 2013. Eurosurveillance, 2016, 21, .	3.9	64
10	Two Distinct Patterns of Clostridium difficile Diversity Across Europe Indicating Contrasting Routes of Spread. Clinical Infectious Diseases, 2018, 67, 1035-1044.	2.9	60
11	Clonal dissemination of a toxin-A-negative/toxin-B-positive Clostridium difficile strain from patients with antibiotic-associated diarrhea in Poland. Clinical Microbiology and Infection, 2001, 7, 442-446.	2.8	56
12	Comparative Genome Analysis and Global Phylogeny of the Toxin Variant Clostridium difficile PCR Ribotype 017 Reveals the Evolution of Two Independent Sublineages. Journal of Clinical Microbiology, 2017, 55, 865-876.	1.8	50
13	Prevalence and association of PCR ribotypes of Clostridium difficile isolated from symptomatic patients from Warsaw with macrolide-lincosamide-streptogramin B (MLSB) type resistance. Journal of Medical Microbiology, 2006, 55, 207-213.	0.7	49
14	Hospital-based Clostridium difficile infection surveillance reveals high proportions of PCR ribotypes 027 and 176 in different areas of Poland, 2011 to 2013. Eurosurveillance, 2015, 20, .	3.9	47
15	Clostridium difficile PCR ribotype 176 in the Czech Republic and Poland. Lancet, The, 2011, 377, 1407.	6.3	41
16	Clostridium difficile infection in Polish pediatric outpatients with inflammatory bowel disease. European Journal of Clinical Microbiology and Infectious Diseases, 2010, 29, 1265-1270.	1.3	39
17	Antimicrobial effects of Manuka honey on in vitro biofilm formation by Clostridium difficile. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 1661-1664.	1.3	38
18	Antimicrobial activity of LFF571 and three treatment agents against Clostridium difficile isolates collected for a pan-European survey in 2008: clinical and therapeutic implications. Journal of Antimicrobial Chemotherapy, 2013, 68, 1305-1311.	1.3	35

ΗΑΝΝΑ Μ ΡΙΤUCH

#	Article	IF	CITATIONS
19	Emergence of Clostridium difficile infection in tuberculosis patients due to a highly rifampicin-resistant PCR ribotype 046 clone in Poland. European Journal of Clinical Microbiology and Infectious Diseases, 2013, 32, 1027-1030.	1.3	34
20	Antimicrobial susceptibility patterns of Clostridium difficile strains belonging to different polymerase chain reaction ribotypes isolated in Poland in 2012. Anaerobe, 2015, 31, 37-41.	1.0	34
21	Risk Factors for Primary Clostridium difficile Infection; Results From the Observational Study of Risk Factors for Clostridium difficile Infection in Hospitalized Patients With Infective Diarrhea (ORCHID). Frontiers in Public Health, 2020, 8, 293.	1.3	32
22	Occurrence of Clostridium difficile PCR-ribotype 027 and it's closely related PCR-ribotype 176 in hospitals in Poland in 2008–2010. Anaerobe, 2014, 28, 13-17.	1.0	29
23	Clostridium difficile infection in newly diagnosed pediatric patients with inflammatory bowel disease: Prevalence and risk factors. Inflammatory Bowel Diseases, 2012, 18, 844-848.	0.9	28
24	Enterotoxigenic Clostridium perfringens infection and pediatric patients with inflammatory bowel disease. Journal of Crohn's and Colitis, 2014, 8, 276-281.	0.6	28
25	Detection of binary-toxin genes (cdtA and cdtB) among Clostridium difficile strains isolated from patients with C. difficile-associated diarrhoea (CDAD) in Poland. Journal of Medical Microbiology, 2005, 54, 143-147.	0.7	27
26	Fructooligosaccharides and mannose affect Clostridium difficile adhesion and biofilm formation in a concentration-dependent manner. European Journal of Clinical Microbiology and Infectious Diseases, 2019, 38, 1975-1984.	1.3	24
27	Mortality Following Clostridioides difficile Infection in Europe: A Retrospective Multicenter Case-Control Study. Antibiotics, 2021, 10, 299.	1.5	23
28	Characterization and antimicrobial susceptibility of Clostridium difficile strains isolated from adult patients with diarrhoea hospitalized in two university hospitals in Poland, 2004–2006. Journal of Medical Microbiology, 2011, 60, 1200-1205.	0.7	22
29	Clonal Spread of a Clostridium difficile Strain with a Complete Set of Toxin A, Toxin B, and Binary Toxin Genes among Polish Patients with Clostridium difficile -Associated Diarrhea. Journal of Clinical Microbiology, 2005, 43, 472-475.	1.8	18
30	Prevalence of Clostridium difficile infection in hospitalized patients with diarrhoea: Results of a Polish multicenter, prospective, biannual point-prevalence study. Advances in Medical Sciences, 2018, 63, 290-295.	0.9	18
31	The effect of berberine chloride and/or its combination with vancomycin on the growth, biofilm formation, and motility of Clostridioides difficile. European Journal of Clinical Microbiology and Infectious Diseases, 2020, 39, 1391-1399.	1.3	18
32	Recent Emergence of an Epidemic Clindamycin-Resistant Clone of Clostridium difficile among Polish Patients with C. difficile -Associated Diarrhea. Journal of Clinical Microbiology, 2003, 41, 4184-4187.	1.8	17
33	Toxin Profiles and Resistances to Macrolides and Newer Fluoroquinolones as Epidemicity Determinants of Clinical Isolates of Clostridium difficile from Warsaw, Poland. Journal of Clinical Microbiology, 2007, 45, 1607-1610.	1.8	15
34	Metronidazole or Rifaximin for Treatment of Clostridium difficile in Pediatric Patients with Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2017, 23, 2209-2214.	0.9	15
35	Laboratory diagnosis of antibiotic-associated diarrhea: a Polish pilot study into the clinical relevance of Clostridium difficile and Clostridium perfringens toxins. Diagnostic Microbiology and Infectious Disease, 2007, 58, 71-75.	0.8	14
36	First isolation of Clostridium difficile PCR-ribotype 027/toxinotype III in Poland. Polish Journal of Microbiology, 2008, 57, 267-8.	0.6	12

ΗΑΝΝΑ Μ ΡΙΤUCH

#	Article	IF	CITATIONS
37	Variable flagella expression among clonal toxin Aâ^'/B+ Clostridium difficile strains with highly homogeneous flagellin genes. Clinical Microbiology and Infection, 2002, 8, 187-188.	2.8	11
38	First Polish outbreak of Clostridium difficile ribotype 027 infections among dialysis patients. European Journal of Clinical Microbiology and Infectious Diseases, 2015, 34, 63-67.	1.3	10
39	Clostridium difficile and enterotoxigenic Bacteroides fragilis strains isolated from patients with antibiotic associated diarrhoea. Anaerobe, 2003, 9, 161-163.	1.0	9
40	A survey of metronidazole and vancomycin resistance in strains of Clostridium difficile isolated in Warsaw, Poland. Anaerobe, 2005, 11, 197-199.	1.0	9
41	Clindamycin-resistant, toxin A-negative, toxin B-positive Clostridium difficile strains cause antibiotic-associated diarrhea among children hospitalized in a hematology unit. Clinical Microbiology and Infection, 2003, 9, 903-904.	2.8	8
42	Effect of prebiotics on <i>Bacteroides</i> sp. adhesion and biofilm formation and synbiotic effect on <i>Clostridioides difficile</i> . Future Microbiology, 2022, 17, 363-375.	1.0	8
43	The prebiotic effect of human milk oligosaccharides 3′- and 6′-sialyllactose on adhesion and biofilm formation by Clostridioides difficile – pilot study. Microbes and Infection, 2022, 24, 104929.	1.0	7
44	Are Rapid Immunoassays for in vivo Detection of Toxin A Sufficient for Diagnostic Purposes of Clostridium difficile -Associated Diseases?. Anaerobe, 2000, 6, 15-19.	1.0	6
45	Clostridium difficile Infection in Children with Inflammatory Bowel Disease: Current Evidence. Current Pharmaceutical Design, 2014, 20, 4549-4555.	0.9	6
46	Motility and the genotype diversity of the flagellin genes fliC and fliD among Clostridioides difficile ribotypes. Anaerobe, 2022, 73, 102476.	1.0	5
47	Characterization of Clostridium perfringens strains isolated from Polish patients with suspected antibiotic-associated diarrhea. Medical Science Monitor, 2002, 8, BR85-8.	0.5	4
48	Enterotoxin-producing Bacteroides fragilis (ETBF) Strains in Stool Samples Submitted for Testing ofClostridium difficile and its Toxins. Anaerobe, 1999, 5, 217-219.	1.0	3
49	Prevalence of Clostridium difficile infection in Polish pediatric patients with inflammatory bowel disease. Inflammatory Bowel Diseases, 2010, 16, 554.	0.9	2
50	Evaluation of the biomed bacteroides IF kit for identification ofBacteroides fragilis group strains. European Journal of Clinical Microbiology and Infectious Diseases, 1986, 5, 464-465.	1.3	1
51	Inhibition of Quinolone- and Multi-Drug-Resistant Clostridioides Difficile Strains by Multi Strain Synbiotics—An Option for Diarrhea Management in Nursing Facilities. International Journal of Environmental Research and Public Health, 2021, 18, 5871.	1.2	1
52	The level of fecal calprotectin significantly correlates with Clostridium difficile infection severity. Folia Medica Cracoviensia, 2019, 59, 53-65.	0.3	1
53	P1056 Emergence of a new epidemic Clostridium difficile strain (ribotype 017) resistant to newer fluoroquinolones in Poland. International Journal of Antimicrobial Agents, 2007, 29, S283.	1.1	0