
Tomoya Shibayama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3519764/publications.pdf Version: 2024-02-01

ΤΟΜΟΥΛ SHIRAVAMA

#	Article	IF	CITATIONS
1	Future typhoon and storm surges under different global warming scenarios: case study of typhoon Haiyan (2013). Natural Hazards, 2016, 82, 1645-1681.	1.6	62
2	Assessment of Future Stability of Breakwaters Under Climate Change. Coastal Engineering Journal, 2011, 53, 21-39.	0.7	61
3	Storm surge and evacuation in urban areas during the peak of a storm. Coastal Engineering, 2016, 108, 1-9.	1.7	51
4	Field survey and evacuation behaviour during the 2018 Sunda Strait tsunami. Coastal Engineering Journal, 2019, 61, 423-443.	0.7	50
5	Failure Mechanisms and Local Scour at Coastal Structures Induced by Tsunami. Coastal Engineering Journal, 2016, 58, 1640017-1-1640017-38.	0.7	39
6	Estimation of increase in storm surge damage due to climate change and sea level rise in the Greater Tokyo area. Natural Hazards, 2016, 80, 539-565.	1.6	32
7	Field Survey of 2018 Typhoon Jebi in Japan: Lessons for Disaster Risk Management. Geosciences (Switzerland), 2018, 8, 412.	1.0	29
8	A method for tsunami risk assessment: a case study for Kamakura, Japan. Natural Hazards, 2017, 88, 1451-1472.	1.6	26
9	The 2018 Sulawesi tsunami in Palu city as a result of several landslides and coseismic tsunamis. Coastal Engineering Journal, 2020, 62, 445-459.	0.7	26
10	Post-event survey of locally concentrated disaster due to 2019 Typhoon Faxai along the western shore of Tokyo Bay, Japan. Coastal Engineering Journal, 2020, 62, 146-158.	0.7	26
11	Debris transport over a sloped surface in tsunami-like flow conditions. Coastal Engineering Journal, 2019, 61, 241-255.	0.7	23
12	Entrainment and Transport Dynamics of Shipping Containers in Extreme Hydrodynamic Conditions. Coastal Engineering Journal, 2017, 59, 1750011-1-1750011-30.	0.7	21
13	The economic impact of future increase in tropical cyclones in Japan. Natural Hazards, 2010, 55, 233-250.	1.6	19
14	Pseudo-climate modelling study on projected changes in extreme extratropical cyclones, storm waves and surges under CMIP5 multi-model ensemble: Baltic Sea perspective. Natural Hazards, 2020, 102, 67-99.	1.6	17
15	Effect of Submarine Canyons on Tsunami Propagation: A Case Study of the Biobio Canyon, Chile. Coastal Engineering Journal, 2013, 55, 1350016-1-1350016-23.	0.7	16
16	Physical modeling of tsunamis generated by subaerial, partially submerged, and submarine landslides. Coastal Engineering Journal, 2020, 62, 582-601.	0.7	15
17	Effect of a global warming-induced increase in typhoon intensity on urban productivity in Taiwan. Sustainability Science, 2009, 4, 151-163.	2.5	14
18	Simulations of future typhoons and storm surges around Tokyo Bay using IPCC AR5 RCP 8.5 scenario in multi global climate models. Coastal Engineering Journal, 2020, 62, 101-127.	0.7	12

Τομούα Shibayama

#	Article	IF	CITATIONS
19	Engineering Lessons from September 28, 2018 Indonesian Tsunami: Scouring Mechanisms and Effects on Infrastructure. Journal of Waterway, Port, Coastal and Ocean Engineering, 2021, 147, .	0.5	12
20	Estimation of Maximum Possible Wave Heights in Surf Zone. Coastal Engineering Journal, 2015, 57, 1550001-1-1550001-19.	0.7	8
21	Influence of Edge Waves on Tsunami Characteristics along Kujukuri Beach, Japan. Journal of Waterway, Port, Coastal and Ocean Engineering, 2021, 147, 04020049.	0.5	8
22	A Cross-Shore Beach Profile Evolution Model. Coastal Engineering Journal, 2014, 56, 1450020-1-1450020-70.	0.7	6
23	Experimental and numerical investigation on tsunami run-up flow around coastal buildings. Coastal Engineering Journal, 2021, 63, 485-503.	0.7	6
24	Spectral analysis of irregular waves in wave–mud and wave–current–mud interactions. Ocean Dynamics, 2015, 65, 1305-1320.	0.9	5
25	A semi-empirical formula for calculating the breaking depth of plunging waves. Coastal Engineering Journal, 2019, 61, 199-209.	0.7	5
26	Comparative Analysis of Triggers for Evacuation during Recent Tsunami Events. Natural Hazards Review, 2020, 21, 04020022.	0.8	5
27	Analysis of PV Subsidy Schemes, Installed Capacity and Their Electricity Generation in Japan. Energies, 2021, 14, 2128.	1.6	5
28	Influence of road blockage on tsunami evacuation: A comparative study of three different coastal cities in Japan. International Journal of Disaster Risk Reduction, 2022, 68, 102684.	1.8	5
29	Threeâ€Dimensional Physical Modeling of Tsunamis Generated by Partially Submerged Landslides. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	5
30	Energy Dissipation Model for Computing Transformation of Spectral Significant Wave Height. Coastal Engineering Journal, 2010, 52, 305-330.	0.7	4
31	A two-dimensional experimental-numerical approach to investigate wave transformation over muddy beds. Ocean Dynamics, 2015, 65, 295-310.	0.9	4
32	Examination of the Suspended Sediment Concentration Formulae Using Full-Scale Rippled Bed and Sheet-Flow Data. Coastal Engineering Journal, 2011, 53, 451-489.	0.7	3
33	Field Surveys of Recent Storm Surge Disasters. Procedia Engineering, 2015, 116, 179-186.	1.2	3
34	Simulated effectiveness of coastal forests on reduction in loss of lives from a tsunami. International Journal of Disaster Risk Reduction, 2022, 74, 102954.	1.8	3
35	The mechanism of fluidization in mud beds under progressive waves. Coastal Engineering Journal, 2021, 63, 32-51.	0.7	2
36	Effect of translate speed of typhoon on wind waves. Natural Hazards, 2021, 105, 841-858.	1.6	2

Τομούα Shibayama

#	Article	IF	CITATIONS
37	Verification and Extension of Goda Formulas for Computing Representative Wave Heights Transformation. Coastal Engineering Journal, 2013, 55, 1350009-1-1350009-23.	0.7	1
38	Numerical Analysis of Seismic Water Level Oscillations in Canals. Journal of Waterway, Port, Coastal and Ocean Engineering, 2020, 146, 04020042.	0.5	1
39	Estimation of volcanic ashfall deposit and removal works based on ash dispersion simulations. Natural Hazards, 2020, 103, 3377-3399.	1.6	1
40	Evaluation of force exerted by tetrapods displaced by tsunami on caisson breakwater return wall. Coastal Engineering Journal, 2020, 62, 170-181.	0.7	1
41	Experimental and numerical investigation of tsunami behavior around two upright sea dikes with different heights. Coastal Engineering Journal, 2021, 63, 1-16.	0.7	1
42	Increase in overtopping rate caused by local gust-winds during the passage of a typhoon. Coastal Engineering Journal, 2022, 64, 116-134.	0.7	1
43	Simulated flood forces on a building due to the storm surge by Typhoon Haiyan. Coastal Engineering Journal, 0, , 1-18.	0.7	1
44	Experimental and Numerical Modeling of a Tide Embankment Section Subjected to Storm Surge in Tacloban City, Philippines. Natural Hazards Review, 2022, 23, .	0.8	1