Kazi Sajedur Rahman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3519206/publications.pdf

Version: 2024-02-01

		394421	3	361022	
55	1,344	19		35	
papers	citations	h-index		g-index	
55	55	55		1143	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	An overview of solar photovoltaic panels' end-of-life material recycling. Energy Strategy Reviews, 2020, 27, 100431.	7.3	328
2	Current trends and prospects of tidal energy technology. Environment, Development and Sustainability, 2021, 23, 8179-8194.	5.0	95
3	A comprehensive defect study of tungsten disulfide (WS2) as electron transport layer in perovskite solar cells by numerical simulation. Results in Physics, 2019, 12, 1097-1103.	4.1	90
4	A Comparative Performance Analysis of ANN Algorithms for MPPT Energy Harvesting in Solar PV System. IEEE Access, 2021, 9, 102137-102152.	4.2	60
5	Fabrication of high efficiency sputtered CdS:O/CdTe thin film solar cells from window/absorber layer growth optimization in magnetron sputtering. Solar Energy Materials and Solar Cells, 2017, 172, 384-393.	6.2	47
6	Effect of oxidation on structural, optical and electrical properties of CdS thin films grown by sputtering. Optik, 2015, 126, 3177-3180.	2.9	46
7	Prospective Efficient Ambient Energy Harvesting Sources for IoT-Equipped Sensor Applications. Electronics (Switzerland), 2020, 9, 1345.	3.1	45
8	Design prospects of cadmium telluride/silicon (CdTe/Si) tandem solar cells from numerical simulation. Optik, 2017, 139, 397-406.	2.9	41
9	Influence of deposition time in CdTe thin film properties grown by Close-Spaced Sublimation (CSS) for photovoltaic application. Results in Physics, 2019, 14, 102371.	4.1	38
10	Impact of CdTe thin film thickness in ZnxCd1â^'xS/CdTe solar cell by RF sputtering. Solar Energy, 2019, 180, 559-566.	6.1	37
11	Physical and electrical properties of molybdenum thin films grown by DC magnetron sputtering for photovoltaic application. Results in Physics, 2019, 14, 102515.	4.1	32
12	Growth optimization of ZnxCd1-xS films on ITO and FTO coated glass for alternative buffer application in CdTe thin film solar cells. Optical Materials, 2018, 86, 270-277.	3.6	29
13	Recovery of FTO coated glass substrate $\langle i \rangle via \langle i \rangle$ environment-friendly facile recycling perovskite solar cells. RSC Advances, 2021, 11, 14534-14541.	3.6	27
14	Effect of laser annealing on thermally evaporated CdTe thin films for photovoltaic absorber application. Solar Energy, 2018, 173, 1051-1057.	6.1	25
15	Impact of high resistivity transparent (HRT) layer in cadmium telluride solar cells from numerical simulation. Journal of Renewable and Sustainable Energy, 2020, 12, .	2.0	24
16	An Adaptive TE-PV Hybrid Energy Harvesting System for Self-Powered IoT Sensor Applications. Sensors, 2021, 21, 2604.	3.8	24
17	High mobility and transparent ZTO ETM prepared by RF reactive co-sputtering for perovskite solar cell application. Results in Physics, 2019, 14, 102518.	4.1	22
18	Self-Sustained Autonomous Wireless Sensor Network with Integrated Solar Photovoltaic System for Internet of Smart Home-Building (IoSHB) Applications. Micromachines, 2021, 12, 653.	2.9	22

#	Article	IF	CITATIONS
19	loT-Enabled High Efficiency Smart Solar Charge Controller with Maximum Power Point Tracking—Design, Hardware Implementation and Performance Testing. Electronics (Switzerland), 2020, 9, 1267.	3.1	21
20	A comparative study of CdS thin films grown on ultra-thin glass substrates by RF magnetron sputtering and chemical bath deposition. Materials Science in Semiconductor Processing, 2021, 133, 105935.	4.0	21
21	Annealing temperature assisted microstructural and optoelectrical properties of CdSe thin film grown by RF magnetron sputtering. Superlattices and Microstructures, 2020, 148, 106716.	3.1	20
22	Temperature difference in close-spaced sublimation (CSS) growth of CdTe thin film on ultra-thin glass substrate. Results in Physics, 2020, 18, 103213.	4.1	20
23	Properties of sputtered ZnS thin films for photovoltaic application. Materials Research Express, 2018, 5, 096409.	1.6	17
24	The Role of Deposition Temperature in the Photovoltaic Properties of RF-Sputtered CdSe Thin Films. Crystals, 2021, 11, 73.	2.2	16
25	Growth of MoO x nanobelts from molybdenum bi-layer thin films for thin film solar cell application. Thin Solid Films, 2017, 621, 240-246.	1.8	15
26	An approach to alternative post-deposition treatment in CdTe thin films for solar cell application. Superlattices and Microstructures, 2020, 147, 106687.	3.1	15
27	A comparative study on thermally and laser annealed copper and silver doped CdTe thin film solar cells. Solar Energy, 2018, 173, 1-6.	6.1	14
28	An investigation on CdS1-xTex interface compound in CdS/CdTe hetero-junction solar cells by density functional theory (DFT). Superlattices and Microstructures, 2021, 151, 106805.	3.1	14
29	A computational study on the energy bandgap engineering in performance enhancement of CdTe thin film solar cells. Results in Physics, 2017, 7, 1066-1072.	4.1	13
30	Design optimization of CdTe/Si tandem solar cell using different transparent conducting oxides as interconnecting layers. Journal of Alloys and Compounds, 2021, 870, 159351.	5.5	12
31	Prospects of Zinc Sulphide as an alternative buffer layer for CZTS solar cells from numerical analysis. , 2014, , .		11
32	Solar powered ferry boat for the rural area of Bangladesh. , 2016, , .		11
33	Solar Photovoltaic Technologies: From Inception Toward the Most Reliable Energy Resource. , 2017, , 11-26.		11
34	A comprehensive comparative study of CdTe thin films grown on ultra-thin glass substrates by close-spaced sublimation and RF magnetron sputtering. Materials Letters, 2021, 293, 129655.	2.6	11
35	Microstructural evolution of oxygen incorporated CdTe thin films deposited by close-spaced sublimation. Materials Letters, 2022, 306, 130552.	2.6	10
36	Design optimization of CdTe thin film solar cells from numerical analysis. , 2014, , .		9

3

#	Article	IF	CITATIONS
37	Effects of growth temperatures on the structural and optoelectronic properties of sputtered zinc sulfide thin films for solar cell applications. Optical and Quantum Electronics, 2019, 51, 1.	3.3	8
38	Effect of Sn Doping on the Properties of Nano-Structured ZnO Thin Films Deposited by Co-Sputtering Technique. Journal of Nanoscience and Nanotechnology, 2015, 15, 9184-9191.	0.9	7
39	A Numerical Investigation on the Combined Effects of MoSe2 Interface Layer and Graded Bandgap Absorber in CIGS Thin Film Solar Cells. Coatings, 2021, 11, 930.	2.6	7
40	Effect of p-type transition metal dichalcogenide molybdenum ditelluride (p-MoTe <inf>2</inf>) layer formation in Cadmium Telluride solar cells from numerical analysis. , 2013, , .		4
41	Closeâ€Spaced Sublimation (CSS): A Lowâ€Cost, Highâ€Yield Deposition System for Cadmium Telluride (CdTe) Thin Film Solar Cells. , 0, , .		4
42	A comparative study on ZnS thin films grown by thermal evaporation and magnetron sputtering. , 2013, , .		3
43	An investigation on copper doping to CdTe absorber layers in CdTe thin film solar cells. , 2016, , .		3
44	Electrical Properties of CSS Deposited CdTe Thin Films for Solar Cell Applications. , 2019, , .		3
45	Impact of Back Surface Field (BSF) Layers in Cadmium Telluride (CdTe) Solar Cells from Numerical Calculation. International Journal of Recent Technology and Engineering, 2019, 8, 6218-6222.	0.2	3
46	Influence of RF Power in the Growth of Aluminium Zinc Oxide (AZO) Thin Films by RF Sputtering. Advanced Materials Research, 0, 925, 295-299.	0.3	2
47	Nanostructured and wide bandgap CdS:O thin films grown by reactive RF sputtering. AIP Conference Proceedings, 2015, , .	0.4	2
48	Effect of growth techniques on the properties of CdTe thin films for photovoltaic application. , 2013, , .		1
49	Influence of laser wavelength variation on the laser annealed CdTe thin films grown by thermal evaporation. , 2015 , , .		1
50	Effect of Cd1â^'xZnxS Window Layer Incorporation in CdTe Solar Cell by Numerical Simulation. , 2019, , .		1
51	The Role of CdS:O/CdS Bilayer in the Formation of CdS1-xTex Intermixed Layer in CdTe Absorber. , 2020, , .		1
52	Cadmium telluride (CdTe) thin film solar cells. , 2022, , 65-83.		1
53	Investigation of the annealing time effects on Cu deposited CdTe thin films for photovoltaic application. , $2015, \ldots$		O
54	Structural properties of bi-layer Molybdenum Thin-film deposited by RF magnetron sputtering for CZTS solar cells. , 2019, , .		0

 #	Article	IF	CITATIONS
55	A Light Weight Solar Powered Mini Quadcopter for Environmental Monitoring. International Journal of Engineering and Advanced Technology, 2019, 9, 4190-4194.	0.3	O