Jonathan J Lyons

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3519050/publications.pdf

Version: 2024-02-01

186265 133252 3,710 65 28 59 citations g-index h-index papers 68 68 68 4784 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nature Genetics, 2016, 48, 67-73.	21.4	513
2	Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood, 2015, 125, 591-599.	1.4	436
3	Elevated basal serum tryptase identifies a multisystem disorder associated with increased TPSAB1 copy number. Nature Genetics, 2016, 48, 1564-1569.	21.4	279
4	Autosomal recessive phosphoglucomutase 3 (PGM3) mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment. Journal of Allergy and Clinical Immunology, 2014, 133, 1400-1409.e5.	2.9	193
5	Germline hypomorphic CARD11 mutations in severe atopic disease. Nature Genetics, 2017, 49, 1192-1201.	21.4	174
6	Atopic Dermatitis in Children. Immunology and Allergy Clinics of North America, 2015, 35, 161-183.	1.9	173
7	Heritable risk for severe anaphylaxis associated with increased α-tryptase–encoding germline copy number at TPSAB1. Journal of Allergy and Clinical Immunology, 2021, 147, 622-632.	2.9	137
8	Updated Diagnostic Criteria and Classification of Mast Cell Disorders: A Consensus Proposal. HemaSphere, 2021, 5, e646.	2.7	128
9	Prospective phenotyping of NGLY1-CDDG, the first congenital disorder of deglycosylation. Genetics in Medicine, 2017, 19, 160-168.	2.4	124
10	Hereditary Alpha Tryptasemia. Immunology and Allergy Clinics of North America, 2018, 38, 483-495.	1.9	116
11	Mendelian inheritance of elevated serum tryptase associated with atopy and connective tissue abnormalities. Journal of Allergy and Clinical Immunology, 2014, 133, 1471-1474.	2.9	110
12	Why the 20% + 2 Tryptase Formula Is a Diagnostic Gold Standard for Severe Systemic Mast Cell Activation and Mast Cell Activation Syndrome. International Archives of Allergy and Immunology, 2019, 180, 44-51.	2.1	87
13	Impact of naturally forming human $\hat{l}\pm/\hat{l}^2$ -tryptase heterotetramers in the pathogenesis of hereditary $\hat{l}\pm$ -tryptasemia. Journal of Experimental Medicine, 2019, 216, 2348-2361.	8.5	85
14	Primary atopic disorders. Journal of Experimental Medicine, 2018, 215, 1009-1022.	8.5	74
15	ERBIN deficiency links STAT3 and TGF-Î ² pathway defects with atopy in humans. Journal of Experimental Medicine, 2017, 214, 669-680.	8.5	70
16	First Identification of an Inherited TPSAB1 Quintuplication in a Patient with Clonal Mast Cell Disease. Journal of Clinical Immunology, 2018, 38, 457-459.	3.8	58
17	Glycans Instructing Immunity: The Emerging Role of Altered Glycosylation in Clinical Immunology. Frontiers in Pediatrics, 2015, 3, 54.	1.9	56
18	Diminution of signal transducer and activator of transcription 3 signaling inhibits vascular permeability and anaphylaxis. Journal of Allergy and Clinical Immunology, 2016, 138, 187-199.	2.9	56

#	Article	IF	CITATIONS
19	Distinct Cutaneous Manifestations and Cold-Induced Leukocyte Activation Associated With <i>PLCG2 < /i>Mutations. JAMA Dermatology, 2015, 151, 627.</i>	4.1	55
20	PD-L1 up-regulation restrains Th17 cell differentiation in <i>STAT3</i> loss- and <i>STAT1</i> gain-of-function patients. Journal of Experimental Medicine, 2017, 214, 2523-2533.	8.5	55
21	FOXP3+ Tregs require WASP to restrain Th2-mediated food allergy. Journal of Clinical Investigation, 2016, 126, 4030-4044.	8.2	53
22	The Genetic Basis and Clinical Impact of Hereditary Alpha-Tryptasemia. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 2235-2242.	3.8	38
23	Defining baseline variability of serum tryptase levels improves accuracy in identifying anaphylaxis. Journal of Allergy and Clinical Immunology, 2022, 149, 1010-1017.e10.	2.9	38
24	Patients with mast cell activation symptoms and elevated baseline serum tryptase level have unique bone marrow morphology. Journal of Allergy and Clinical Immunology, 2021, 147, 1497-1501.e1.	2.9	34
25	Selecting the Right Criteria and Proper Classification to Diagnose Mast Cell Activation Syndromes: A Critical Review. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 3918-3928.	3.8	33
26	Food allergies can persist after myeloablative hematopoietic stem cell transplantation in dedicator of cytokinesis 8–deficient patients. Journal of Allergy and Clinical Immunology, 2016, 137, 1895-1898.e5.	2.9	30
27	Hymenoptera venom-induced anaphylaxis and hereditary alpha-tryptasemia. Current Opinion in Allergy and Clinical Immunology, 2020, 20, 431-437.	2.3	30
28	Clinical relevance of inherited genetic differences in human tryptases. Annals of Allergy, Asthma and Immunology, 2021, 127, 638-647.	1.0	30
29	<i>SASH3</i> variants cause a novel form of X-linked combined immunodeficiency with immune dysregulation. Blood, 2021, 138, 1019-1033.	1.4	28
30	Routine KIT p.D816V screening identifies clonal mast cell disease in patients with Hymenoptera allergy regularly missed using baseline tryptase levels alone. Journal of Allergy and Clinical Immunology, 2021, 148, 621-626.e7.	2.9	27
31	Mast cell tryptases in allergic inflammation and immediate hypersensitivity. Current Opinion in Immunology, 2021, 72, 94-106.	5.5	26
32	Inherited and acquired determinants of serum tryptase levels in humans. Annals of Allergy, Asthma and Immunology, 2021, 127, 420-426.	1.0	26
33	A common haplotype containing functional CACNA1H variants is frequently coinherited with increased TPSAB1 copy number. Genetics in Medicine, 2018, 20, 503-512.	2.4	25
34	Distinct Small Intestine Mast Cell Histologic Changes in Patients With Hereditary Alpha-tryptasemia and Mast Cell Activation Syndrome. American Journal of Surgical Pathology, 2021, 45, 997-1004.	3.7	24
35	GATA-2–deficient mast cells limit IgE-mediated immediate hypersensitivity reactions in human subjects. Journal of Allergy and Clinical Immunology, 2019, 144, 613-617.e14.	2.9	21
36	Clinical Impact of Inherited and Acquired Genetic Variants in Mastocytosis. International Journal of Molecular Sciences, 2021, 22, 411.	4.1	21

#	Article	lF	CITATIONS
37	Hereditary Alpha-Tryptasemia: a Commonly Inherited Modifier of Anaphylaxis. Current Allergy and Asthma Reports, 2021, 21, 33.	5.3	19
38	Usefulness of testing for hereditary alpha tryptasemia in symptomatic patients with elevated tryptase. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 2066-2067.	3.8	19
39	Elevated Basal Serum Tryptase: Disease Distribution and Variability in a Regional Health System. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 2424-2435.e5.	3.8	19
40	Mast cell activation in the context of elevated basal serum tryptase: genetics and presentations. Current Allergy and Asthma Reports, 2019, 19, 55.	5.3	18
41	Clinical response to omalizumab in patients with hereditary α-tryptasemia. Annals of Allergy, Asthma and Immunology, 2020, 124, 99-100.e1.	1.0	18
42	Small intestinal immunopathology and GI-associated antibody formation in hereditary alpha-tryptasemia. Journal of Allergy and Clinical Immunology, 2021, 148, 813-821.e7.	2.9	17
43	Incorporating Tryptase Genotyping Into the Workup and Diagnosis of Mast Cell Diseases and Reactions. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 1964-1973.	3.8	17
44	Targeting Mast Cells with Biologics. Immunology and Allergy Clinics of North America, 2020, 40, 667-685.	1.9	14
45	Persistent tryptase elevation in a patient with Gaucher disease. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 697-699.	3.8	13
46	The clinical and mechanistic intersection of primary atopic disorders and inborn errors of growth and metabolism. Immunological Reviews, 2019, 287, 135-144.	6.0	12
47	Systemic hypersensitivity reaction mimicking anaphylaxis after first filgrastim administration in a healthy donor. Transfusion, 2013, 53, 1146-1147.	1.6	10
48	Detection of phosphoglucomutase-3 deficiency by lectin-based flow cytometry. Journal of Allergy and Clinical Immunology, 2017, 140, 291-294.e4.	2.9	10
49	On the complexities of tryptase geneticsÂand impact on clinical phenotypes. Journal of Allergy and Clinical Immunology, 2021, 148, 1342-1343.	2.9	9
50	Novel <i>PGM3</i> compound heterozygous variants with IgEâ€related dermatitis, lymphopenia, without syndromic features. Pediatric Allergy and Immunology, 2021, 32, 566-575.	2.6	6
51	Assessment of Osteoporosis and Fracture Risk in Mastocytosis within a North American Cohort. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 4459-4467.e10.	3.8	6
52	Resolving the genetics of human tryptases: implications for health, disease, and clinical use as a biomarker. Current Opinion in Allergy and Clinical Immunology, 2022, 22, 143-152.	2.3	6
53	Skewed Lymphocyte Subpopulations and Associated Phenotypes in Patients with Mastocytosis. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 292-301.e2.	3.8	5
54	Compound Heterozygous PGM3 Mutations in a Thai Patient with a Specific Antibody Deficiency Requiring Monthly IVIG Infusions. Journal of Clinical Immunology, 2020, 40, 227-231.	3.8	4

#	Article	IF	CITATIONS
55	Hereditary alpha-tryptasemia despite normal tryptase-encoding gene copy number owing to copy number loss in trans. Annals of Allergy, Asthma and Immunology, 2022, 128, 460-461.	1.0	4
56	Clinical Approach to a Patient with Elevated Serum Tryptase: Implications of Acute Versus Basally Elevated Levels., 2020,, 35-54.		3
57	GATA3 haploinsufficiency does not block allergic sensitization or atopic disease. Journal of Allergy and Clinical Immunology, 2016, 137, 627-629.e2.	2.9	2
58	Tu1385 Functional Gastrointestinal Disorders in Families With Basal Elevated Serum Tryptase. Gastroenterology, 2015, 148, S-876.	1.3	1
59	TPSAB1 Genotype and Effects of Pro-Tryptases on Human Mast Cell-Associated Disorders. Journal of Allergy and Clinical Immunology, 2017, 139, AB376.	2.9	1
60	Editorial: Stressing out mast cells via CRF 1. Journal of Leukocyte Biology, 2017, 102, 1284-1285.	3.3	1
61	Hereditary alpha-tryptasemia modifies clinical phenotypes among individuals with congenital hypermobility disorders. Human Genetics and Genomics Advances, 2022, 3, 100094.	1.7	1
62	Mendelian Inheritance Of Elevated Tryptase Associated With Atopy and Connective Tissue Abnormalities. Journal of Allergy and Clinical Immunology, 2014, 133, AB165.	2.9	0
63	Convergence of Clinical and Cellular Phenotypes Among Patients with STAT3 and ERBB2IP Mutations. Journal of Allergy and Clinical Immunology, 2015, 135, AB152.	2.9	O
64	TGF- \hat{l}^2 pathway activation primes na \tilde{A} -ve lymphocytes to support atopic phenotypes in humans. Journal of Allergy and Clinical Immunology, 2017, 139, AB93.	2.9	0
65	Angioedema and High Tryptase: To Marrow or Not to Marrow?. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 752.	3.8	O