
Luis E Escobar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/351896/publications.pdf Version: 2024-02-01

LUIS F ESCORAD

#	Article	IF	CITATIONS
1	Sustaining Transmission in Different Host Species: The Emblematic Case of <i>Sarcoptes scabiei</i> . BioScience, 2022, 72, 166-176.	2.2	16
2	Sarcoptic mange: An emerging panzootic in wildlife. Transboundary and Emerging Diseases, 2022, 69, 927-942.	1.3	56
3	Current Zoology Reconstructing landscapes of ungulate parturition and predation using vegetation phenology. Environmental Epigenetics, 2022, 68, 275-283.	0.9	4
4	A database of common vampire bat reports. Scientific Data, 2022, 9, 57.	2.4	7
5	Tracking the impacts of climate change on human health via indicators: lessons from the Lancet Countdown. BMC Public Health, 2022, 22, 663.	1.2	20
6	A Cross Sectional Sampling Reveals Novel Coronaviruses in Bat Populations of Georgia. Viruses, 2022, 14, 72.	1.5	3
7	The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises. Lancet, The, 2021, 397, 129-170.	6.3	1,030
8	Network connectivity of Minnesota waterbodies and implications for aquatic invasive species prevention. Biological Invasions, 2021, 23, 3231-3242.	1.2	11
9	A Landscape Epidemiological Approach for Predicting Chronic Wasting Disease: A Case Study in Virginia, US. Frontiers in Veterinary Science, 2021, 8, 698767.	0.9	2
10	Use of partial N-gene sequences as a tool to monitor progress on rabies control and elimination efforts in Ethiopia. Acta Tropica, 2021, 221, 106022.	0.9	5
11	Editorial: Disease Ecology and Biogeography. Frontiers in Veterinary Science, 2021, 8, 765825.	0.9	2
12	A database of global coastal conditions. Scientific Data, 2021, 8, 304.	2.4	2
13	Spatial compartmentalization: A nonlethal predator mechanism to reduce parasite transmission between prey species. Science Advances, 2021, 7, eabj5944.	4.7	10
14	The ecology of chronic wasting disease in wildlife. Biological Reviews, 2020, 95, 393-408.	4.7	38
15	Ecological Niche Modeling: An Introduction for Veterinarians and Epidemiologists. Frontiers in Veterinary Science, 2020, 7, 519059.	0.9	33
16	Tracking infectious diseases in a warming world. BMJ, The, 2020, 371, m3086.	3.0	5
17	Linking Mosquito Ecology, Traits, Behavior, and Disease Transmission. Trends in Parasitology, 2020, 36, 393-403.	1.5	30
18	BCG vaccine protection from severe coronavirus disease 2019 (COVID-19). Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17720-17726.	3.3	368

LUIS E ESCOBAR

#	Article	IF	CITATIONS
19	An assessment of the niche centroid hypothesis: Pteropus lylei (Chiroptera). Ecosphere, 2020, 11, e03134.	1.0	5
20	Perspective: Climate Change and the Relocation of Indonesia's Capital to Borneo. Frontiers in Earth Science, 2020, 8, .	0.8	17
21	Using host traits to predict reservoir host species of rabies virus. PLoS Neglected Tropical Diseases, 2020, 14, e0008940.	1.3	29
22	An evaluation of transferability of ecological niche models. Ecography, 2019, 42, 521-534.	2.1	97
23	Spatial distribution and spread potential of sixteen <i>Leptospira</i> serovars in a subtropical region of Brazil. Transboundary and Emerging Diseases, 2019, 66, 2482-2495.	1.3	14
24	Mapping parasite transmission risk from white-tailed deer to a declining moose population. European Journal of Wildlife Research, 2019, 65, 1.	0.7	13
25	The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. Lancet, The, 2019, 394, 1836-1878.	6.3	905
26	An Ecological Framework for Modeling the Geography of Disease Transmission. Trends in Ecology and Evolution, 2019, 34, 655-668.	4.2	87
27	Alternative reproductive adaptations predict asymmetric responses to climate change in lizards. Scientific Reports, 2019, 9, 5093.	1.6	13
28	Retrospective and Predictive Investigation of Fish Kill Events. Journal of Aquatic Animal Health, 2019, 31, 61-70.	0.6	8
29	Papillomavirus in Wildlife. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	10
30	Network analysis to inform invasive species spread among lakes. Journal of Oceanology and Limnology, 2019, 37, 1037-1041.	0.6	2
31	Open access solutions for biodiversity journals: Do not replace one problem with another. Diversity and Distributions, 2019, 25, 5-8.	1.9	19
32	Ecological niche modeling reâ€examined: A case study with the Darwin's fox. Ecology and Evolution, 2018, 8, 4757-4770.	0.8	50
33	Aquatic Invasive Species in the Great Lakes Region: An Overview. Reviews in Fisheries Science and Aquaculture, 2018, 26, 121-138.	5.1	39
34	Oropouche fever, an emergent disease from the Americas. Microbes and Infection, 2018, 20, 135-146.	1.0	61
35	Towards an ecoâ€phylogenetic framework for infectious disease ecology. Biological Reviews, 2018, 93, 950-970.	4.7	63
36	Domestic horses within the Maya biosphere reserve: A possible threat to the Central American tapir (Tapirus bairdii). Caldasia, 2018, 40, 188-191.	0.1	0

LUIS E ESCOBAR

#	Article	IF	CITATIONS
37	Toxoplasma gondii infection in wild mustelids and cats across an urban-rural gradient. PLoS ONE, 2018, 13, e0199085.	1.1	31
38	Summary results of the 2014-2015 DARPA Chikungunya challenge. BMC Infectious Diseases, 2018, 18, 245.	1.3	43
39	Distributional ecology of Andes hantavirus: a macroecological approach. International Journal of Health Geographics, 2018, 17, 22.	1.2	17
40	Spatiotemporal Variation in Environmental Vibrio cholerae in an Estuary in Southern Coastal Ecuador. International Journal of Environmental Research and Public Health, 2018, 15, 486.	1.2	3
41	International meeting on sarcoptic mange in wildlife, June 2018, Blacksburg, Virginia, USA. Parasites and Vectors, 2018, 11, 449.	1.0	33
42	Infectious disease in fish: global risk of viral hemorrhagic septicemia virus. Reviews in Fish Biology and Fisheries, 2018, 28, 637-655.	2.4	31
43	Potential distribution ofPythium insidiosumin Rio Grande do Sul, Brazil, and projections to neighbour countries. Transboundary and Emerging Diseases, 2018, 65, 1671-1679.	1.3	11
44	Potential distribution of the viral haemorrhagic septicaemia virus in the Great Lakes region. Journal of Fish Diseases, 2017, 40, 11-28.	0.9	18
45	The history of rabies in the Western Hemisphere. Antiviral Research, 2017, 146, 221-232.	1.9	77
46	Successful strategies implemented towards the elimination of canine rabies in the Western Hemisphere. Antiviral Research, 2017, 143, 1-12.	1.9	94
47	Amblyomma ticks and future climate: Range contraction due to climate warming. Acta Tropica, 2017, 176, 340-348.	0.9	31
48	Using the KDE method to model ecological niches: A response to Blonder et al. (2017). Global Ecology and Biogeography, 2017, 26, 1076-1077.	2.7	6
49	Accessible areas in ecological niche comparisons of invasive species: Recognized but still overlooked. Scientific Reports, 2017, 7, 1213.	1.6	50
50	A cautionary note on the use of hypervolume kernel density estimators in ecological niche modelling. Global Ecology and Biogeography, 2017, 26, 1066-1070.	2.7	27
51	First case of New Delhi metallo-β-lactamase in Klebsiella pneumoniae from Ecuador: An update for South America. International Journal of Infectious Diseases, 2017, 65, 119-121.	1.5	17
52	Novel Methods in Disease Biogeography: A Case Study with Heterosporosis. Frontiers in Veterinary Science, 2017, 4, 105.	0.9	5
53	Inferring the Ecological Niche of Toxoplasma gondii and Bartonella spp. in Wild Felids. Frontiers in Veterinary Science, 2017, 4, 172.	0.9	3
54	Forecasting distributions of an aquatic invasive species (Nitellopsis obtusa) under future climate scenarios. PLoS ONE, 2017, 12, e0180930.	1.1	31

Luis E Escobar

#	Article	IF	CITATIONS
55	Vegetation loss and the 2016 Oropouche fever outbreak in Peru. Memorias Do Instituto Oswaldo Cruz, 2017, 112, 292-298.	0.8	18
56	Advances and Limitations of Disease Biogeography Using Ecological Niche Modeling. Frontiers in Microbiology, 2016, 07, 1174.	1.5	105
57	Declining Prevalence of Disease Vectors Under Climate Change. Scientific Reports, 2016, 6, 39150.	1.6	46
58	NicheA: creating virtual species and ecological niches in multivariate environmental scenarios. Ecography, 2016, 39, 805-813.	2.1	145
59	Fleas and Ticks in Carnivores From a Domestic–Wildlife Interface: Implications for Public Health and Wildlife. Journal of Medical Entomology, 2016, 53, 1433-1443.	0.9	23
60	Realized niche shift associated with the Eurasian charophyte Nitellopsis obtusa becoming invasive in North America. Scientific Reports, 2016, 6, 29037.	1.6	29
61	Forecasting Chikungunya spread in the Americas via data-driven empirical approaches. Parasites and Vectors, 2016, 9, 112.	1.0	16
62	Zika Virus, Elevation, and Transmission Risk. PLOS Currents, 2016, 8, .	1.4	14
63	BAT-BORNE RABIES IN LATIN AMERICA. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2015, 57, 63-72.	0.5	52
64	Ecological approaches in veterinary epidemiology: mapping the risk of bat-borne rabies using vegetation indices and night-time light satellite imagery. Veterinary Research, 2015, 46, 92.	1.1	20
65	First Report on Bat Mortalities on Wind Farms in Chile. Gayana, 2015, 79, 11-17.	0.0	6
66	Spatial and temporal trends of bat-borne rabies in Chile. Epidemiology and Infection, 2015, 143, 1486-1494.	1.0	15
67	Dog ownership, abundance and potential for bat-borne rabies spillover in Chile. Preventive Veterinary Medicine, 2015, 118, 397-405.	0.7	27
68	Anthropogenic disturbance and habitat loss for the red-listed Asiatic black bear (Ursus thibetanus): Using ecological niche modeling and nighttime light satellite imagery. Biological Conservation, 2015, 191, 400-407.	1.9	66
69	A global map of suitability for coastal Vibrio cholerae under current and future climate conditions. Acta Tropica, 2015, 149, 202-211.	0.9	87
70	In response to: "Increased dog population and potential for bat-borne rabies spillover in Chile in response to "Dog management, abundance and potential for bat-borne rabies spillover in Chile†by Astorga et al. [Prev. Vet. Med. 118:397–405]―by Acosta-Jammet, G Preventive Veterinary Medicine, 2015, 120, 248-249.	0.7	4
71	Niche similarities among whiteâ€eared opossums (Mammalia, Didelphidae): Is ecological niche modelling relevant to setting species limits?. Zoologica Scripta, 2015, 44, 1-10.	0.7	34
72	Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: use of Maxent and NicheA to assure strict model transference. Geospatial Health, 2014, 9, 221.	0.3	188

LUIS E ESCOBAR

#	Article	IF	CITATIONS
73	Galictis cuja (Mammalia): an update of current knowledge and geographic distribution. Iheringia - Serie Zoologia, 2014, 104, 341-346.	0.5	23
74	Ecology and Geography of Transmission of Two Bat-Borne Rabies Lineages in Chile. PLoS Neglected Tropical Diseases, 2013, 7, e2577.	1.3	37
75	Potential Geographic Distribution of Hantavirus Reservoirs in Brazil. PLoS ONE, 2013, 8, e85137.	1.1	25
76	Spatial epidemiology of bat-borne rabies in Colombia. Revista Panamericana De Salud Publica/Pan American Journal of Public Health, 2013, 34, 135-6.	0.6	10
77	SEMINARIOS EN LÃNEA SOBRE ANÃLISIS ESPACIALES CON ÉNFASIS EN MODELOS DE NICHO ECOLÓGICO. Biodiversity Informatics, 0, 12, .	3.0	5