
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/351892/publications.pdf Version: 2024-02-01

ΥΠΛΥΝ ΣΗΛΟ

#	Article	IF	CITATIONS
1	Graphene Based Electrochemical Sensors and Biosensors: A Review. Electroanalysis, 2010, 22, 1027-1036.	2.9	2,779
2	Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nature Energy, 2016, 1, .	39.5	2,186
3	Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing. ACS Nano, 2010, 4, 1790-1798.	14.6	1,977
4	Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism. Journal of the American Chemical Society, 2013, 135, 4450-4456.	13.7	1,736
5	Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation. Journal of the American Chemical Society, 2017, 139, 14143-14149.	13.7	1,215
6	Water‣ubricated Intercalation in V ₂ O ₅ •nH ₂ O for High apacity and Highâ€Rate Aqueous Rechargeable Zinc Batteries. Advanced Materials, 2018, 30, 1703725.	21.0	1,084
7	Nitrogen-doped graphene and its electrochemical applications. Journal of Materials Chemistry, 2010, 20, 7491.	6.7	1,040
8	Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. Journal of Power Sources, 2007, 171, 558-566.	7.8	1,037
9	Nanostructured carbon for energy storage and conversion. Nano Energy, 2012, 1, 195-220.	16.0	895
10	Nitrogenâ€Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells. Advanced Materials, 2018, 30, 1706758.	21.0	788
11	Facile and controllable electrochemical reduction of graphene oxide and its applications. Journal of Materials Chemistry, 2010, 20, 743-748.	6.7	787
12	Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Applied Catalysis B: Environmental, 2008, 79, 89-99.	20.2	710
13	Manipulating Adsorption–Insertion Mechanisms in Nanostructured Carbon Materials for Highâ€Efficiency Sodium Ion Storage. Advanced Energy Materials, 2017, 7, 1700403.	19.5	662
14	Carbonâ€Based Metalâ€Free ORR Electrocatalysts for Fuel Cells: Past, Present, and Future. Advanced Materials, 2019, 31, e1804799.	21.0	649
15	Novel catalyst support materials for PEMfuelcells: current status and future prospects. Journal of Materials Chemistry, 2009, 19, 46-59.	6.7	618
16	Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochemistry Communications, 2009, 11, 954-957.	4.7	615
17	Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid. Advanced Functional Materials, 2013, 23, 929-946.	14.9	590
18	Failure Mechanism for Fastâ€Charged Lithium Metal Batteries with Liquid Electrolytes. Advanced Energy Materials, 2015, 5, 1400993.	19.5	540

#	Article	IF	CITATIONS
19	Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: status and perspective. Energy and Environmental Science, 2012, 5, 9331.	30.8	489
20	Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Physical Chemistry Chemical Physics, 2011, 13, 15384.	2.8	488
21	Proton exchange membrane fuel cell from low temperature to high temperature: Material challenges. Journal of Power Sources, 2007, 167, 235-242.	7.8	482
22	Making Liâ€Air Batteries Rechargeable: Material Challenges. Advanced Functional Materials, 2013, 23, 987-1004.	14.9	477
23	Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective. ACS Catalysis, 2012, 2, 844-857.	11.2	443
24	Performance enhancement and degradation mechanism identification of a single-atom Co–N–C catalyst for proton exchange membrane fuel cells. Nature Catalysis, 2020, 3, 1044-1054.	34.4	443
25	Controlling SEI Formation on SnSbâ€Porous Carbon Nanofibers for Improved Na Ion Storage. Advanced Materials, 2014, 26, 2901-2908.	21.0	441
26	PGMâ€Free Cathode Catalysts for PEM Fuel Cells: A Miniâ€Review on Stability Challenges. Advanced Materials, 2019, 31, e1807615.	21.0	430
27	Bismuth Nanoparticle Decorating Graphite Felt as a High-Performance Electrode for an All-Vanadium Redox Flow Battery. Nano Letters, 2013, 13, 1330-1335.	9.1	392
28	Stabilization of Electrocatalytic Metal Nanoparticles at Metalâ^'Metal Oxideâ^'Graphene Triple Junction Points. Journal of the American Chemical Society, 2011, 133, 2541-2547.	13.7	391
29	Durability Study of Ptâ^•C and Ptâ^•CNTs Catalysts under Simulated PEM Fuel Cell Conditions. Journal of the Electrochemical Society, 2006, 153, A1093.	2.9	384
30	Effect of carbon black support corrosion on the durability of Pt/C catalyst. Journal of Power Sources, 2007, 171, 331-339.	7.8	383
31	Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction. Journal of Power Sources, 2010, 195, 4600-4605.	7.8	378
32	Graphene Decorated with PtAu Alloy Nanoparticles: Facile Synthesis and Promising Application for Formic Acid Oxidation. Chemistry of Materials, 2011, 23, 1079-1081.	6.7	366
33	3D printing technologies for electrochemical energy storage. Nano Energy, 2017, 40, 418-431.	16.0	351
34	Constraint of DNA on Functionalized Graphene Improves its Biostability and Specificity. Small, 2010, 6, 1205-1209.	10.0	342
35	Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy, 2016, 19, 279-288.	16.0	341
36	Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth. Nature Energy, 2017, 2, 813-820.	39.5	326

#	Article	IF	CITATIONS
37	Engineering nanostructures of PGM-free oxygen-reduction catalysts using metal-organic frameworks. Nano Energy, 2017, 31, 331-350.	16.0	317
38	Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries. Journal of Power Sources, 2010, 195, 4375-4379.	7.8	306
39	Functionalized Graphene Oxide as a Nanocarrier in a Multienzyme Labeling Amplification Strategy for Ultrasensitive Electrochemical Immunoassay of Phosphorylated p53 (S392). Analytical Chemistry, 2011, 83, 746-752.	6.5	305
40	Joint Charge Storage for Highâ€Rate Aqueous Zinc–Manganese Dioxide Batteries. Advanced Materials, 2019, 31, e1900567.	21.0	299
41	Electrostatic Selfâ€Assembly of a Ptâ€aroundâ€Au Nanocomposite with High Activity towards Formic Acid Oxidation. Angewandte Chemie - International Edition, 2010, 49, 2211-2214.	13.8	295
42	Comparative investigation of the resistance to electrochemical oxidation of carbon black and carbon nanotubes in aqueous sulfuric acid solution. Electrochimica Acta, 2006, 51, 5853-5857.	5.2	294
43	Polyelectrolyte-Induced Reduction of Exfoliated Graphite Oxide: A Facile Route to Synthesis of Soluble Graphene Nanosheets. ACS Nano, 2011, 5, 1785-1791.	14.6	293
44	Manipulating surface reactions in lithium–sulphur batteries using hybrid anode structures. Nature Communications, 2014, 5, 3015.	12.8	290
45	Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nature Reviews Materials, 2020, 5, 276-294.	48.7	284
46	Probing the Failure Mechanism of SnO ₂ Nanowires for Sodium-Ion Batteries. Nano Letters, 2013, 13, 5203-5211.	9.1	270
47	A Highly Reversible Zn Anode with Intrinsically Safe Organic Electrolyte for Long ycleâ€Life Batteries. Advanced Materials, 2019, 31, e1900668.	21.0	259
48	Highly Reversible Mg Insertion in Nanostructured Bi for Mg Ion Batteries. Nano Letters, 2014, 14, 255-260.	9.1	257
49	Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams. Nano Letters, 2013, 13, 3909-3914.	9.1	245
50	Self assembly of acetylcholinesterase on a gold nanoparticles–graphene nanosheet hybrid for organophosphate pesticide detection using polyelectrolyte as a linker. Journal of Materials Chemistry, 2011, 21, 5319.	6.7	219
51	Stabilizing Zinc Anode Reactions by Polyethylene Oxide Polymer in Mild Aqueous Electrolytes. Advanced Functional Materials, 2020, 30, 2003932.	14.9	210
52	Oxygen Evolution Reaction in Alkaline Environment: Material Challenges and Solutions. Advanced Functional Materials, 2022, 32, .	14.9	209
53	Ironâ€Free Cathode Catalysts for Protonâ€Exchangeâ€Membrane Fuel Cells: Cobalt Catalysts and the Peroxide Mitigation Approach. Advanced Materials, 2019, 31, e1805126.	21.0	208
54	Controlling Solid–Liquid Conversion Reactions for a Highly Reversible Aqueous Zinc–Iodine Battery. ACS Energy Letters, 2017, 2, 2674-2680.	17.4	207

#	Article	IF	CITATIONS
55	Lowâ€PGM and PGMâ€Free Catalysts for Proton Exchange Membrane Fuel Cells: Stability Challenges and Material Solutions. Advanced Materials, 2021, 33, e1908232.	21.0	201
56	A facile approach using MgCl2 to formulate high performance Mg2+ electrolytes for rechargeable Mg batteries. Journal of Materials Chemistry A, 2014, 2, 3430.	10.3	197
57	Sparingly Solvating Electrolytes for High Energy Density Lithium–Sulfur Batteries. ACS Energy Letters, 2016, 1, 503-509.	17.4	190
58	Recent progress in nanostructured electrocatalysts for PEM fuel cells. Journal of Materials Chemistry A, 2013, 1, 4631.	10.3	172
59	Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance. Scientific Reports, 2013, 3, 3130.	3.3	157
60	Carbon nanotubes decorated with Pt nanoparticles via electrostatic self-assembly: a highly active oxygen reduction electrocatalyst. Journal of Materials Chemistry, 2010, 20, 2826.	6.7	153
61	High performance batteries based on hybrid magnesium and lithium chemistry. Chemical Communications, 2014, 50, 9644-9646.	4.1	153
62	Stable Li Metal Anode with "lon–Solvent-Coordinated―Nonflammable Electrolyte for Safe Li Metal Batteries. ACS Energy Letters, 2019, 4, 483-488.	17.4	148
63	Advanced catalyst supports for PEM fuel cell cathodes. Nano Energy, 2016, 29, 314-322.	16.0	146
64	Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst. Nano Energy, 2017, 39, 245-252.	16.0	143
65	Addressing Passivation in Lithium–Sulfur Battery Under Lean Electrolyte Condition. Advanced Functional Materials, 2018, 28, 1707234.	14.9	143
66	On the Way Toward Understanding Solution Chemistry of Lithium Polysulfides for High Energy Li–S Redox Flow Batteries. Advanced Energy Materials, 2015, 5, 1500113.	19.5	142
67	Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells. Electrochemistry Communications, 2011, 13, 258-261.	4.7	135
68	Reversible ketone hydrogenation and dehydrogenation for aqueous organic redox flow batteries. Science, 2021, 372, 836-840.	12.6	135
69	Facile synthesis of PtAu alloy nanoparticles with high activity for formic acid oxidation. Journal of Power Sources, 2010, 195, 1103-1106.	7.8	133
70	Investigation of Further Improvement of Platinum Catalyst Durability with Highly Graphitized Carbon Nanotubes Support. Journal of Physical Chemistry C, 2008, 112, 5784-5789.	3.1	130
71	Electrochemical impedance studies on carbon supported PtRuNi and PtRu anode catalysts in acid medium for direct methanol fuel cell. Journal of Power Sources, 2007, 165, 9-15.	7.8	127
72	Highly active electrolytes for rechargeable Mg batteries based on a [Mg ₂ (μ-Cl) ₂] ²⁺ cation complex in dimethoxyethane. Physical Chemistry Chemical Physics, 2015, 17, 13307-13314.	2.8	126

YUYAN SHAO

#	Article	IF	CITATIONS
73	Improving Lithium–Sulfur Battery Performance under Lean Electrolyte through Nanoscale Confinement in Soft Swellable Gels. Nano Letters, 2017, 17, 3061-3067.	9.1	122
74	Nanocomposite polymer electrolyte for rechargeable magnesium batteries. Nano Energy, 2015, 12, 750-759.	16.0	121
75	Effects of Cesium Cations in Lithium Deposition via Self-Healing Electrostatic Shield Mechanism. Journal of Physical Chemistry C, 2014, 118, 4043-4049.	3.1	117
76	Multi-walled carbon nanotubes based Pt electrodes prepared with in situ ion exchange method for oxygen reduction. Journal of Power Sources, 2006, 161, 47-53.	7.8	114
77	Graphene–Polypyrrole Nanocomposite as a Highly Efficient and Low Cost Electrically Switched Ion Exchanger for Removing ClO ₄ [–] from Wastewater. ACS Applied Materials & Interfaces, 2011, 3, 3633-3637.	8.0	109
78	Electrocatalytic valorisation of biomass derived chemicals. Catalysis Science and Technology, 2018, 8, 3216-3232.	4.1	105
79	Self-assembly of Pt nanoparticles on highly graphitized carbon nanotubes as an excellent oxygen-reduction catalyst. Applied Catalysis B: Environmental, 2011, 102, 372-377.	20.2	104
80	Electrocatalytic Hydrogen Evolution in Neutral pH Solutions: Dual-Phase Synergy. ACS Catalysis, 2019, 9, 8712-8718.	11.2	103
81	Li _{<i>x</i>} NiO/Ni Heterostructure with Strong Basic Lattice Oxygen Enables Electrocatalytic Hydrogen Evolution with Pt-like Activity. Journal of the American Chemical Society, 2020, 142, 12613-12619.	13.7	103
82	The corrosion of PEM fuel cell catalyst supports and its implications for developing durable catalysts. Electrochimica Acta, 2009, 54, 3109-3114.	5.2	100
83	Durability studies on performance degradation of Pt/C catalysts of proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2009, 34, 4387-4394.	7.1	96
84	Ta–TiOx nanoparticles as radical scavengers to improve the durability of Fe–N–C oxygen reduction catalysts. Nature Energy, 2022, 7, 281-289.	39.5	93
85	Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes. Nano Letters, 2017, 17, 1602-1609.	9.1	91
86	Interface Promoted Reversible Mg Insertion in Nanostructured Tin–Antimony Alloys. Advanced Materials, 2015, 27, 6598-6605.	21.0	88
87	Stabilization of platinum nanoparticle electrocatalysts for oxygen reduction using poly(diallyldimethylammonium chloride). Journal of Materials Chemistry, 2009, 19, 7995.	6.7	87
88	Realizing the Full Potential of Insertion Anodes for Mg-Ion Batteries Through the Nanostructuring of Sn. Nano Letters, 2015, 15, 1177-1182.	9.1	87
89	Atomistic Conversion Reaction Mechanism of WO ₃ in Secondary Ion Batteries of Li, Na, and Ca. Angewandte Chemie - International Edition, 2016, 55, 6244-6247.	13.8	86
90	Electrocatalysts by atomic layer deposition for fuel cell applications. Nano Energy, 2016, 29, 220-242.	16.0	79

#	Article	IF	CITATIONS
91	Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction. Journal of Power Sources, 2010, 195, 1805-1811.	7.8	78
92	Nanostructured Electrocatalysts for PEM Fuel Cells and Redox Flow Batteries: A Selected Review. ACS Catalysis, 2015, 5, 7288-7298.	11.2	78
93	Electrochemically stable cathode current collectors for rechargeable magnesium batteries. Journal of Materials Chemistry A, 2014, 2, 2473-2477.	10.3	77
94	Ammonium Additives to Dissolve Lithium Sulfide through Hydrogen Binding for High-Energy Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 4290-4295.	8.0	74
95	Facile Synthesis of <i>Chevrel</i> Phase Nanocubes and Their Applications for Multivalent Energy Storage. Chemistry of Materials, 2014, 26, 4904-4907.	6.7	73
96	Role of Manganese Deposition on Graphite in the Capacity Fading of Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 14244-14251.	8.0	71
97	The influence of the electrochemical stressing (potential step and potential-static holding) on the degradation of polymer electrolyte membrane fuel cell electrocatalysts. Journal of Power Sources, 2008, 185, 280-286.	7.8	67
98	Rationally-designed configuration of directly-coated Ni3S2/Ni electrode by RGO providing superior sodium storage. Carbon, 2018, 133, 14-22.	10.3	67
99	Restricting the Solubility of Polysulfides in Liâ€5 Batteries Via Electrolyte Salt Selection. Advanced Energy Materials, 2016, 6, 1600160.	19.5	66
100	Molecular Storage of Mg Ions with Vanadium Oxide Nanoclusters. Advanced Functional Materials, 2016, 26, 3446-3453.	14.9	65
101	High performance Li-ion sulfur batteries enabled by intercalation chemistry. Chemical Communications, 2015, 51, 13454-13457.	4.1	55
102	Tailored Reaction Route by Micropore Confinement for Li–S Batteries Operating under Lean Electrolyte Conditions. Advanced Energy Materials, 2018, 8, 1800590.	19.5	55
103	A fundamental study on the [(μ-Cl) ₃ Mg ₂ (THF) ₆] ⁺ dimer electrolytes for rechargeable Mg batteries. Chemical Communications, 2015, 51, 2312-2315.	4.1	53
104	Effects of MEA preparation on the performance of a direct methanol fuel cell. Journal of Power Sources, 2006, 160, 1035-1040.	7.8	51
105	Molecular-confinement of polysulfides within mesoscale electrodes for the practical application of lithium sulfur batteries. Nano Energy, 2015, 13, 267-274.	16.0	50
106	Low-cost and durable catalyst support for fuel cells: Graphite submicronparticles. Journal of Power Sources, 2010, 195, 457-460.	7.8	49
107	Electrochemical durability investigation of single-walled and multi-walled carbon nanotubes under potentiostatic conditions. Journal of Power Sources, 2008, 176, 128-131.	7.8	46
108	Pt/Tin Oxide/Carbon Nanocomposites as Promising Oxygen Reduction Electrocatalyst with Improved Stability and Activity. Electrochimica Acta, 2014, 117, 413-419.	5.2	44

YUYAN SHAO

#	Article	IF	CITATIONS
109	Reversible Electrochemical Interface of Mg Metal and Conventional Electrolyte Enabled by Intermediate Adsorption. ACS Energy Letters, 2020, 5, 200-206.	17.4	44
110	Layer-by-layer assembled hybrid film of carbon nanotubes/iron oxide nanocrystals for reagentless electrochemical detection of H2O2. Sensors and Actuators B: Chemical, 2009, 138, 182-188.	7.8	39
111	Revealing the Dynamics of Platinum Nanoparticle Catalysts on Carbon in Oxygen and Water Using Environmental TEM. ACS Catalysis, 2017, 7, 7658-7664.	11.2	38
112	25Mg NMR and computational modeling studies of the solvation structures and molecular dynamics in magnesium based liquid electrolytes. Nano Energy, 2018, 46, 436-446.	16.0	37
113	Electrochemical investigation of polyhalide ion oxidation–reduction on carbon nanotube electrodes for redox flow batteries. Electrochemistry Communications, 2009, 11, 2064-2067.	4.7	36
114	Degradation of the Ionic Pathway in a PEM Fuel Cell Cathode. Journal of Physical Chemistry C, 2011, 115, 22633-22639.	3.1	36
115	Polarization Losses under Accelerated Stress Test Using Multiwalled Carbon Nanotube Supported Pt Catalyst in PEM Fuel Cells. Journal of the Electrochemical Society, 2011, 158, B297.	2.9	33
116	Multifunctional Pd-Sn electrocatalysts enabled by in situ formed SnOx and TiC triple junctions. Nano Energy, 2018, 53, 940-948.	16.0	33
117	A new hybrid redox flow battery with multiple redox couples. Journal of Power Sources, 2012, 216, 99-103.	7.8	32
118	Platinum Deposition on Multiwalled Carbon Nanotubes by Ion-Exchange Method as Electrocatalysts for Oxygen Reduction. Journal of the Electrochemical Society, 2007, 154, B687.	2.9	30
119	Non-kinetic losses caused by electrochemical carbon corrosion in PEM fuel cells. International Journal of Hydrogen Energy, 2012, 37, 8451-8458.	7.1	30
120	Hierarchically structured materials for lithium batteries. Nanotechnology, 2013, 24, 424004.	2.6	30
121	Permeabilities of methanol, ethanol and dimethyl ether in new composite membranes: A comparison with Nafion membranes. Journal of Membrane Science, 2007, 289, 51-57.	8.2	29
122	In Situ Deposition of Highly Dispersed Pt Nanoparticles on Carbon Black Electrode for Oxygen Reduction. Journal of the Electrochemical Society, 2006, 153, A1261.	2.9	28
123	H+ diffusion and electrochemical stability of Li1+x+yAlxTi2â^'xSiyP3â^'yO12 glass in aqueous Li/air battery electrolytes. Journal of Power Sources, 2012, 214, 292-297.	7.8	27
124	A lithium-sulfur battery with a solution-mediated pathway operating under lean electrolyte conditions. Nano Energy, 2020, 76, 105041.	16.0	25
125	Decomposition pathways and mitigation strategies for highly-stable hydroxyphenazine flow battery anolytes. Journal of Materials Chemistry A, 2021, 9, 21918-21928.	10.3	25
126	Prelude: The renaissance of electrocatalysis. Nano Energy, 2016, 29, 1-3.	16.0	21

#	Article	IF	CITATIONS
127	Atomistic Conversion Reaction Mechanism of WO ₃ in Secondary Ion Batteries of Li, Na, and Ca. Angewandte Chemie, 2016, 128, 6352-6355.	2.0	21
128	Enhancement in kinetics of the oxygen reduction on a silver catalyst by introduction of interlaces and defect-rich facets. Journal of Materials Chemistry A, 2017, 5, 15390-15394.	10.3	21
129	Machine Learning Coupled Multi‣cale Modeling for Redox Flow Batteries. Advanced Theory and Simulations, 2020, 3, 1900167.	2.8	21
130	TEM study of fivefold twined gold nanocrystal formation mechanism. Materials Letters, 2014, 116, 299-303.	2.6	19
131	Minimizing Polysulfide Shuttle Effect in Lithium-Ion Sulfur Batteries by Anode Surface Passivation. ACS Applied Materials & Interfaces, 2018, 10, 21965-21972.	8.0	18
132	An Electrochemical Hydrogen-Looping System for Low-Cost CO ₂ Capture from Seawater. ACS Energy Letters, 2022, 7, 1947-1952.	17.4	17
133	Electrocatalysts development for hydrogen oxidation reaction in alkaline media: From mechanism understanding to materials design. Chinese Journal of Catalysis, 2021, 42, 2094-2104.	14.0	15
134	Durability studies of unsupported Pt cathodic catalyst with working time of direct methanol fuel cells. Journal of Power Sources, 2008, 185, 1066-1072.	7.8	14
135	The Durability Dependence of Pt/CNT Electrocatalysts on the Nanostructures of Carbon Nanotubes: Hollow- and Bamboo-CNTs. Journal of Nanoscience and Nanotechnology, 2009, 9, 5811-5815.	0.9	13
136	Continuous Fly-Through High-Temperature Synthesis of Nanocatalysts. Nano Letters, 2021, 21, 4517-4523.	9.1	13
137	Advancing Electrolyte Solution Chemistry and Interfacial Electrochemistry of Divalent Metal Batteries. ChemElectroChem, 2021, 8, 3013-3029.	3.4	13
138	Role of Polysulfide Anions in Solid-Electrolyte Interphase Formation at the Lithium Metal Surface in Li–S Batteries. Journal of Physical Chemistry Letters, 2021, 12, 9360-9367.	4.6	13
139	Pt/Carbon Nanofiber Nanocomposites as Electrocatalysts for Direct Methanol Fuel Cells: Prominent Effects of Carbon Nanofiber Nanostructures. Journal of Nanoscience and Nanotechnology, 2009, 9, 2316-2323.	0.9	11
140	In situ ion exchange preparation of Pt/carbon nanotubes electrode: Effect of two-step oxidation of carbon nanotubes. Journal of Power Sources, 2011, 196, 9955-9960.	7.8	11
141	High electrochemical activity of Pt/C cathode modified with NH4HCO3 for direct methanol fuel cell. Journal of Solid State Electrochemistry, 2010, 14, 633-636.	2.5	6
142	Electrochemical study of highly durable cathode with Pt supported on ITO-CNT composite for proton exchange membrane fuel cells. Journal of Industrial and Engineering Chemistry, 2016, 42, 81-86.	5.8	6
143	Lean Electrolyte Batteries: Addressing Passivation in Lithium–Sulfur Battery Under Lean Electrolyte Condition (Adv. Funct. Mater. 38/2018). Advanced Functional Materials, 2018, 28, 1870275.	14.9	5
144	Advancing Materials Electrochemistry for Chemical Transformation. Advanced Materials, 2019, 31, e1903622.	21.0	5

#	Article	IF	CITATIONS
145	Mapping Localized Peroxyl Radical Generation on a PEM Fuel Cell Catalyst Using Integrated Scanning Electrochemical Cell Microspectroscopy. Frontiers in Chemistry, 2020, 8, 572563.	3.6	5
146	Tuning proton transfer and catalytic properties in triple junction nanostructured catalyts. Nano Energy, 2021, 86, 106046.	16.0	5
147	Renewable Ammonia as an Energy Fuel for Ocean Exploration and Transportation. Marine Technology Society Journal, 2020, 54, 126-136.	0.4	5
148	LiMnPO4·Li3V2(PO4)3 composite cathode material derived from Mn(VO3)2 nanosheet precursor. Journal of Alloys and Compounds, 2017, 695, 1813-1820.	5.5	4
149	In-Situ S/TEM Probing of the Behavior of Nanoparticles Under Chemical and Electrochemical Reactions in the System Involving Solid, Liquid and Gas. Microscopy and Microanalysis, 2018, 24, 1876-1877.	0.4	4
150	Fast test for the durability of PEM fuel cell catalysts. ECS Transactions, 2008, 16, 361-366.	0.5	3
151	An Electrochemically Activated Nanofilm for Sustainable Mg Anode with Fast Charge Transfer Kinetics. Journal of the Electrochemical Society, 2021, 168, 120519.	2.9	2
152	Real-time Observation of Sintering Process of Carbon Supported Platinum Nanoparticles in Oxygen and Water through Environment TEM. Microscopy and Microanalysis, 2017, 23, 2048-2049.	0.4	0
153	(Invited) Catalysts for Low-Temperature Electrochemical Hydrogen Production and Hydrogenation Reactions. ECS Meeting Abstracts, 2021, MA2021-02, 1277-1277.	0.0	0
154	(Invited) Atomically Dispersed M-N-C Catalysts for Oxygen Reduction Reactions: Understanding Degradation and Improving Durability. ECS Meeting Abstracts, 2022, MA2022-01, 630-630.	0.0	0