
Wenlong Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3518904/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nature Communications, 2014, 5, 3132.	12.8	1,731
2	Building plasmonic nanostructures with DNA. Nature Nanotechnology, 2011, 6, 268-276.	31.5	736
3	Highly Stretchy Black Gold Eâ€5kin Nanopatches as Highly Sensitive Wearable Biomedical Sensors. Advanced Electronic Materials, 2015, 1, 1400063.	5.1	405
4	Free-standing nanoparticle superlattice sheets controlled by DNA. Nature Materials, 2009, 8, 519-525.	27.5	372
5	Mimosaâ€Inspired Design of a Flexible Pressure Sensor with Touch Sensitivity. Small, 2015, 11, 1886-1891.	10.0	312
6	Tattoolike Polyaniline Microparticle-Doped Gold Nanowire Patches as Highly Durable Wearable Sensors. ACS Applied Materials & Interfaces, 2015, 7, 19700-19708.	8.0	273
7	Disruptive, Soft, Wearable Sensors. Advanced Materials, 2020, 32, e1904664.	21.0	272
8	Oneâ€Ðimensional Nanomaterials for Soft Electronics. Advanced Electronic Materials, 2017, 3, 1600314.	5.1	271
9	Percolating Network of Ultrathin Gold Nanowires and Silver Nanowires toward "Invisible―Wearable Sensors for Detecting Emotional Expression and Apexcardiogram. Advanced Functional Materials, 2017, 27, 1700845.	14.9	257
10	Manufacturable Conducting Rubber Ambers and Stretchable Conductors from Copper Nanowire Aerogel Monoliths. ACS Nano, 2014, 8, 5707-5714.	14.6	240
11	A Facile Ion-Doping Strategy To Regulate Tumor Microenvironments for Enhanced Multimodal Tumor Theranostics. Journal of the American Chemical Society, 2018, 140, 106-109.	13.7	229
12	Highly Stretchable and Strain-Insensitive Fiber-Based Wearable Electrochemical Biosensor to Monitor Glucose in the Sweat. Analytical Chemistry, 2019, 91, 6569-6576.	6.5	209
13	Recent progress in stretchable supercapacitors. Journal of Materials Chemistry A, 2018, 6, 15478-15494.	10.3	188
14	Nanopatterning self-assembled nanoparticle superlattices by moulding microdroplets. Nature Nanotechnology, 2008, 3, 682-690.	31.5	185
15	Power generation for wearable systems. Energy and Environmental Science, 2021, 14, 2114-2157.	30.8	178
16	Toward Soft Skin‣ike Wearable and Implantable Energy Devices. Advanced Energy Materials, 2017, 7, 1700648.	19.5	175
17	1D Copper Nanostructures: Progress, Challenges and Opportunities. Small, 2015, 11, 1232-1252.	10.0	173
18	Nanoparticle Superlattices: The Roles of Soft Ligands. Advanced Science, 2018, 5, 1700179.	11.2	170

2

#	Article	IF	CITATIONS
19	Synthesis and Self-Assembly of Cetyltrimethylammonium Bromide-Capped Gold Nanoparticles. Langmuir, 2003, 19, 9434-9439.	3.5	169
20	Multifunctional nanoarchitectures from DNA-based ABC monomers. Nature Nanotechnology, 2009, 4, 430-436.	31.5	164
21	Resistive electronic skin. Journal of Materials Chemistry C, 2017, 5, 5845-5866.	5.5	161
22	Local Crackâ€Programmed Gold Nanowire Electronic Skin Tattoos for Inâ€Plane Multisensor Integration. Advanced Materials, 2019, 31, e1903789.	21.0	161
23	Plasmonic core–shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement. Nanoscale, 2015, 7, 2862-2868.	5.6	153
24	Hierarchically Structured Vertical Gold Nanowire Array-Based Wearable Pressure Sensors for Wireless Health Monitoring. ACS Applied Materials & Interfaces, 2019, 11, 29014-29021.	8.0	148
25	Freestanding ultrathin nano-membranes via self-assembly. Nano Today, 2009, 4, 482-493.	11.9	147
26	Mechanically Strong, Optically Transparent, Giant Metal Superlattice Nanomembranes From Ultrathin Gold Nanowires. Advanced Materials, 2013, 25, 80-85.	21.0	140
27	Iodine-Induced Gold-Nanoparticle Fusion/Fragmentation/Aggregation and Iodine-Linked Nanostructured Assemblies on a Glass Substrate. Angewandte Chemie - International Edition, 2003, 42, 449-452.	13.8	139
28	Fabrication, Characterization, and Application in SERS of Self-Assembled Polyelectrolyteâ^'Gold Nanorod Multilayered Films. Journal of Physical Chemistry B, 2005, 109, 19385-19389.	2.6	139
29	Softening gold for elastronics. Chemical Society Reviews, 2019, 48, 1668-1711.	38.1	138
30	Giant Plasmene Nanosheets, Nanoribbons, and Origami. ACS Nano, 2014, 8, 11086-11093.	14.6	134
31	Free-Standing Plasmonic-Nanorod Superlattice Sheets. ACS Nano, 2012, 6, 925-934.	14.6	132
32	Ultralow-density copper nanowire aerogel monoliths with tunable mechanical and electrical properties. Journal of Materials Chemistry A, 2013, 1, 6723.	10.3	132
33	Standing Enokitake-like Nanowire Films for Highly Stretchable Elastronics. ACS Nano, 2018, 12, 9742-9749.	14.6	130
34	Volume-invariant ionic liquid microbands as highly durable wearable biomedical sensors. Materials Horizons, 2016, 3, 208-213.	12.2	121
35	Colloid Chemical Approach to Nanoelectrode Ensembles with Highly Controllable Active Area Fraction. Analytical Chemistry, 2002, 74, 3599-3604.	6.5	118
36	Size-Dependent Phase Transfer of Cold Nanoparticles from Water into Toluene by Tetraoctylammonium Cations:Â A Wholly Electrostatic Interaction. Journal of Physical Chemistry B, 2004, 108, 24-26.	2.6	112

#	Article	IF	CITATIONS
37	Fabrication of Highly Transparent and Flexible NanoMesh Electrode via Selfâ€assembly of Ultrathin Gold Nanowires. Advanced Electronic Materials, 2016, 2, 1600121.	5.1	112
38	Vertically Aligned Gold Nanowires as Stretchable and Wearable Epidermal Ion-Selective Electrode for Noninvasive Multiplexed Sweat Analysis. Analytical Chemistry, 2020, 92, 4647-4655.	6.5	108
39	Gold Nanoparticles as Fine Tuners of Electrochemical Properties of the Electrode/Solution Interface. Langmuir, 2002, 18, 9947-9952.	3.5	107
40	Stretchable gold fiber-based wearable textile electrochemical biosensor for lactate monitoring in sweat. Talanta, 2021, 222, 121484.	5.5	104
41	Copper Nanowires as Conductive Ink for Low-Cost Draw-On Electronics. ACS Applied Materials & Interfaces, 2015, 7, 16760-16766.	8.0	103
42	Two-Dimensional Bipyramid Plasmonic Nanoparticle Liquid Crystalline Superstructure with Four Distinct Orientational Packing Orders. ACS Nano, 2016, 10, 967-976.	14.6	101
43	Direct electron transfer between hemoglobin and a glassy carbon electrode facilitated by lipid-protected gold nanoparticles. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1556, 273-277.	1.0	95
44	Nanoparticle-Modified Electrode with Size- and Shape-Dependent Electrocatalytic Activities. Langmuir, 2013, 29, 3125-3132.	3.5	95
45	<i>Enokitake</i> Mushroom-like Standing Gold Nanowires toward Wearable Noninvasive Bimodal Glucose and Strain Sensing. ACS Applied Materials & Interfaces, 2019, 11, 9724-9729.	8.0	91
46	A Wearable Second Skinâ€Like Multifunctional Supercapacitor with Vertical Gold Nanowires and Electrochromic Polyaniline. Advanced Materials Technologies, 2019, 4, 1800473.	5.8	88
47	Optically resonant magneto-electric cubic nanoantennas for ultra-directional light scattering. Journal of Applied Physics, 2015, 117, .	2.5	87
48	Well-ordered end-to-end linkage of gold nanorods. Nanotechnology, 2005, 16, 2164-2169.	2.6	85
49	Tree-like alumina nanopores generated in a non-steady-state anodization. Journal of Materials Chemistry, 2007, 17, 3493.	6.7	82
50	Self-Assembled Nanocube-Based Plasmene Nanosheets as Soft Surface-Enhanced Raman Scattering Substrates toward Direct Quantitative Drug Identification on Surfaces. Analytical Chemistry, 2015, 87, 5263-5269.	6.5	82
51	Self-powered gold nanowire tattoo triboelectric sensors for soft wearable human-machine interface. Nano Energy, 2020, 77, 105295.	16.0	82
52	Nanowireâ€Based Soft Wearable Human–Machine Interfaces for Future Virtual and Augmented Reality Applications. Advanced Functional Materials, 2021, 31, 2008347.	14.9	80
53	Stretchableâ€Fiberâ€Confined Wetting Conductive Liquids as Wearable Human Health Monitors. Advanced Functional Materials, 2016, 26, 4511-4517.	14.9	79
54	Dualâ€Coded Plasmene Nanosheets as Nextâ€Generation Anticounterfeit Security Labels. Advanced Optical Materials, 2015, 3, 1710-1717.	7.3	78

#	Article	IF	CITATIONS
55	Electronic Skins Based on Liquid Metals. Proceedings of the IEEE, 2019, 107, 2168-2184.	21.3	77
56	Selfâ€assembled Ultrathin Gold Nanowires as Highly Transparent, Conductive and Stretchable Supercapacitor. Electroanalysis, 2016, 28, 1298-1304.	2.9	73
57	Enhanced Thermal Conductivity of Copper Nanofluids: The Effect of Filler Geometry. ACS Applied Materials & Interfaces, 2017, 9, 18925-18935.	8.0	72
58	Probing in Real Time the Soft Crystallization of DNAâ€Capped Nanoparticles. Angewandte Chemie - International Edition, 2010, 49, 380-384.	13.8	71
59	Soft Wearable Healthcare Materials and Devices. Advanced Healthcare Materials, 2021, 10, e2100577.	7.6	71
60	A Soft Resistive Acoustic Sensor Based on Suspended Standing Nanowire Membranes with Point Crack Design. Advanced Functional Materials, 2020, 30, 1910717.	14.9	68
61	Two- and Three-Dimensional Au Nanoparticle/CoTMPyP Self-Assembled Nanotructured Materials:Â Film Structure, Tunable Electrocatalytic Activity, and Plasmonic Properties. Journal of Physical Chemistry B, 2004, 108, 19146-19154.	2.6	67
62	Black Gold: Broadband, High Absorption of Visible Light for Photochemical Systems. Advanced Functional Materials, 2017, 27, 1604080.	14.9	67
63	High performance acetone sensor based on ZnO nanorods modified by Au nanoparticles. Journal of Alloys and Compounds, 2019, 797, 246-252.	5.5	67
64	Ultrathin Plasmene Nanosheets as Soft and Surfaceâ€Attachable SERS Substrates with High Signal Uniformity. Advanced Optical Materials, 2015, 3, 919-924.	7.3	66
65	Real-Time and In-Situ Monitoring of H ₂ O ₂ Release from Living Cells by a Stretchable Electrochemical Biosensor Based on Vertically Aligned Gold Nanowires. Analytical Chemistry, 2019, 91, 13521-13527.	6.5	66
66	Unconventional Janus Properties of Enokitake-like Gold Nanowire Films. ACS Nano, 2018, 12, 8717-8722.	14.6	65
67	Multiscale Soft–Hard Interface Design for Flexible Hybrid Electronics. Advanced Materials, 2020, 32, e1902278.	21.0	65
68	Liquid-Wetting-Solid Strategy To Fabricate Stretchable Sensors for Human-Motion Detection. ACS Sensors, 2016, 1, 303-311.	7.8	64
69	Fractal Cold Nanoframework for Highly Stretchable Transparent Strain-Insensitive Conductors. Nano Letters, 2018, 18, 3593-3599.	9.1	62
70	A Mossâ€Inspired Electroless Gold oating Strategy Toward Stretchable Fiber Conductors by Dry Spinning. Advanced Electronic Materials, 2019, 5, 1800462.	5.1	62
71	Studies of electrochemical quantized capacitance charging of surface ensembles of silver nanoparticles. Electrochemistry Communications, 2002, 4, 412-416.	4.7	61
72	Skin inspired fractal strain sensors using a copper nanowire and graphite microflake hybrid conductive network. Nanoscale, 2016, 8, 16596-16605.	5.6	60

#	Article	lF	CITATIONS
73	Vertical Gold Nanowires Stretchable Electrochemical Electrodes. Analytical Chemistry, 2018, 90, 13498-13505.	6.5	58
74	Copper Nanowireâ€Filled Soft Elastomer Composites for Applications as Thermal Interface Materials. Advanced Materials Interfaces, 2017, 4, 1700387.	3.7	57
75	Free-Standing Polymer–Nanoparticle Superlattice Sheets Self-Assembled at the Air–Liquid Interface. Crystal Growth and Design, 2011, 11, 4742-4746.	3.0	56
76	Multiplexed detection of cancer biomarkers using a microfluidic platform integrating single bead trapping and acoustic mixing techniques. Nanoscale, 2018, 10, 20196-20206.	5.6	55
77	Crystalline Gibbs Monolayers of DNA-Capped Nanoparticles at the Air–Liquid Interface. ACS Nano, 2011, 5, 7978-7985.	14.6	53
78	Bifunctional plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay. Nanoscale, 2017, 9, 7822-7829.	5.6	53
79	Fine-tuning longitudinal plasmon resonances of nanorods by thermal reshaping in aqueous media. Nanotechnology, 2012, 23, 105602.	2.6	50
80	Two-dimensional gold trisoctahedron nanoparticle superlattice sheets: self-assembly, characterization and immunosensing applications. Nanoscale, 2018, 10, 5065-5071.	5.6	50
81	Stretchable gold fiber-based wearable electrochemical sensor toward pH monitoring. Journal of Materials Chemistry B, 2020, 8, 3655-3660.	5.8	50
82	Plasmonic caged gold nanorods for near-infrared light controlled drug delivery. Nanoscale, 2014, 6, 14388-14393.	5.6	49
83	Recent advances in the rational design of electrocatalysts towards the oxygen reduction reaction. Chinese Journal of Catalysis, 2017, 38, 951-969.	14.0	49
84	A location- and sharpness-specific tactile electronic skin based on staircase-like nanowire patches. Nanoscale Horizons, 2018, 3, 640-647.	8.0	49
85	Patterning Vertically Grown Gold Nanowire Electrodes for Intrinsically Stretchable Organic Transistors. Advanced Electronic Materials, 2019, 5, 1800509.	5.1	48
86	Highly Stretchable Fiber-Shaped Supercapacitors Based on Ultrathin Gold Nanowires with Double-Helix Winding Design. ACS Applied Materials & Interfaces, 2018, 10, 42612-42620.	8.0	47
87	Bioreducible PEI-functionalized glycol chitosan: A novel gene vector with reduced cytotoxicity and improved transfection efficiency. Carbohydrate Polymers, 2016, 153, 160-168.	10.2	46
88	A General Approach to Free-Standing Nanoassemblies <i>via</i> Acoustic Levitation Self-Assembly. ACS Nano, 2019, 13, 5243-5250.	14.6	46
89	Free-Standing Bilayered Nanoparticle Superlattice Nanosheets with Asymmetric Ionic Transport Behaviors. ACS Nano, 2015, 9, 11218-11224.	14.6	45
90	Key parameters governing metallic nanoparticle electrocatalysis. Nanoscale, 2015, 7, 16151-16164.	5.6	45

#	Article	IF	CITATIONS
91	Free tanding 2D Nanoassemblies. Advanced Functional Materials, 2020, 30, 1902301.	14.9	45
92	Electrostatic-assembly metallized nanoparticles network by DNA template. Talanta, 2006, 68, 693-699.	5.5	43
93	Single-crystal caged gold nanorods with tunable broadband plasmon resonances. Chemical Communications, 2013, 49, 9630.	4.1	43
94	Free‣tanding 1D Assemblies of Plasmonic Nanoparticles. Advanced Materials, 2013, 25, 3968-3972.	21.0	42
95	Large-Scale Self-Assembly and Stretch-Induced Plasmonic Properties of Core–Shell Metal Nanoparticle Superlattice Sheets. Journal of Physical Chemistry C, 2014, 118, 26816-26824.	3.1	42
96	Multilayered core–satellite nanoassemblies with fine-tunable broadband plasmon resonances. Nanoscale, 2015, 7, 3445-3452.	5.6	42
97	Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy. Biomedical Optics Express, 2013, 4, 15.	2.9	41
98	Nanocomposite films containing Au nanoparticles formed by electrochemical reduction of metal ions in the multilayer films as electrocatalyst for dioxygen reduction. Analytica Chimica Acta, 2005, 535, 15-22.	5.4	40
99	Spontaneous Fractal Aggregation of Gold Nanoparticles and Controlled Generation of Aggregate-Based Fractal Networks at Air/Water Interface. Journal of Physical Chemistry B, 2005, 109, 19213-19218.	2.6	40
100	Self-assembled gold nanorime mesh conductors for invisible stretchable supercapacitors. Nanoscale, 2018, 10, 15948-15955.	5.6	40
101	Site-Selective Self-assembly of MPA-Bridged CuHCF Multilayers on APTMS-Supported Gold Colloid Electrodes. Chemistry of Materials, 2003, 15, 2495-2501.	6.7	39
102	Soft and stretchable electrochemical biosensors. Materials Today Nano, 2019, 7, 100041.	4.6	39
103	Optimized gold nanoshell ensembles for biomedical applications. Nanoscale Research Letters, 2013, 8, 142.	5.7	38
104	2D Freestanding Janus Gold Nanocrystal Superlattices. Advanced Materials, 2019, 31, e1900989.	21.0	38
105	Biological stability and activity of siRNA in ionic liquids. Chemical Communications, 2014, 50, 13457-13460.	4.1	37
106	Self-assembly and characterization of 2D plasmene nanosheets. Nature Protocols, 2019, 14, 2691-2706.	12.0	37
107	Tumor cell-specific photothermal killing by SELEX-derived DNA aptamer-targeted gold nanorods. Nanoscale, 2016, 8, 187-196.	5.6	35
108	Intrinsically Stretchable Fuel Cell Based on Enokitake‣ike Standing Gold Nanowires. Advanced Energy Materials, 2020, 10, 1903512.	19.5	34

#	Article	IF	CITATIONS
109	Cavity QED analysis of an exciton-plasmon hybrid molecule via the generalized nonlocal optical response method. Physical Review B, 2017, 95, .	3.2	33
110	Alternate assemblies of thionine and Au-nanoparticles on an amino functionalized surfaceElectronic supplementary information (ESI) available: AFM images and cyclic voltammograms. See http://www.rsc.org/suppdata/cc/b2/b204004b/. Chemical Communications, 2002, , 1706-1707.	4.1	32
111	Soft piezoresistive pressure sensing matrix from copper nanowires composite aerogel. Science Bulletin, 2016, 61, 1624-1630.	9.0	31
112	Matryoshka-caged gold nanorods: Synthesis, plasmonic properties, and catalytic activity. Nano Research, 2016, 9, 415-423.	10.4	31
113	Tunable Broadband Optical Responses of Substrate-Supported Metal/Dielectric/Metal Nanospheres. Plasmonics, 2014, 9, 659-672.	3.4	28
114	2D Binary Plasmonic Nanoassemblies with Semiconductor n/pâ€Dopingâ€Like Properties. Advanced Materials, 2018, 30, e1801118.	21.0	28
115	Adaptive DNA-based materials for switching, sensing, and logic devices. Journal of Materials Chemistry, 2011, 21, 6113.	6.7	26
116	DNAâ€based plasmonic nanoarchitectures: from structural design to emerging applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2012, 4, 587-604.	6.1	26
117	Lipid bilayer modified gold nanorod@mesoporous silica nanoparticles for controlled drug delivery triggered by near-infrared light. Journal of Materials Chemistry B, 2018, 6, 8078-8084.	5.8	26
118	Dynamically functioning and highly stretchable epidermal supercapacitor based on vertically aligned gold nanowire skins. EcoMat, 2020, 2, e12022.	11.9	26
119	Interdigited Phospholipid/Alkanethiol Bilayers Assembled on APTMS-Supported Gold Colloid Electrodes. Electroanalysis, 2004, 16, 127-131.	2.9	25
120	Humidityâ€Responsive Singleâ€Nanoparticle‣ayer Plasmonic Films. Advanced Materials, 2017, 29, 1606796.	21.0	25
121	Hierarchical drug release of pH-sensitive liposomes encapsulating aqueous two phase system. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 177-182.	4.3	24
122	Synthesis of tellurium nanorods via spontaneous oxidation of NaHTe at room temperature. Chemical Physics Letters, 2004, 395, 302-305.	2.6	23
123	Ultraflexible plasmonic nanocomposite aerogel. RSC Advances, 2011, 1, 1265.	3.6	23
124	Plasmene Metasurface Absorbers: Electromagnetic Hot Spots and Hot Carriers. ACS Photonics, 2019, 6, 314-321.	6.6	23
125	A Janus gold nanowire electrode for stretchable micro-supercapacitors with distinct capacitances. Journal of Materials Chemistry A, 2019, 7, 14233-14238.	10.3	23
126	Unveiling ultrasharp scattering–switching signatures of layered gold–dielectric–gold nanospheres. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2066.	2.1	22

#	Article	IF	CITATIONS
127	Design of Stretchable Holey Gold Biosensing Electrode for Real-Time Cell Monitoring. ACS Sensors, 2020, 5, 3165-3171.	7.8	22
128	Skin‣ike Stretchable Fuel Cell Based on Goldâ€Nanowireâ€Impregnated Porous Polymer Scaffolds. Small, 2020, 16, e2003269.	10.0	22
129	Electronic Skin Wearable Sensors for Detecting Lumbar–Pelvic Movements. Sensors, 2020, 20, 1510.	3.8	21
130	Multicompartmentalized vesosomes containing DOX loaded liposomes and 5FU loaded liposomes for synergistic tumor treatment. New Journal of Chemistry, 2019, 43, 4895-4899.	2.8	20
131	Poly(N-isopropylacrylamide) capped plasmonic nanoparticles as resonance intensity-based temperature sensors with linear correlation. Journal of Materials Chemistry C, 2017, 5, 10926-10932.	5.5	19
132	Covalent-Cross-Linked Plasmene Nanosheets. ACS Nano, 2019, 13, 6760-6769.	14.6	19
133	Bifunctional Fe3O4@AuNWs particle as wearable bending and strain sensor. Inorganic Chemistry Communication, 2019, 104, 98-104.	3.9	19
134	Embedding Pinhole Vertical Gold Nanowire Electronic Skins for Braille Recognition. Small, 2019, 15, e1804853.	10.0	19
135	Inhibited fragmentation of mAbs in buffered ionic liquids. Chemical Communications, 2015, 51, 8089-8092.	4.1	18
136	Shape Transformation of Constituent Building Blocks within Self-Assembled Nanosheets and Nano-origami. ACS Nano, 2018, 12, 1014-1022.	14.6	18
137	Liquid–Solid Interfacial Assemblies of Soft Materials for Functional Freestanding Layered Membrane–Based Devices toward Electrochemical Energy Systems. Advanced Energy Materials, 2019, 9, 1804005.	19.5	18
138	Title is missing!. Angewandte Chemie, 2003, 115, 465-468.	2.0	17
139	A pH-responsive asymmetric lipid vesicle as drug carrier. Journal of Microencapsulation, 2016, 33, 663-668.	2.8	17
140	Plasmene nanosheets as optical skin strain sensors. Nanoscale Horizons, 2020, 5, 1515-1523.	8.0	17
141	Soft gold nanowire sponge antenna for battery-free wireless pressure sensors. Nanoscale, 2021, 13, 3957-3966.	5.6	17
142	Fineâ€Tuning Au@Pd Nanocrystals for Maximum Plasmonâ€Enhanced Catalysis. Advanced Materials Interfaces, 2021, 8, 2001686.	3.7	17
143	Metallic Nanoparticles as Advanced Electrocatalysts. Science of Advanced Materials, 2012, 4, 784-797.	0.7	17
144	Systematic investigation of the SERS efficiency and SERS hotspots in gas-phase deposited Ag nanoparticle assemblies. Physical Chemistry Chemical Physics, 2017, 19, 5091-5101.	2.8	16

#	Article	IF	CITATIONS
145	Effect of Organic Modification on Multiwalled Carbon Nanotube Dispersions in Highly Concentrated Emulsions. ACS Omega, 2019, 4, 6647-6659.	3.5	16
146	Development of microstructure and evolution of rheological characteristics of a highly concentrated emulsion during emulsification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 342-350.	4.7	15
147	Ultrathin Fresnel lens based on plasmene nanosheets. Materials Today, 2019, 23, 9-15.	14.2	15
148	A gold nanowire-integrated soft wearable system for dynamic continuous non-invasive cardiac monitoring. Biosensors and Bioelectronics, 2022, 205, 114072.	10.1	15
149	Plasmene origami. Materials Today, 2016, 19, 363-364.	14.2	14
150	Free-standing nanoparticle superlattice sheets: From design to applications. Europhysics Letters, 2017, 119, 48004.	2.0	14
151	Effect of Incorporation of Multiwalled Carbon Nanotubes on the Microstructure and Flow Behavior of Highly Concentrated Emulsions. ACS Omega, 2018, 3, 13584-13597.	3.5	14
152	Grapheneâ€Enhanced 3D Chemical Mapping of Biological Specimens at Nearâ€Atomic Resolution. Advanced Functional Materials, 2018, 28, 1801439.	14.9	14
153	Substrate-Mediated Broadband Tunability in Plasmonic Resonances of Metal Nanoantennas on Finite High-Permittivity Dielectric Substrate. Plasmonics, 2015, 10, 1663-1673.	3.4	13
154	Dual effect of F-actin targeted carrier combined with antimitotic drug on aggressive colorectal cancer cytoskeleton: Allying dissimilar cell cytoskeleton disrupting mechanisms. International Journal of Pharmaceutics, 2016, 513, 464-472.	5.2	13
155	Codelivery of doxorubicin and sodium tanshinone IIA sulfonate using multicompartmentalized vesosomes to enhance synergism and prevent doxorubicin-induced cardiomyocyte apoptosis. Journal of Materials Chemistry B, 2018, 6, 5243-5247.	5.8	13
156	Direct Imaging of Liquid–Nanoparticle Interfaces with Atom Probe Tomography. Journal of Physical Chemistry C, 2020, 124, 19389-19395.	3.1	13
157	DNA based strategy to nanoparticle superlattices. Methods, 2014, 67, 215-226.	3.8	12
158	Extensional viscosity of copper nanowire suspensions in an aqueous polymer solution. Soft Matter, 2015, 11, 8076-8082.	2.7	12
159	Soft Plasmonics: Design, Fabrication, Characterization, and Applications. Advanced Optical Materials, 2022, 10, 2101436.	7.3	12
160	Preferences and User Experiences of Wearable Devices in Epilepsy. Neurology, 2022, 99, .	1.1	12
161	High-adhesion vertically aligned gold nanowire stretchable electrodes <i>via</i> a thin-layer soft nailing strategy. Nanoscale Horizons, 2019, 4, 1380-1387.	8.0	11
162	Site-specific Ag coating on concave Au nanoarrows by controlling the surfactant concentration. Nanoscale Horizons, 2019, 4, 940-946.	8.0	11

#	Article	IF	CITATIONS
163	Highly Selective Nanostructured Electrochemical Sensor Utilizing Densely Packed Ultrathin Gold Nanowires Film. Electroanalysis, 2020, 32, 1850-1858.	2.9	11
164	Lightweight, flexible, nanorod electrode with high electrocatalytic activity. Electrochemistry Communications, 2013, 27, 120-123.	4.7	10
165	Enhanced enzymatic degradation resistance of plasmid DNA in ionic liquids. RSC Advances, 2015, 5, 43839-43844.	3.6	10
166	Probing Soft Corona Structures of DNA-Capped Nanoparticles by Small Angle Neutron Scattering. Journal of Physical Chemistry C, 2015, 119, 18773-18778.	3.1	10
167	Self-assembled Janus plasmene nanosheets as flexible 2D photocatalysts. Materials Horizons, 2021, 8, 259-266.	12.2	10
168	Seagrass-inspired design of soft photocatalytic sheets based on hydrogel-integrated free-standing 2D nanoassemblies of multifunctional nanohexagons. Materials Horizons, 2021, 8, 2533-2540.	12.2	10
169	Pulsed-voltage atom probe tomography of low conductivity and insulator materials by application of ultrathin metallic coating on nanoscale specimen geometry. Ultramicroscopy, 2017, 181, 150-159.	1.9	9
170	Orientation-Dependent Soft Plasmonics of Gold Nanobipyramid Plasmene Nanosheets. Nano Letters, 2021, 21, 389-396.	9.1	9
171	A multifunctional biomimetic hybrid nanocarrier for the controlled delivery of chemotherapy drugs by near-infrared light. New Journal of Chemistry, 2019, 43, 2752-2757.	2.8	8
172	A Stretchable Gold Nanowire Sensor and Its Characterization Using Machine Learning for Motion Tracking. IEEE Sensors Journal, 2021, 21, 15269-15276.	4.7	8
173	Soft gold nanowire sponges for strain-insensitive conductors, wearable energy storage and catalytic converters. Journal of Materials Chemistry C, 2021, 9, 15329-15336.	5.5	8
174	Self-Assembled Plasmonic Pyramids from Anisotropic Nanoparticles for High-Efficient SERS. Journal of Analysis and Testing, 2017, 1, 335-343.	5.1	7
175	Soft, Disruptive and Wearable Electrochemical Biosensors. Current Analytical Chemistry, 2022, 18, 689-704.	1.2	7
176	Transparent gold nano-membranes for the enhanced light trapping of the indium tin oxide films. Optical Materials Express, 2014, 4, 321.	3.0	6
177	Catâ€Tailâ€Like Mesostructured Silica Fibers Decorated with Gold Nanowires: Synthesis, Characterization, and Application as Stretchable Sensors. ChemPlusChem, 2019, 84, 1031-1038.	2.8	6
178	Enzyme-like electrocatalysis from 2D gold nanograss-nanocube assemblies. Journal of Colloid and Interface Science, 2020, 575, 24-34.	9.4	6
179	Smart materials and devices for electronic textiles. MRS Bulletin, 2021, 46, 488-490.	3.5	6
180	Thermoresponsive chiral plasmonic nanoparticles. Nanoscale, 2022, 14, 4292-4303.	5.6	6

#	Article	IF	CITATIONS
181	An Adaptive Soft Plasmonic Nanosheet Resonator. Laser and Photonics Reviews, 2019, 13, 1800302.	8.7	5
182	Active strain engineering of soft plasmene nanosheets by thermoresponsive hydrogels. Journal of Materials Chemistry C, 2021, 9, 12720-12726.	5.5	5
183	Hairy gold nanorods: gold nanowire growth on nanosubstrates [Invited]. Optical Materials Express, 2020, 10, 342.	3.0	5
184	Two-Dimensional Nanoassemblies from Plasmonic Matryoshka Nanoframes. Journal of Physical Chemistry C, 2021, 125, 27753-27762.	3.1	5
185	A Review on Epidermal Nanogenerators: Recent Progress of the Future Selfâ€Powered Skins. Small Structures, 2022, 3, .	12.0	5
186	Size Effect on Failure of Pre-stretched Free-Standing Nanomembranes. Nanoscale Research Letters, 2010, 5, 1236-1239.	5.7	4
187	Self-Luminous Fiber-Reinforced Polymer Composites for Structural Applications. Journal of Materials in Civil Engineering, 2015, 27, 04014120.	2.9	4
188	Functional Graphene Derivatives for Chemotherapy-Based Synergistic Tumor Therapy. Nano, 2019, 14, 1930006.	1.0	4
189	Cell Sheetâ€Like Soft Nanoreactor Arrays. Advanced Materials, 2022, 34, e2105630.	21.0	4
190	SERS: Ultrathin Plasmene Nanosheets as Soft and Surface-Attachable SERS Substrates with High Signal Uniformity (Advanced Optical Materials 7/2015). Advanced Optical Materials, 2015, 3, 918-918.	7.3	3
191	Stable copper nanowire-graphene oxide thin films for nonlinear photonics. OSA Continuum, 2019, 2, 1455.	1.8	3
192	Mechanically-gated electrochemical ionic channels with chemically modified vertically aligned gold nanowires. IScience, 2021, 24, 103307.	4.1	3
193	Evaporative self-assembly of gold nanorings via a surface acoustic wave atomization. Proceedings of SPIE, 2011, , .	0.8	2
194	Ultra-sensitive photon sensor based on self-assembled nanoparticle plasmonic membrane resonator. , 2016, , .		2
195	The Virtual-Spine Platform—Acquiring, visualizing, and analyzing individual sitting behavior. PLoS ONE, 2018, 13, e0195670.	2.5	2
196	Machine learning based temperature prediction of poly(<i>N</i> -isopropylacrylamide)-capped plasmonic nanoparticle solutions. Physical Chemistry Chemical Physics, 2019, 21, 24808-24819.	2.8	2
197	On-demand bioenergy from a fingertip. Trends in Chemistry, 2021, 3, 800-802.	8.5	2
198	Catâ€Tailâ€Like Mesostructured Silica Fibers Decorated with Gold Nanowires: Synthesis, Characterization, and Application as Stretchable Sensors. ChemPlusChem, 2019, 84, 1030-1030.	2.8	1

#	Article	IF	CITATIONS
199	Fabrication, Properties and Applications of Plasmene Nanosheet. International Journal of Behavioral and Consultation Therapy, 2017, , 109-136.	0.4	1
200	Mosquito-inspired design of resistive antennae for ultrasensitive acoustic detection. Nanoscale, 2022, 14, 10108-10117.	5.6	1
201	Nucleic Acid Engineering. , 0, , 549-575.		0
202	Out-of-Hospital Body Movement Data Collection Using E-Skin Sensors. , 2019, , .		0