
J Hans C Cornelissen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3518735/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Great granny still ruling from the grave: Phenotypical response of plant performance and seed functional traits to salt stress affects multiple generations of a halophyte. Journal of Ecology, 2022, 110, 117-128.	1.9	10
2	Litter nitrogen concentration changes mediate effects of drought and plant species richness on litter decomposition. Oecologia, 2022, 198, 507-518.	0.9	2
3	Longâ€ŧerm legacies of seasonal extremes in Arctic ecosystem functioning. Global Change Biology, 2022, 28, 3161-3162.	4.2	3
4	Winters are changing: snow effects on Arctic and alpine tundra ecosystems. Arctic Science, 2022, 8, 572-608.	0.9	43
5	Plant diversity has stronger linkage with soil fungal diversity than with bacterial diversity across grasslands of northern China. Global Ecology and Biogeography, 2022, 31, 886-900.	2.7	20
6	Patterns of free amino acids in tundra soils reflect mycorrhizal type, shrubification, and warming. Mycorrhiza, 2022, 32, 305-313.	1.3	2
7	Stem Trait Spectra Underpin Multiple Functions of Temperate Tree Species. Frontiers in Plant Science, 2022, 13, 769551.	1.7	9
8	Contrasting nitrogen cycling between herbaceous wetland and terrestrial ecosystems inferred from plant and soil nitrogen isotopes across China. Journal of Ecology, 2022, 110, 1259-1270.	1.9	3
9	Stem traits, compartments and tree species affect fungal communities on decaying wood. Environmental Microbiology, 2022, 24, 3625-3639.	1.8	4
10	Net plant interactions are highly variable and weakly dependent on climate at the global scale. Ecology Letters, 2022, 25, 1580-1593.	3.0	17
11	Tree species with conservative foliar nutrient status and strong phosphorus homeostasis are regionally abundant in subtropical forests. Journal of Ecology, 2022, 110, 1497-1507.	1.9	3
12	Explanations for nitrogen decline. Science, 2022, 376, 1169-1170.	6.0	4
13	High exposure of global tree diversity to human pressure. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	18
14	Size matters for linking traits to ecosystem multifunctionality. Trends in Ecology and Evolution, 2022, 37, 803-813.	4.2	5
15	Snow roots: Where are they and what are they for?. Ecology, 2021, 102, e03255.	1.5	0
16	Allometry rather than abiotic drivers explains biomass allocation among leaves, stems and roots of <i>Artemisia</i> across a large environmental gradient in China. Journal of Ecology, 2021, 109, 1026-1040.	1.9	24
17	Global root traits (GRooT) database. Global Ecology and Biogeography, 2021, 30, 25-37.	2.7	90
18	Abundance-weighted plant functional trait variation differs between terrestrial and wetland habitats along wide climatic gradients. Science China Life Sciences, 2021, 64, 593-605.	2.3	7

#	Article	IF	CITATIONS
19	Towards ecological science for all by all. Journal of Applied Ecology, 2021, 58, 206-213.	1.9	7
20	Climatic and evolutionary contexts are required to infer plant life history strategies from functional traits at a global scale. Ecology Letters, 2021, 24, 970-983.	3.0	19
21	Functional rarity and evenness are key facets of biodiversity to boost multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	46
22	Dynamic feedbacks among tree functional traits, termite populations and deadwood turnover. Journal of Ecology, 2021, 109, 1578-1590.	1.9	12
23	The effect of plant size and branch traits on rainfall interception of 10 temperate tree species. Ecohydrology, 2021, 14, e2349.	1.1	4
24	New field wind manipulation methodology reveals adaptive responses of steppe plants to increased and reduced wind speed. Plant Methods, 2021, 17, 5.	1.9	9
25	Global patterns of potential future plant diversity hidden in soil seed banks. Nature Communications, 2021, 12, 7023.	5.8	32
26	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
27	Nonâ€negligible contribution of subordinates in communityâ€level litter decomposition: Deciduous trees in an evergreen world. Journal of Ecology, 2020, 108, 1713-1724.	1.9	4
28	Nutrient Resorption from Leaves of Wetland Plants in a Constructed Wetland Depends on Green Leaf Nutrient Content and Life Form. Wetlands, 2020, 40, 983-991.	0.7	2
29	Invertebrate phenology modulates the effect of the leaf economics spectrum on litter decomposition rate across 41 subtropical woody plant species. Functional Ecology, 2020, 34, 735-746.	1.7	9
30	Variation in plant leaf traits affects transmission and detectability of herbivore vibrational cues. Ecology and Evolution, 2020, 10, 12277-12289.	0.8	11
31	Small-scale switch in cover–perimeter relationships of patches indicates shift of dominant species during grassland degradation. Journal of Plant Ecology, 2020, 13, 704-712.	1.2	10
32	Plant community flood resilience in intensively managed grasslands and the role of the plant economic spectrum. Journal of Applied Ecology, 2020, 57, 1524-1534.	1.9	13
33	Allometric coâ€variation of xylem and stomata across diverse woody seedlings. Plant, Cell and Environment, 2020, 43, 2301-2310.	2.8	13
34	Living Litter: Dynamic Trait Spectra Predict Fauna Composition. Trends in Ecology and Evolution, 2020, 35, 886-896.	4.2	43
35	Methodology matters for comparing coarse wood and bark decay rates across tree species. Methods in Ecology and Evolution, 2020, 11, 828-838.	2.2	14
36	Multiple abiotic and biotic drivers of longâ€ŧerm wood decomposition within and among species in the semiâ€arid inland dunes: A dual role for stem diameter. Functional Ecology, 2020, 34, 1472-1484.	1.7	14

#	Article	IF	CITATIONS
37	Assessing the reliability of predicted plant trait distributions at the global scale. Global Ecology and Biogeography, 2020, 29, 1034-1051.	2.7	36
38	Simulating functional diversity of European natural forests along climatic gradients. Journal of Biogeography, 2020, 47, 1069-1085.	1.4	19
39	Association of leaf silicon content with chronic wind exposure across and within herbaceous plant species. Global Ecology and Biogeography, 2020, 29, 711-721.	2.7	5
40	Can flooding-induced greenhouse gas emissions be mitigated by trait-based plant species choice?. Science of the Total Environment, 2020, 727, 138476.	3.9	12
41	Complexity revealed in the greening of the Arctic. Nature Climate Change, 2020, 10, 106-117.	8.1	447
42	Winter cover crop legacy effects on litter decomposition act through litter quality and microbial community changes. Journal of Applied Ecology, 2019, 56, 132-143.	1.9	45
43	Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17867-17873.	3.3	141
44	Traits including leaf dry matter content and leaf pH dominate over forest soil pH as drivers of litter decomposition among 60 species. Functional Ecology, 2019, 33, 1798-1810.	1.7	34
45	Phragmites australis meets Suaeda salsa on the "red beach― Effects of an ecosystem engineer on salt-marsh litter decomposition. Science of the Total Environment, 2019, 693, 133477.	3.9	17
46	Robustness of trait connections across environmental gradients and growth forms. Global Ecology and Biogeography, 2019, 28, 1806-1826.	2.7	56
47	Leaf economics and plant hydraulics drive leaf : wood area ratios. New Phytologist, 2019, 224, 1544-1556.	3.5	77
48	Responses of community structure and diversity to nitrogen deposition and rainfall addition in contrasting steppes are ecosystem-dependent and dwarfed by year-to-year community dynamics. Annals of Botany, 2019, 124, 461-469.	1.4	8
49	Effects of Epixylic Vegetation Removal on the Dynamics of the Microbial Community Composition in Decaying Logs in an Alpine Forest. Ecosystems, 2019, 22, 1478-1496.	1.6	13
50	Similar Growth Performance but Contrasting Biomass Allocation of Root-Flooded Terrestrial Plant Alternanthera philoxeroides (Mart.) Griseb. in Response to Nutrient Versus Dissolved Oxygen Stress. Frontiers in Plant Science, 2019, 10, 111.	1.7	9
51	Nitrogen transfer from one plant to another depends on plant biomass production between conspecific and heterospecific species via a common arbuscular mycorrhizal network. Environmental Science and Pollution Research, 2019, 26, 8828-8837.	2.7	30
52	Convergent xylem widening among organs across diverse woody seedlings. New Phytologist, 2019, 222, 1873-1882.	3.5	11
53	Sixteen years of simulated summer and winter warming have contrasting effects on soil mite communities in a sub-Arctic peat bog. Polar Biology, 2019, 42, 581-591.	0.5	9
54	Leaf and root nutrient concentrations and stoichiometry along aridity and soil fertility gradients. Journal of Vegetation Science, 2019, 30, 291-300.	1.1	18

#	Article	IF	CITATIONS
55	Non-additive effects of leaf and twig mixtures from different tree species on experimental litter-bed flammability. Plant and Soil, 2019, 436, 311-324.	1.8	18
56	Functional evenness of N-to-P ratios of evergreen-deciduous mixtures predicts positive non-additive effect on leaf litter decomposition. Plant and Soil, 2019, 436, 299-309.	1.8	8
57	Experimental sand burial and precipitation enhancement alter plant and soil carbon allocation in a semi-arid steppe in north China. Science of the Total Environment, 2019, 651, 3099-3106.	3.9	7
58	Inter- and intraspecific variation in leaf economic traits in wheat and maize. AoB PLANTS, 2018, 10, ply006.	1.2	31
59	Advances in flowering phenology across the Northern Hemisphere are explained by functional traits. Global Ecology and Biogeography, 2018, 27, 310-321.	2.7	77
60	Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5229-5234.	3.3	90
61	The cover uncovered: Bark control over wood decomposition. Journal of Ecology, 2018, 106, 2147-2160.	1.9	45
62	Specific leaf area predicts dryland litter decomposition via two mechanisms. Journal of Ecology, 2018, 106, 218-229.	1.9	52
63	Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality. Ecology Letters, 2018, 21, 31-42.	3.0	74
64	Global trait–environment relationships of plant communities. Nature Ecology and Evolution, 2018, 2, 1906-1917.	3.4	397
65	Tundra Trait Team: A database of plant traits spanning the tundra biome. Global Ecology and Biogeography, 2018, 27, 1402-1411.	2.7	57
66	A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote Sensing of Environment, 2018, 218, 69-88.	4.6	104
67	Plant functional trait change across a warming tundra biome. Nature, 2018, 562, 57-62.	13.7	451
68	Climate and soils together regulate photosynthetic carbon isotope discrimination within C ₃ plants worldwide. Global Ecology and Biogeography, 2018, 27, 1056-1067.	2.7	85
69	Phylogenetic patterns and phenotypic profiles of the species of plants and mammals farmed for food. Nature Ecology and Evolution, 2018, 2, 1808-1817.	3.4	59
70	Towards global data products of Essential Biodiversity Variables on species traits. Nature Ecology and Evolution, 2018, 2, 1531-1540.	3.4	163
71	Changes in quantity rather than palatability of alpine meadow species induce cascading effects of longâ€ŧerm nitrogen fertilization on phytophagous insect abundance. Journal of Vegetation Science, 2018, 29, 867-876.	1.1	3
72	BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecology and Biogeography, 2018, 27, 760-786.	2.7	289

#	Article	IF	CITATIONS
73	Shifts in priming partly explain impacts of longâ€ŧerm nitrogen input in different chemical forms on soil organic carbon storage. Global Change Biology, 2018, 24, 4160-4172.	4.2	24
74	Multiple facets of biodiversity drive the diversity–stability relationship. Nature Ecology and Evolution, 2018, 2, 1579-1587.	3.4	296
75	Tree Sapling Responses to 10 Years of Experimental Manipulation of Temperature, Nutrient Availability, and Shrub Cover at the Pyrenean Treeline. Frontiers in Plant Science, 2018, 9, 1871.	1.7	13
76	Litter for life: assessing the multifunctional legacy of plant traits. Journal of Ecology, 2017, 105, 1163-1168.	1.9	42
77	Taxonomic effect on plant base concentrations and stoichiometry at the tips of the phylogeny prevails over environmental effect along a large scale gradient. Oikos, 2017, 126, 1241-1249.	1.2	6
78	How interacting fungal species and mineral nitrogen inputs affect transfer of nitrogen from litter via arbuscular mycorrhizal mycelium. Environmental Science and Pollution Research, 2017, 24, 9791-9801.	2.7	13
79	Climate, soil and plant functional types as drivers of global fineâ€root trait variation. Journal of Ecology, 2017, 105, 1182-1196.	1.9	234
80	Behavioural, ecological and evolutionary responses to extreme climatic events: challenges and directions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160134.	1.8	122
81	Biodiversity–ecosystem function relationships change through primary succession. Oikos, 2017, 126, 1637-1649.	1.2	37
82	Do shallow soil, low water availability, or their combination increase the competition between grasses with different root systems in karst soil?. Environmental Science and Pollution Research, 2017, 24, 10640-10651.	2.7	30
83	Scaling up flammability from individual leaves to fuel beds. Oikos, 2017, 126, 1428-1438.	1.2	45
84	Are litter decomposition and fire linked through plant species traits?. New Phytologist, 2017, 216, 653-669.	3.5	50
85	Mapping local and global variability in plant trait distributions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10937-E10946.	3.3	159
86	A test of the hierarchical model of litter decomposition. Nature Ecology and Evolution, 2017, 1, 1836-1845.	3.4	172
87	Towards a thesaurus of plant characteristics: an ecological contribution. Journal of Ecology, 2017, 105, 298-309.	1.9	114
88	A global method for calculating plant <scp>CSR</scp> ecological strategies applied across biomes worldâ€wide. Functional Ecology, 2017, 31, 444-457.	1.7	330
89	Faunal community consequence of interspecific bark trait dissimilarity in earlyâ€stage decomposing logs. Functional Ecology, 2016, 30, 1957-1966.	1.7	31
90	Responsiveness of performance and morphological traits to experimental submergence predicts field distribution pattern of wetland plants. Journal of Vegetation Science, 2016, 27, 340-351.	1.1	12

#	Article	IF	CITATIONS
91	Linking performance trait stability with species distribution: the case of <i>Artemisia</i> and its close relatives in northern China. Journal of Vegetation Science, 2016, 27, 123-132.	1.1	6
92	Patterns of natural fungal community assembly during initial decay of coniferous and broadleaf tree logs. Ecosphere, 2016, 7, e01393.	1.0	38
93	Strong but diverging clonality - climate relationships of different plant clades explain weak overall pattern across China. Scientific Reports, 2016, 6, 26850.	1.6	5
94	Reinforcing loose foundation stones in trait-based plant ecology. Oecologia, 2016, 180, 923-931.	0.9	335
95	Does plant size affect growth responses to water availability at glacial, modern and future CO ₂ concentrations?. Ecological Research, 2016, 31, 213-227.	0.7	8
96	Plant functional traits have globally consistent effects on competition. Nature, 2016, 529, 204-207.	13.7	655
97	The global spectrum of plant form and function. Nature, 2016, 529, 167-171.	13.7	2,022
98	Functional Resilience against Climate-Driven Extinctions – Comparing the Functional Diversity of European and North American Tree Floras. PLoS ONE, 2016, 11, e0148607.	1.1	19
99	Termites amplify the effects of wood traits on decomposition rates among multiple bamboo and dicot woody species. Journal of Ecology, 2015, 103, 1214-1223.	1.9	38
100	Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling. New Phytologist, 2015, 208, 280-293.	3.5	142
101	Simple measures of climate, soil properties and plant traits predict nationalâ€scale grassland soil carbon stocks. Journal of Applied Ecology, 2015, 52, 1188-1196.	1.9	79
102	Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology, 2015, 21, 4508-4519.	4.2	81
103	Contrasting effects of tree diversity on young tree growth and resistance to insect herbivores across three biodiversity experiments. Oikos, 2015, 124, 1674-1685.	1.2	64
104	Evolutionary Position and Leaf Toughness Control Chemical Transformation of Litter, and Drought Reinforces This Control: Evidence from a Common Garden Experiment across 48 Species. PLoS ONE, 2015, 10, e0143140.	1.1	6
105	Larger phylogenetic distances in litter mixtures: lower microbial biomass and higher C/N ratios but equal mass loss. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150103.	1.2	16
106	Integrated plant phenotypic responses to contrasting above―and belowâ€ground resources: key roles of specific leaf area and root mass fraction. New Phytologist, 2015, 206, 1247-1260.	3.5	261
107	Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an earth system model. Clobal Change Biology, 2015, 21, 3074-3086.	4.2	94
108	Impact of land-use on carbon storage as dependent on soil texture: Evidence from a desertified dryland using repeated paired sampling design. Journal of Environmental Management, 2015, 150, 489-498.	3.8	8

#	Article	IF	CITATIONS
109	Untangling interacting mechanisms of seed mass variation with elevation: insights from the comparison of inter-specific and intra-specific studies on eastern Tibetan angiosperm species. Plant Ecology, 2015, 216, 283-292.	0.7	13
110	Temperate forest and open landscapes are distinct alternative states as reflected in canopy height and tree cover. Trends in Ecology and Evolution, 2015, 30, 501-502.	4.2	8
111	Geographic pattern and effects of climate and taxonomy on nonstructural carbohydrates of Artemisia species and their close relatives across northern China. Biogeochemistry, 2015, 125, 337-348.	1.7	6
112	Decomposition of 51 semidesert species from wide-ranging phylogeny is faster in standing and sand-buried than in surface leaf litters: implications for carbon and nutrient dynamics. Plant and Soil, 2015, 396, 175-187.	1.8	27
113	C:N:P stoichiometry of <i>Artemisia</i> species and close relatives across northern China: unravelling effects of climate, soil and taxonomy. Journal of Ecology, 2015, 103, 1020-1031.	1.9	74
114	Burn or rot: leaf traits explain why flammability and decomposability are decoupled across species. Functional Ecology, 2015, 29, 1486-1497.	1.7	91
115	Interactions between Fine Wood Decomposition and Flammability. Forests, 2014, 5, 827-846.	0.9	18
116	Plant traits and ecosystem effects of clonality: a new research agenda. Annals of Botany, 2014, 114, 369-376.	1.4	76
117	Understanding the ecosystem implications of the angiosperm rise to dominance: leaf litter decomposability among magnoliids and other basal angiosperms. Journal of Ecology, 2014, 102, 337-344.	1.9	17
118	Winter climate change, plant traits and nutrient and carbon cycling in cold biomes. Ecological Research, 2014, 29, 517-527.	0.7	28
119	Digging deep to open the white black box of snow root phenology. Ecological Research, 2014, 29, 529-534.	0.7	9
120	The Tree of Life in ecosystems: evolution of plant effects on carbon and nutrient cycling. Journal of Ecology, 2014, 102, 269-274.	1.9	22
121	Which is a better predictor of plant traits: temperature or precipitation?. Journal of Vegetation Science, 2014, 25, 1167-1180.	1.1	323
122	Management, winter climate and plant–soil feedbacks on ski slopes: a synthesis. Ecological Research, 2014, 29, 583-592.	0.7	20
123	Why trees and shrubs but rarely trubs?. Trends in Ecology and Evolution, 2014, 29, 433-434.	4.2	46
124	Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. Global Ecology and Biogeography, 2014, 23, 1046-1057.	2.7	136
125	Long-term vegetation dynamic in the Northwestern Caucasus: which communities are more affected by upward shifts of plant species?. Alpine Botany, 2013, 123, 77-85.	1.1	22
126	A broader perspective on plant domestication and nutrient and carbon cycling. New Phytologist, 2013, 198, 331-333.	3.5	12

#	Article	IF	CITATIONS
127	Correlations between physical and chemical defences in plants: tradeoffs, syndromes, or just many different ways to skin a herbivorous cat?. New Phytologist, 2013, 198, 252-263.	3.5	124
128	Functional traits predict relationship between plant abundance dynamic and long-term climate warming. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18180-18184.	3.3	174
129	Abiotic drivers and plant traits explain landscapeâ€scale patterns in soil microbial communities. Ecology Letters, 2012, 15, 1230-1239.	3.0	511
130	A rediscovered treasure: mycorrhizal intensity database for 3000 vascular plant species across the former Soviet Union. Ecology, 2012, 93, 689-690.	1.5	113
131	Controls on Coarse Wood Decay in Temperate Tree Species: Birth of the LOGLIFE Experiment. Ambio, 2012, 41, 231-245.	2.8	92
132	Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change, 2012, 2, 453-457.	8.1	745
133	Soil nutrient patchiness and plant genotypes interact on the production potential and decomposition of root and shoot litter: evidence from short-term laboratory experiments with Triticum aestivum. Plant and Soil, 2012, 353, 145-154.	1.8	14
134	Interspecific differences in wood decay rates: insights from a new shortâ€ŧerm method to study longâ€ŧerm wood decomposition. Journal of Ecology, 2012, 100, 161-170.	1.9	136
135	Species traits and their nonâ€∎dditive interactions control the water economy of bryophyte cushions. Journal of Ecology, 2012, 100, 222-231.	1.9	44
136	A plant economics spectrum of litter decomposability. Functional Ecology, 2012, 26, 56-65.	1.7	312
137	Arctic warming on two continents has consistent negative effects on lichen diversity and mixed effects on bryophyte diversity. Global Change Biology, 2012, 18, 1096-1107.	4.2	113
138	Different interâ€annual responses to availability and form of nitrogen explain species coexistence in an alpine meadow community after release from grazing. Global Change Biology, 2012, 18, 3100-3111.	4.2	50
139	Multiple mechanisms for trait effects on litter decomposition: moving beyond homeâ€field advantage with a new hypothesis. Journal of Ecology, 2012, 100, 619-630.	1.9	205
140	Reservations about preservations: storage methods affect δ ¹³ C signatures differently even in closely related soil fauna. Methods in Ecology and Evolution, 2012, 3, 138-144.	2.2	28
141	Global patterns of leaf mechanical properties. Ecology Letters, 2011, 14, 301-312.	3.0	418
142	Global to community scale differences in the prevalence of convergent over divergent leaf trait distributions in plant assemblages. Global Ecology and Biogeography, 2011, 20, 755-765.	2.7	106
143	Leaf pH as a plant trait: species-driven rather than soil-driven variation. Functional Ecology, 2011, 25, 449-455.	1.7	52
144	A Race for Space? How Sphagnum fuscum stabilizes vegetation composition during long-term climate manipulations. Global Change Biology, 2011, 17, 2162-2171.	4.2	48

#	Article	IF	CITATIONS
145	How do bryophytes govern generative recruitment of vascular plants?. New Phytologist, 2011, 190, 1019-1031.	3.5	96
146	Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity and Conservation, 2010, 19, 2873-2893.	1.2	759
147	Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits?. New Phytologist, 2010, 186, 879-889.	3.5	175
148	Evidence of the â€~plant economics spectrum' in a subarctic flora. Journal of Ecology, 2010, 98, 362-373.	1.9	434
149	Seasonal climate manipulations result in speciesâ€specific changes in leaf nutrient levels and isotopic composition in a subâ€arctic bog. Functional Ecology, 2009, 23, 680-688.	1.7	64
150	Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Global Change Biology, 2009, 15, 1153-1172.	4.2	344
151	Plant traits and wood fates across the globe: rotted, burned, or consumed?. Global Change Biology, 2009, 15, 2431-2449.	4.2	318
152	Niche assembly of epiphytic bryophyte communities in the Guianas: a regional approach. Journal of Biogeography, 2009, 36, 2076-2084.	1.4	74
153	Determinants of cryptogam composition and diversity in <i>Sphagnum</i> â€dominated peatlands: the importance of temporal, spatial and functional scales. Journal of Ecology, 2009, 97, 299-310.	1.9	45
154	An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species. Journal of Ecology, 2009, 97, 886-900.	1.9	175
155	Clobal metaâ€analysis of wood decomposition rates: a role for trait variation among tree species?. Ecology Letters, 2009, 12, 45-56.	3.0	394
156	Amino acid uptake among wide-ranging moss species may contribute to their strong position in higher-latitude ecosystems. Plant and Soil, 2008, 304, 199-208.	1.8	63
157	Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 2008, 11, 1065-1071.	3.0	1,913
158	Scaling environmental change through the communityâ€level: a traitâ€based responseâ€andâ€effect framework for plants. Global Change Biology, 2008, 14, 1125-1140.	4.2	981
159	The LEDA Traitbase: a database of lifeâ€history traits of the Northwest European flora. Journal of Ecology, 2008, 96, 1266-1274.	1.9	1,306
160	Comparative Cryptogam Ecology: A Review of Bryophyte and Lichen Traits that Drive Biogeochemistry. Annals of Botany, 2007, 99, 987-1001.	1.4	369
161	Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecology Letters, 2007, 10, 619-627.	3.0	379
162	Vascular Plant Responses to Elevated CO2 in a Temperate Lowland Sphagnum Peatland. Plant Ecology, 2006, 182, 13-24.	0.7	14

#	Article	IF	CITATIONS
163	Moss Responses to Elevated CO2 and Variation in Hydrology in a Temperate Lowland Peatland. Plant Ecology, 2006, 182, 27-40.	0.7	30
164	Foliar pH as a new plant trait: can it explain variation in foliar chemistry and carbon cycling processes among subarctic plant species and types?. Oecologia, 2006, 147, 315-326.	0.9	88
165	Assessing the generality of global leaf trait relationships. New Phytologist, 2005, 166, 485-496.	3.5	1,704
166	Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 2005, 14, 411-421.	2.7	669
167	Biomass production, N:P ratio and nutrient limitation in a Caucasian alpine tundra plant community. Journal of Vegetation Science, 2005, 16, 399-406.	1.1	59
168	The impact of hemiparasitic plant litter on decomposition: direct, seasonal and litter mixing effects. Journal of Ecology, 2005, 93, 87-98.	1.9	70
169	Special issue – Plants and Climate Change. Plant Ecology, 2005, , 1.	0.7	0
170	Biomass production, N:P ratio and nutrient limitation in a Caucasian alpine tundra plant community. Journal of Vegetation Science, 2005, 16, 399.	1.1	3
171	Summer warming and increased winter snow cover affect Sphagnum fuscum growth, structure and production in a sub-arctic bog. Global Change Biology, 2004, 10, 93-104.	4.2	169
172	The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 2004, 15, 295-304.	1.1	1,198
173	The worldwide leaf economics spectrum. Nature, 2004, 428, 821-827.	13.7	6,489
174	Title is missing!. Plant Ecology, 2003, 166, 117-129.	0.7	49
175	Leaf traits and herbivore selection in the field and in cafeteria experiments. Austral Ecology, 2003, 28, 642-650.	0.7	180
176	Functional traits of woody plants: correspondence of species rankings between field adults and laboratoryâ€grown seedlings?. Journal of Vegetation Science, 2003, 14, 311-322.	1.1	158
177	DECOMPOSITION OF SUB-ARCTIC PLANTS WITH DIFFERING NITROGEN ECONOMIES: A FUNCTIONAL ROLE FOR HEMIPARASITES. Ecology, 2003, 84, 3209-3221.	1.5	156
178	Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings?. Journal of Vegetation Science, 2003, 14, 311.	1.1	10