J Hans C Cornelissen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3518735/publications.pdf

Version: 2024-02-01

178 papers 33,346 citations

67 h-index 175 g-index

184 all docs

184 docs citations

times ranked

184

24981 citing authors

#	Article	IF	CITATIONS
1	The worldwide leaf economics spectrum. Nature, 2004, 428, 821-827.	13.7	6,489
2	The global spectrum of plant form and function. Nature, 2016, 529, 167-171.	13.7	2,022
3	Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 2008, 11, 1065-1071.	3.0	1,913
4	Assessing the generality of global leaf trait relationships. New Phytologist, 2005, 166, 485-496.	3.5	1,704
5	The LEDA Traitbase: a database of lifeâ€history traits of the Northwest European flora. Journal of Ecology, 2008, 96, 1266-1274.	1.9	1,306
6	The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 2004, 15, 295-304.	1.1	1,198
7	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
8	Scaling environmental change through the communityâ€level: a traitâ€based responseâ€andâ€effect framework for plants. Global Change Biology, 2008, 14, 1125-1140.	4.2	981
9	Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity and Conservation, 2010, 19, 2873-2893.	1.2	759
10	Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change, 2012, 2, 453-457.	8.1	745
11	Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 2005, 14, 411-421.	2.7	669
12	Plant functional traits have globally consistent effects on competition. Nature, 2016, 529, 204-207.	13.7	655
13	Abiotic drivers and plant traits explain landscapeâ€scale patterns in soil microbial communities. Ecology Letters, 2012, 15, 1230-1239.	3.0	511
14	Plant functional trait change across a warming tundra biome. Nature, 2018, 562, 57-62.	13.7	451
15	Complexity revealed in the greening of the Arctic. Nature Climate Change, 2020, 10, 106-117.	8.1	447
16	Evidence of the â€~plant economics spectrum' in a subarctic flora. Journal of Ecology, 2010, 98, 362-373.	1.9	434
17	Global patterns of leaf mechanical properties. Ecology Letters, 2011, 14, 301-312.	3.0	418
18	Global trait–environment relationships of plant communities. Nature Ecology and Evolution, 2018, 2, 1906-1917.	3.4	397

#	Article	IF	CITATIONS
19	Global metaâ€analysis of wood decomposition rates: a role for trait variation among tree species?. Ecology Letters, 2009, 12, 45-56.	3.0	394
20	Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecology Letters, 2007, 10, 619-627.	3.0	379
21	Comparative Cryptogam Ecology: A Review of Bryophyte and Lichen Traits that Drive Biogeochemistry. Annals of Botany, 2007, 99, 987-1001.	1.4	369
22	Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Global Change Biology, 2009, 15, 1153-1172.	4.2	344
23	Reinforcing loose foundation stones in trait-based plant ecology. Oecologia, 2016, 180, 923-931.	0.9	335
24	A global method for calculating plant <scp>CSR</scp> ecological strategies applied across biomes worldâ€wide. Functional Ecology, 2017, 31, 444-457.	1.7	330
25	Which is a better predictor of plant traits: temperature or precipitation?. Journal of Vegetation Science, 2014, 25, 1167-1180.	1.1	323
26	Plant traits and wood fates across the globe: rotted, burned, or consumed?. Global Change Biology, 2009, 15, 2431-2449.	4.2	318
27	A plant economics spectrum of litter decomposability. Functional Ecology, 2012, 26, 56-65.	1.7	312
28	Multiple facets of biodiversity drive the diversity–stability relationship. Nature Ecology and Evolution, 2018, 2, 1579-1587.	3.4	296
29	BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecology and Biogeography, 2018, 27, 760-786.	2.7	289
30	Integrated plant phenotypic responses to contrasting above―and belowâ€ground resources: key roles of specific leaf area and root mass fraction. New Phytologist, 2015, 206, 1247-1260.	3.5	261
31	Climate, soil and plant functional types as drivers of global fineâ€root trait variation. Journal of Ecology, 2017, 105, 1182-1196.	1.9	234
32	Multiple mechanisms for trait effects on litter decomposition: moving beyond homeâ€field advantage with a new hypothesis. Journal of Ecology, 2012, 100, 619-630.	1.9	205
33	Leaf traits and herbivore selection in the field and in cafeteria experiments. Austral Ecology, 2003, 28, 642-650.	0.7	180
34	An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species. Journal of Ecology, 2009, 97, 886-900.	1.9	175
35	Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits?. New Phytologist, 2010, 186, 879-889.	3.5	175
36	Functional traits predict relationship between plant abundance dynamic and long-term climate warming. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18180-18184.	3.3	174

#	Article	IF	CITATIONS
37	A test of the hierarchical model of litter decomposition. Nature Ecology and Evolution, 2017, 1, 1836-1845.	3.4	172
38	Summer warming and increased winter snow cover affect Sphagnum fuscum growth, structure and production in a sub-arctic bog. Global Change Biology, 2004, 10, 93-104.	4.2	169
39	Towards global data products of Essential Biodiversity Variables on species traits. Nature Ecology and Evolution, 2018, 2, 1531-1540.	3.4	163
40	Mapping local and global variability in plant trait distributions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10937-E10946.	3.3	159
41	Functional traits of woody plants: correspondence of species rankings between field adults and laboratoryâ€grown seedlings?. Journal of Vegetation Science, 2003, 14, 311-322.	1.1	158
42	DECOMPOSITION OF SUB-ARCTIC PLANTS WITH DIFFERING NITROGEN ECONOMIES: A FUNCTIONAL ROLE FOR HEMIPARASITES. Ecology, 2003, 84, 3209-3221.	1.5	156
43	Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling. New Phytologist, 2015, 208, 280-293.	3.5	142
44	Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17867-17873.	3.3	141
45	Interspecific differences in wood decay rates: insights from a new shortâ€ŧerm method to study longâ€ŧerm wood decomposition. Journal of Ecology, 2012, 100, 161-170.	1.9	136
46	Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. Global Ecology and Biogeography, 2014, 23, 1046-1057.	2.7	136
47	Correlations between physical and chemical defences in plants: tradeoffs, syndromes, or just many different ways to skin a herbivorous cat?. New Phytologist, 2013, 198, 252-263.	3.5	124
48	Behavioural, ecological and evolutionary responses to extreme climatic events: challenges and directions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160134.	1.8	122
49	Towards a thesaurus of plant characteristics: an ecological contribution. Journal of Ecology, 2017, 105, 298-309.	1.9	114
50	A rediscovered treasure: mycorrhizal intensity database for 3000 vascular plant species across the former Soviet Union. Ecology, 2012, 93, 689-690.	1.5	113
51	Arctic warming on two continents has consistent negative effects on lichen diversity and mixed effects on bryophyte diversity. Global Change Biology, 2012, 18, 1096-1107.	4.2	113
52	Global to community scale differences in the prevalence of convergent over divergent leaf trait distributions in plant assemblages. Global Ecology and Biogeography, 2011, 20, 755-765.	2.7	106
53	A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote Sensing of Environment, 2018, 218, 69-88.	4.6	104
54	How do bryophytes govern generative recruitment of vascular plants?. New Phytologist, 2011, 190, 1019-1031.	3.5	96

#	Article	IF	CITATIONS
55	Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an earth system model. Global Change Biology, 2015, 21, 3074-3086.	4.2	94
56	Controls on Coarse Wood Decay in Temperate Tree Species: Birth of the LOGLIFE Experiment. Ambio, 2012, 41, 231-245.	2.8	92
57	Burn or rot: leaf traits explain why flammability and decomposability are decoupled across species. Functional Ecology, 2015, 29, 1486-1497.	1.7	91
58	Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5229-5234.	3.3	90
59	Global root traits (GRooT) database. Global Ecology and Biogeography, 2021, 30, 25-37.	2.7	90
60	Foliar pH as a new plant trait: can it explain variation in foliar chemistry and carbon cycling processes among subarctic plant species and types?. Oecologia, 2006, 147, 315-326.	0.9	88
61	Climate and soils together regulate photosynthetic carbon isotope discrimination within C ₃ plants worldwide. Global Ecology and Biogeography, 2018, 27, 1056-1067.	2.7	85
62	Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology, 2015, 21, 4508-4519.	4.2	81
63	Simple measures of climate, soil properties and plant traits predict nationalâ€scale grassland soil carbon stocks. Journal of Applied Ecology, 2015, 52, 1188-1196.	1.9	79
64	Advances in flowering phenology across the Northern Hemisphere are explained by functional traits. Global Ecology and Biogeography, 2018, 27, 310-321.	2.7	77
65	Leaf economics and plant hydraulics drive leaf : wood area ratios. New Phytologist, 2019, 224, 1544-1556.	3.5	77
66	Plant traits and ecosystem effects of clonality: a new research agenda. Annals of Botany, 2014, 114, 369-376.	1.4	76
67	Niche assembly of epiphytic bryophyte communities in the Guianas: a regional approach. Journal of Biogeography, 2009, 36, 2076-2084.	1.4	74
68	C:N:P stoichiometry of <i>Artemisia</i> species and close relatives across northern China: unravelling effects of climate, soil and taxonomy. Journal of Ecology, 2015, 103, 1020-1031.	1.9	74
69	Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality. Ecology Letters, 2018, 21, 31-42.	3.0	74
70	The impact of hemiparasitic plant litter on decomposition: direct, seasonal and litter mixing effects. Journal of Ecology, 2005, 93, 87-98.	1.9	70
71	Seasonal climate manipulations result in speciesâ€specific changes in leaf nutrient levels and isotopic composition in a subâ€arctic bog. Functional Ecology, 2009, 23, 680-688.	1.7	64
72	Contrasting effects of tree diversity on young tree growth and resistance to insect herbivores across three biodiversity experiments. Oikos, 2015, 124, 1674-1685.	1.2	64

#	Article	IF	CITATIONS
73	Amino acid uptake among wide-ranging moss species may contribute to their strong position in higher-latitude ecosystems. Plant and Soil, 2008, 304, 199-208.	1.8	63
74	Biomass production, N:P ratio and nutrient limitation in a Caucasian alpine tundra plant community. Journal of Vegetation Science, 2005, 16, 399-406.	1.1	59
75	Phylogenetic patterns and phenotypic profiles of the species of plants and mammals farmed for food. Nature Ecology and Evolution, 2018, 2, 1808-1817.	3.4	59
76	Tundra Trait Team: A database of plant traits spanning the tundra biome. Global Ecology and Biogeography, 2018, 27, 1402-1411.	2.7	57
77	Robustness of trait connections across environmental gradients and growth forms. Global Ecology and Biogeography, 2019, 28, 1806-1826.	2.7	56
78	Leaf pH as a plant trait: species-driven rather than soil-driven variation. Functional Ecology, 2011, 25, 449-455.	1.7	52
79	Specific leaf area predicts dryland litter decomposition via two mechanisms. Journal of Ecology, 2018, 106, 218-229.	1.9	52
80	Different interâ€annual responses to availability and form of nitrogen explain species coexistence in an alpine meadow community after release from grazing. Global Change Biology, 2012, 18, 3100-3111.	4.2	50
81	Are litter decomposition and fire linked through plant species traits?. New Phytologist, 2017, 216, 653-669.	3.5	50
82	Title is missing!. Plant Ecology, 2003, 166, 117-129.	0.7	49
83	A Race for Space? How Sphagnum fuscum stabilizes vegetation composition during long-term climate manipulations. Global Change Biology, 2011, 17, 2162-2171.	4.2	48
84	Why trees and shrubs but rarely trubs?. Trends in Ecology and Evolution, 2014, 29, 433-434.	4.2	46
85	Functional rarity and evenness are key facets of biodiversity to boost multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	46
86	Determinants of cryptogam composition and diversity in <i>Sphagnum</i> â€dominated peatlands: the importance of temporal, spatial and functional scales. Journal of Ecology, 2009, 97, 299-310.	1.9	45
87	Scaling up flammability from individual leaves to fuel beds. Oikos, 2017, 126, 1428-1438.	1.2	45
88	The cover uncovered: Bark control over wood decomposition. Journal of Ecology, 2018, 106, 2147-2160.	1.9	45
89	Winter cover crop legacy effects on litter decomposition act through litter quality and microbial community changes. Journal of Applied Ecology, 2019, 56, 132-143.	1.9	45
	Species traits and their nonâ€additive interactions control the water economy of bryophyte cushions.		

#	Article	IF	Citations
91	Living Litter: Dynamic Trait Spectra Predict Fauna Composition. Trends in Ecology and Evolution, 2020, 35, 886-896.	4.2	43
92	Winters are changing: snow effects on Arctic and alpine tundra ecosystems. Arctic Science, 2022, 8, 572-608.	0.9	43
93	Litter for life: assessing the multifunctional legacy of plant traits. Journal of Ecology, 2017, 105, 1163-1168.	1.9	42
94	Termites amplify the effects of wood traits on decomposition rates among multiple bamboo and dicot woody species. Journal of Ecology, 2015, 103, 1214-1223.	1.9	38
95	Patterns of natural fungal community assembly during initial decay of coniferous and broadleaf tree logs. Ecosphere, 2016, 7, e01393.	1.0	38
96	Biodiversity–ecosystem function relationships change through primary succession. Oikos, 2017, 126, 1637-1649.	1.2	37
97	Assessing the reliability of predicted plant trait distributions at the global scale. Global Ecology and Biogeography, 2020, 29, 1034-1051.	2.7	36
98	Traits including leaf dry matter content and leaf pH dominate over forest soil pH as drivers of litter decomposition among 60 species. Functional Ecology, 2019, 33, 1798-1810.	1.7	34
99	Global patterns of potential future plant diversity hidden in soil seed banks. Nature Communications, 2021, 12, 7023.	5.8	32
100	Faunal community consequence of interspecific bark trait dissimilarity in earlyâ€stage decomposing logs. Functional Ecology, 2016, 30, 1957-1966.	1.7	31
101	Inter- and intraspecific variation in leaf economic traits in wheat and maize. AoB PLANTS, 2018, 10, ply006.	1.2	31
102	Moss Responses to Elevated CO2 and Variation in Hydrology in a Temperate Lowland Peatland. Plant Ecology, 2006, 182, 27-40.	0.7	30
103	Do shallow soil, low water availability, or their combination increase the competition between grasses with different root systems in karst soil?. Environmental Science and Pollution Research, 2017, 24, 10640-10651.	2.7	30
104	Nitrogen transfer from one plant to another depends on plant biomass production between conspecific and heterospecific species via a common arbuscular mycorrhizal network. Environmental Science and Pollution Research, 2019, 26, 8828-8837.	2.7	30
105	Reservations about preservations: storage methods affect $\hat{l} < \sup 13 < \sup C$ signatures differently even in closely related soil fauna. Methods in Ecology and Evolution, 2012, 3, 138-144.	2.2	28
106	Winter climate change, plant traits and nutrient and carbon cycling in cold biomes. Ecological Research, 2014, 29, 517-527.	0.7	28
107	Decomposition of 51 semidesert species from wide-ranging phylogeny is faster in standing and sand-buried than in surface leaf litters: implications for carbon and nutrient dynamics. Plant and Soil, 2015, 396, 175-187.	1.8	27
108	Shifts in priming partly explain impacts of longâ€term nitrogen input in different chemical forms on soil organic carbon storage. Global Change Biology, 2018, 24, 4160-4172.	4.2	24

#	Article	IF	CITATIONS
109	Allometry rather than abiotic drivers explains biomass allocation among leaves, stems and roots of <i>Artemisia</i> across a large environmental gradient in China. Journal of Ecology, 2021, 109, 1026-1040.	1.9	24
110	Long-term vegetation dynamic in the Northwestern Caucasus: which communities are more affected by upward shifts of plant species?. Alpine Botany, 2013, 123, 77-85.	1.1	22
111	The Tree of Life in ecosystems: evolution of plant effects on carbon and nutrient cycling. Journal of Ecology, 2014, 102, 269-274.	1.9	22
112	Management, winter climate and plant–soil feedbacks on ski slopes: a synthesis. Ecological Research, 2014, 29, 583-592.	0.7	20
113	Plant diversity has stronger linkage with soil fungal diversity than with bacterial diversity across grasslands of northern China. Global Ecology and Biogeography, 2022, 31, 886-900.	2.7	20
114	Simulating functional diversity of European natural forests along climatic gradients. Journal of Biogeography, 2020, 47, 1069-1085.	1.4	19
115	Climatic and evolutionary contexts are required to infer plant life history strategies from functional traits at a global scale. Ecology Letters, 2021, 24, 970-983.	3.0	19
116	Functional Resilience against Climate-Driven Extinctions – Comparing the Functional Diversity of European and North American Tree Floras. PLoS ONE, 2016, 11, e0148607.	1.1	19
117	Interactions between Fine Wood Decomposition and Flammability. Forests, 2014, 5, 827-846.	0.9	18
118	Leaf and root nutrient concentrations and stoichiometry along aridity and soil fertility gradients. Journal of Vegetation Science, 2019, 30, 291-300.	1.1	18
119	Non-additive effects of leaf and twig mixtures from different tree species on experimental litter-bed flammability. Plant and Soil, 2019, 436, 311-324.	1.8	18
120	High exposure of global tree diversity to human pressure. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	18
121	Understanding the ecosystem implications of the angiosperm rise to dominance: leaf litter decomposability among magnoliids and other basal angiosperms. Journal of Ecology, 2014, 102, 337-344.	1.9	17
122	Phragmites australis meets Suaeda salsa on the "red beach― Effects of an ecosystem engineer on salt-marsh litter decomposition. Science of the Total Environment, 2019, 693, 133477.	3.9	17
123	Net plant interactions are highly variable and weakly dependent on climate at the global scale. Ecology Letters, 2022, 25, 1580-1593.	3.0	17
124	Larger phylogenetic distances in litter mixtures: lower microbial biomass and higher C/N ratios but equal mass loss. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150103.	1.2	16
125	Vascular Plant Responses to Elevated CO2 in a Temperate Lowland Sphagnum Peatland. Plant Ecology, 2006, 182, 13-24.	0.7	14
126	Soil nutrient patchiness and plant genotypes interact on the production potential and decomposition of root and shoot litter: evidence from short-term laboratory experiments with Triticum aestivum. Plant and Soil, 2012, 353, 145-154.	1.8	14

#	Article	IF	CITATIONS
127	Methodology matters for comparing coarse wood and bark decay rates across tree species. Methods in Ecology and Evolution, 2020, 11 , $828-838$.	2.2	14
128	Multiple abiotic and biotic drivers of longâ€term wood decomposition within and among species in the semiâ€arid inland dunes: A dual role for stem diameter. Functional Ecology, 2020, 34, 1472-1484.	1.7	14
129	Untangling interacting mechanisms of seed mass variation with elevation: insights from the comparison of inter-specific and intra-specific studies on eastern Tibetan angiosperm species. Plant Ecology, 2015, 216, 283-292.	0.7	13
130	How interacting fungal species and mineral nitrogen inputs affect transfer of nitrogen from litter via arbuscular mycorrhizal mycelium. Environmental Science and Pollution Research, 2017, 24, 9791-9801.	2.7	13
131	Tree Sapling Responses to 10 Years of Experimental Manipulation of Temperature, Nutrient Availability, and Shrub Cover at the Pyrenean Treeline. Frontiers in Plant Science, 2018, 9, 1871.	1.7	13
132	Effects of Epixylic Vegetation Removal on the Dynamics of the Microbial Community Composition in Decaying Logs in an Alpine Forest. Ecosystems, 2019, 22, 1478-1496.	1.6	13
133	Plant community flood resilience in intensively managed grasslands and the role of the plant economic spectrum. Journal of Applied Ecology, 2020, 57, 1524-1534.	1.9	13
134	Allometric coâ€variation of xylem and stomata across diverse woody seedlings. Plant, Cell and Environment, 2020, 43, 2301-2310.	2.8	13
135	A broader perspective on plant domestication and nutrient and carbon cycling. New Phytologist, 2013, 198, 331-333.	3.5	12
136	Responsiveness of performance and morphological traits to experimental submergence predicts field distribution pattern of wetland plants. Journal of Vegetation Science, 2016, 27, 340-351.	1.1	12
137	Can flooding-induced greenhouse gas emissions be mitigated by trait-based plant species choice?. Science of the Total Environment, 2020, 727, 138476.	3.9	12
138	Dynamic feedbacks among tree functional traits, termite populations and deadwood turnover. Journal of Ecology, 2021, 109, 1578-1590.	1.9	12
139	Convergent xylem widening among organs across diverse woody seedlings. New Phytologist, 2019, 222, 1873-1882.	3.5	11
140	Variation in plant leaf traits affects transmission and detectability of herbivore vibrational cues. Ecology and Evolution, 2020, 10, 12277-12289.	0.8	11
141	Small-scale switch in cover–perimeter relationships of patches indicates shift of dominant species during grassland degradation. Journal of Plant Ecology, 2020, 13, 704-712.	1.2	10
142	Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings?. Journal of Vegetation Science, 2003, 14, 311.	1.1	10
143	Great granny still ruling from the grave: Phenotypical response of plant performance and seed functional traits to salt stress affects multiple generations of a halophyte. Journal of Ecology, 2022, 110, 117-128.	1.9	10
144	Digging deep to open the white black box of snow root phenology. Ecological Research, 2014, 29, 529-534.	0.7	9

#	Article	IF	CITATIONS
145	Similar Growth Performance but Contrasting Biomass Allocation of Root-Flooded Terrestrial Plant Alternanthera philoxeroides (Mart.) Griseb. in Response to Nutrient Versus Dissolved Oxygen Stress. Frontiers in Plant Science, 2019, 10, 111.	1.7	9
146	Sixteen years of simulated summer and winter warming have contrasting effects on soil mite communities in a sub-Arctic peat bog. Polar Biology, 2019, 42, 581-591.	0.5	9
147	Invertebrate phenology modulates the effect of the leaf economics spectrum on litter decomposition rate across 41 subtropical woody plant species. Functional Ecology, 2020, 34, 735-746.	1.7	9
148	New field wind manipulation methodology reveals adaptive responses of steppe plants to increased and reduced wind speed. Plant Methods, 2021, 17, 5.	1.9	9
149	Stem Trait Spectra Underpin Multiple Functions of Temperate Tree Species. Frontiers in Plant Science, 2022, 13, 769551.	1.7	9
150	Impact of land-use on carbon storage as dependent on soil texture: Evidence from a desertified dryland using repeated paired sampling design. Journal of Environmental Management, 2015, 150, 489-498.	3.8	8
151	Temperate forest and open landscapes are distinct alternative states as reflected in canopy height and tree cover. Trends in Ecology and Evolution, 2015, 30, 501-502.	4.2	8
152	Does plant size affect growth responses to water availability at glacial, modern and future CO ₂ concentrations?. Ecological Research, 2016, 31, 213-227.	0.7	8
153	Responses of community structure and diversity to nitrogen deposition and rainfall addition in contrasting steppes are ecosystem-dependent and dwarfed by year-to-year community dynamics. Annals of Botany, 2019, 124, 461-469.	1.4	8
154	Functional evenness of N-to-P ratios of evergreen-deciduous mixtures predicts positive non-additive effect on leaf litter decomposition. Plant and Soil, 2019, 436, 299-309.	1.8	8
155	Experimental sand burial and precipitation enhancement alter plant and soil carbon allocation in a semi-arid steppe in north China. Science of the Total Environment, 2019, 651, 3099-3106.	3.9	7
156	Abundance-weighted plant functional trait variation differs between terrestrial and wetland habitats along wide climatic gradients. Science China Life Sciences, 2021, 64, 593-605.	2.3	7
157	Towards ecological science for all by all. Journal of Applied Ecology, 2021, 58, 206-213.	1.9	7
158	Evolutionary Position and Leaf Toughness Control Chemical Transformation of Litter, and Drought Reinforces This Control: Evidence from a Common Garden Experiment across 48 Species. PLoS ONE, 2015, 10, e0143140.	1.1	6
159	Geographic pattern and effects of climate and taxonomy on nonstructural carbohydrates of Artemisia species and their close relatives across northern China. Biogeochemistry, 2015, 125, 337-348.	1.7	6
160	Linking performance trait stability with species distribution: the case of <i>Artemisia</i> and its close relatives in northern China. Journal of Vegetation Science, 2016, 27, 123-132.	1.1	6
161	Taxonomic effect on plant base concentrations and stoichiometry at the tips of the phylogeny prevails over environmental effect along a large scale gradient. Oikos, 2017, 126, 1241-1249.	1.2	6
162	Strong but diverging clonality - climate relationships of different plant clades explain weak overall pattern across China. Scientific Reports, 2016, 6, 26850.	1.6	5

#	Article	IF	CITATIONS
163	Association of leaf silicon content with chronic wind exposure across and within herbaceous plant species. Global Ecology and Biogeography, 2020, 29, 711-721.	2.7	5
164	Size matters for linking traits to ecosystem multifunctionality. Trends in Ecology and Evolution, 2022, 37, 803-813.	4.2	5
165	Nonâ€negligible contribution of subordinates in communityâ€level litter decomposition: Deciduous trees in an evergreen world. Journal of Ecology, 2020, 108, 1713-1724.	1.9	4
166	The effect of plant size and branch traits on rainfall interception of 10 temperate tree species. Ecohydrology, 2021, 14, e2349.	1.1	4
167	Stem traits, compartments and tree species affect fungal communities on decaying wood. Environmental Microbiology, 2022, 24, 3625-3639.	1.8	4
168	Explanations for nitrogen decline. Science, 2022, 376, 1169-1170.	6.0	4
169	Changes in quantity rather than palatability of alpine meadow species induce cascading effects of longâ€term nitrogen fertilization on phytophagous insect abundance. Journal of Vegetation Science, 2018, 29, 867-876.	1.1	3
170	Biomass production, N:P ratio and nutrient limitation in a Caucasian alpine tundra plant community. Journal of Vegetation Science, 2005, 16, 399.	1.1	3
171	Longâ€ŧerm legacies of seasonal extremes in Arctic ecosystem functioning. Global Change Biology, 2022, 28, 3161-3162.	4.2	3
172	Contrasting nitrogen cycling between herbaceous wetland and terrestrial ecosystems inferred from plant and soil nitrogen isotopes across China. Journal of Ecology, 2022, 110, 1259-1270.	1.9	3
173	Tree species with conservative foliar nutrient status and strong phosphorus homeostasis are regionally abundant in subtropical forests. Journal of Ecology, 2022, 110, 1497-1507.	1.9	3
174	Nutrient Resorption from Leaves of Wetland Plants in a Constructed Wetland Depends on Green Leaf Nutrient Content and Life Form. Wetlands, 2020, 40, 983-991.	0.7	2
175	Litter nitrogen concentration changes mediate effects of drought and plant species richness on litter decomposition. Oecologia, 2022, 198, 507-518.	0.9	2
176	Patterns of free amino acids in tundra soils reflect mycorrhizal type, shrubification, and warming. Mycorrhiza, 2022, 32, 305-313.	1.3	2
177	Special issue – Plants and Climate Change. Plant Ecology, 2005, , 1.	0.7	0
178	Snow roots: Where are they and what are they for?. Ecology, 2021, 102, e03255.	1.5	0