Jan D hooge

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3518727/jan-dhooge-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

60 12,758 370 104 h-index g-index citations papers 6.04 15,150 493 4.9 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
370	Spatiotemporal Distribution of Nanodroplet Vaporization in a Proton Beam Using Real-Time Ultrasound Imaging for Range Verification. <i>Ultrasound in Medicine and Biology</i> , 2022 , 48, 149-156	3.5	1
369	Extracting neuronal activity signals from microscopy recordings of contractile tissue using B-spline Explicit Active Surfaces (BEAS) cell tracking. <i>Scientific Reports</i> , 2021 , 11, 10937	4.9	1
368	In Vivo Comparison of Multiline Transmission and Diverging Wave Imaging for High-Frame-Rate Speckle-Tracking Echocardiography. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2021 , 68, 1511-1520	3.2	4
367	Myocardial Strain Measured by Epicardial Transducers-Comparison Between Velocity Estimators. <i>Ultrasound in Medicine and Biology</i> , 2021 , 47, 1377-1396	3.5	
366	Kidney Segmentation in 3-D Ultrasound Images Using a Fast Phase-Based Approach. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2021 , 68, 1521-1531	3.2	1
365	Non-rigid image registration using a modified fuzzy feature-based inference system for 3D cardiac motion estimation. <i>Computer Methods and Programs in Biomedicine</i> , 2021 , 205, 106085	6.9	0
364	A \$128times 1\$ Phased Array Piezoelectric Micromachined Ultrasound Transducer (pMUT) for Medical Imaging 2021 ,		1
363	Improved High Frame Rate Speckle Tracking for Echocardiography. <i>Lecture Notes in Computer Science</i> , 2021 , 93-100	0.9	0
362	Concepts and applications of ultrafast cardiac ultrasound imaging. <i>Echocardiography</i> , 2021 , 38, 7-15	1.5	O
361	Interactive Segmentation via Deep Learning and B-Spline Explicit Active Surfaces. <i>Lecture Notes in Computer Science</i> , 2021 , 315-325	0.9	
360	A Novel 2-D Speckle Tracking Method for High-Frame-Rate Echocardiography. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2020 , 67, 1764-1775	3.2	4
359	Experimental validation of the prestretch-strain relationship as a non-invasive index of left ventricular myocardial contractility. <i>PLoS ONE</i> , 2020 , 15, e0228027	3.7	
358	High-Frame-Rate Tri-Plane Echocardiography With Spiral Arrays: From Simulation to Real-Time Implementation. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2020 , 67, 57-69	3.2	9
357	A Comparison of Coherence-Based Beamforming Techniques in High-Frame-Rate Ultrasound Imaging With Multi-Line Transmission. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2020 , 67, 329-340	3.2	16
356	High-Frame-Rate Color Doppler Echocardiography: A Quantitative Comparison of Different Approaches. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2020 , 67, 923-933	3.2	3
355	Automatic C-Plane Detection in Pelvic Floor Transperineal Volumetric Ultrasound. <i>Lecture Notes in Computer Science</i> , 2020 , 136-145	0.9	2
354	The Generalized Contrast-to-Noise Ratio: A Formal Definition for Lesion Detectability. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,</i> 2020 , 67, 745-759	3.2	85

(2019-2020)

353	Shear Wave Elastography Using High-Frame-Rate Imaging in the Follow-Up of Heart Transplantation Recipients. <i>JACC: Cardiovascular Imaging</i> , 2020 , 13, 2304-2313	8.4	5
352	Interplay of cardiac remodelling and myocardial stiffness in hypertensive heart disease: a shear wave imaging study using high-frame rate echocardiography. <i>European Heart Journal Cardiovascular Imaging</i> , 2020 , 21, 664-672	4.1	7
351	Assessment of aortic valve tract dynamics using automatic tracking of 3D transesophageal echocardiographic images. <i>International Journal of Cardiovascular Imaging</i> , 2019 , 35, 881-895	2.5	4
350	Compressed Ultrasound Signal Reconstruction Using a Low-Rank and Joint-Sparse Representation Model. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2019 , 66, 1232-1245	3.2	
349	Non-invasive myocardial performance mapping using 3D echocardiographic stress-strain loops. <i>Physics in Medicine and Biology</i> , 2019 , 64, 115026	3.8	
348	Phase Change Ultrasound Contrast Agents with a Photopolymerized Diacetylene Shell. <i>Langmuir</i> , 2019 , 35, 10116-10127	4	15
347	Coded Excitation for Crosstalk Suppression in Multi-line Transmit Beamforming: Simulation Study and Experimental Validation. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 486	2.6	5
346	Semiautomatic Estimation of Device Size for Left Atrial Appendage Occlusion in 3-D TEE Images. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2019 , 66, 922-929	3.2	3
345	Deep Learning for Segmentation Using an Open Large-Scale Dataset in 2D Echocardiography. <i>IEEE Transactions on Medical Imaging</i> , 2019 , 38, 2198-2210	11.7	133
344	Physical Principles of Ultrasound and Generation of Images 2019 , 1-15.e1		
344	Physical Principles of Ultrasound and Generation of Images 2019 , 1-15.e1 Understanding Imaging Artifacts 2019 , 64-72.e1		
		2.4	4
343	Understanding Imaging Artifacts 2019 , 64-72.e1 Area of the pressure-strain loop during ejection as non-invasive index of left ventricular	2.4	4
343	Understanding Imaging Artifacts 2019 , 64-72.e1 Area of the pressure-strain loop during ejection as non-invasive index of left ventricular performance: a population study. <i>Cardiovascular Ultrasound</i> , 2019 , 17, 15 Estimating Regional Myocardial Contraction Using Miniature Transducers on the Epicardium.	<u> </u>	1
343 342 341	Understanding Imaging Artifacts 2019, 64-72.e1 Area of the pressure-strain loop during ejection as non-invasive index of left ventricular performance: a population study. <i>Cardiovascular Ultrasound</i> , 2019, 17, 15 Estimating Regional Myocardial Contraction Using Miniature Transducers on the Epicardium. <i>Ultrasound in Medicine and Biology</i> , 2019, 45, 2958-2969 Semi-automatic aortic valve tract segmentation in 3D cardiac magnetic resonance images using	<u> </u>	
343 342 341 340	Understanding Imaging Artifacts 2019, 64-72.e1 Area of the pressure-strain loop during ejection as non-invasive index of left ventricular performance: a population study. <i>Cardiovascular Ultrasound</i> , 2019, 17, 15 Estimating Regional Myocardial Contraction Using Miniature Transducers on the Epicardium. <i>Ultrasound in Medicine and Biology</i> , 2019, 45, 2958-2969 Semi-automatic aortic valve tract segmentation in 3D cardiac magnetic resonance images using shape-based B-spline explicit active surfaces 2019, A linear least squares based estimation of spatial variation of the attenuation coefficient from	<u> </u>	1
343 342 341 340 339	Understanding Imaging Artifacts 2019, 64-72.e1 Area of the pressure-strain loop during ejection as non-invasive index of left ventricular performance: a population study. <i>Cardiovascular Ultrasound</i> , 2019, 17, 15 Estimating Regional Myocardial Contraction Using Miniature Transducers on the Epicardium. <i>Ultrasound in Medicine and Biology</i> , 2019, 45, 2958-2969 Semi-automatic aortic valve tract segmentation in 3D cardiac magnetic resonance images using shape-based B-spline explicit active surfaces 2019, A linear least squares based estimation of spatial variation of the attenuation coefficient from ultrasound backscatter signals 2019, Velocities of Naturally Occurring Myocardial Shear Waves Increase With Age and in Cardiac	3.5	1 2

335	Enabling Ultrasound In-Body Communication: FIR Channel Models and QAM Experiments. <i>IEEE Transactions on Biomedical Circuits and Systems</i> , 2019 , 13, 135-144	5.1	13
334	Natural Shear Wave Imaging in the Human Heart: Normal Values, Feasibility, and Reproducibility. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2019 , 66, 442-452	3.2	19
333	Ultrasound Imaging From Sparse RF Samples Using System Point Spread Functions. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2018 , 65, 316-326	3.2	14
332	2-D Myocardial Deformation Imaging Based on RF-Based Nonrigid Image Registration. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2018 , 65, 1037-1047	3.2	8
331	Validation of a Novel Software Tool for Automatic Aortic Annular Sizing in Three-Dimensional Transesophageal Echocardiographic Images. <i>Journal of the American Society of Echocardiography</i> , 2018 , 31, 515-525.e5	5.8	9
330	Realistic Vendor-Specific Synthetic Ultrasound Data for Quality Assurance of 2-D Speckle Tracking Echocardiography: Simulation Pipeline and Open Access Database. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2018 , 65, 411-422	3.2	17
329	Multiline Transmit Beamforming Combined With Adaptive Apodization. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2018 , 65, 535-545	3.2	15
328	Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. European Heart Journal	4.1	433
327	Comparison of in vivo vs. ex situ obtained material properties of sheep common carotid artery. Medical Engineering and Physics, 2018, 55, 16-24	2.4	О
326	Statistical shape modeling of the left ventricle: myocardial infarct classification challenge. <i>IEEE Journal of Biomedical and Health Informatics</i> , 2018 , 22, 503-515	7.2	35
325	A Framework for the Generation of Realistic Synthetic Cardiac Ultrasound and Magnetic Resonance Imaging Sequences From the Same Virtual Patients. <i>IEEE Transactions on Medical Imaging</i> , 2018 , 37, 741	-757	19
324	Temperature dependence of speed of sound and attenuation of porcine left ventricular myocardium. <i>Ultrasonics</i> , 2018 , 82, 246-251	3.5	6
323	3D Tendon Strain Estimation Using High-frequency Volumetric Ultrasound Images: A Feasibility Study. <i>Ultrasonic Imaging</i> , 2018 , 40, 67-83	1.9	6
322	Doppler-Based Motion Compensation Strategies for 3-D Diverging Wave Compounding and Multiplane-Transmit Beamforming: A Simulation Study. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2018 , 65, 1631-1642	3.2	5
321	Segmentation of kidney and renal collecting system on 3D computed tomography images 2018,		1
320	Diagnosis of Heart Failure With Preserved Ejection Fraction: Machine Learning of Spatiotemporal Variations in Left Ventricular Deformation. <i>Journal of the American Society of Echocardiography</i> , 2018 , 31, 1272-1284.e9	5.8	59
319	Automated segmentation of the atrial region and fossa ovalis towards computer-aided planning of inter-atrial wall interventions. <i>Computer Methods and Programs in Biomedicine</i> , 2018 , 161, 73-84	6.9	1
318	Automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalizing neural network. <i>Journal of Medical Imaging</i> , 2018 , 5, 021206	2.6	11

(2017-2018)

317	Attenuation estimation by repeatedly solving the forward scattering problem. <i>Ultrasonics</i> , 2018 , 84, 201-209	3.5	4
316	Doppler indexes of left ventricular systolic and diastolic function in relation to haemodynamic load components in a general population. <i>Journal of Hypertension</i> , 2018 , 36, 867-875	1.9	3
315	Serial assessment of left ventricular morphology and function in a rodent model of ischemic cardiomyopathy. <i>International Journal of Cardiovascular Imaging</i> , 2018 , 34, 385-397	2.5	4
314	Modelling of Channels for Intra-Corporal Ultrasound Communication 2018,		1
313	Machine Learning for Quality Assurance of Myocardial Strain Curves 2018,		1
312	Orthogonal Frequency Division Multiplexing Combined with Multi Line Transmission for Ultrafast Ultrasound Imaging: Experimental Findings 2018 ,		2
311	2018,		24
310	Fully Automatic Assessment of Mitral Valve Morphology from 3D Transthoracic Echocardiography 2018 ,		4
309	2018,		1
308	Evaluation of Coherence-Based Beamforming for B-Mode and Speckle Tracking Echocardiography 2018 ,		1
307	Real-Time High-Frame-Rate Cardiac B-Mode and Tissue Doppler Imaging Based on Multiline Transmission and Multiline Acquisition. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2018 , 65, 2030-2041	3.2	14
306	Fast Segmentation of the Left Atrial Appendage in 3-D Transesophageal Echocardiographic Images. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2018 , 65, 2332-2342	3.2	6
305	A Novel Interventional Guidance Framework for Transseptal Puncture in Left Atrial Interventions. <i>Lecture Notes in Computer Science</i> , 2018 , 93-101	0.9	
304	MITT: Medical Image Tracking Toolbox. <i>IEEE Transactions on Medical Imaging</i> , 2018 , 37, 2547-2557	11.7	13
303	Cardiac Troponin T Concentrations, Reversible Myocardial Ischemia, and Indices of Left Ventricular Remodeling in Patients with Suspected Stable Angina Pectoris: a DOPPLER-CIP Substudy. <i>Clinical Chemistry</i> , 2018 , 64, 1370-1379	5.5	10
302	Automatic 3D aortic annulus sizing by computed tomography in the planning of transcatheter aortic valve implantation. <i>Journal of Cardiovascular Computed Tomography</i> , 2017 , 11, 25-32	2.8	16
301	Feasibility of Multiplane-Transmit Beamforming for Real-Time Volumetric Cardiac Imaging: A Simulation Study. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2017 , 64, 648-65	5 ³ 9 ²	6
300	Novel Solutions Applied in Transseptal Puncture: A Systematic Review. <i>Journal of Medical Devices, Transactions of the ASME</i> , 2017 , 11,	1.3	7

299	Fast left ventricle tracking using localized anatomical affine optical flow. <i>International Journal for Numerical Methods in Biomedical Engineering</i> , 2017 , 33, e2871	2.6	15
298	Temperature monitoring by channel data delays: Feasibility based on estimated delays magnitude for cardiac ablation. <i>Ultrasonics</i> , 2017 , 77, 32-37	3.5	
297	Extension of the angular spectrum method to model the pressure field of a cylindrically curved array transducer. <i>Journal of the Acoustical Society of America</i> , 2017 , 141, EL262	2.2	2
296	Real-time catheter localization and visualization using three-dimensional echocardiography 2017 ,		1
295	Longitudinal Changes in LV Structure and Diastolic Function in Relation to Arterial Properties in General Propulation. <i>JACC: Cardiovascular Imaging</i> , 2017 , 10, 1307-1316	8.4	24
294	Machine learning of the spatio-temporal characteristics of echocardiographic deformation curves for infarct classification. <i>International Journal of Cardiovascular Imaging</i> , 2017 , 33, 1159-1167	2.5	21
293	Left Ventricular Myocardial Segmentation in 3-D Ultrasound Recordings: Effect of Different Endocardial and Epicardial Coupling Strategies. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2017 , 64, 525-536	3.2	13
292	Evaluation of tissue displacement and regional strain in the Achilles tendon using quantitative high-frequency ultrasound. <i>PLoS ONE</i> , 2017 , 12, e0181364	3.7	23
291	Development of a patient-specific atrial phantom model for planning and training of inter-atrial interventions. <i>Medical Physics</i> , 2017 , 44, 5638-5649	4.4	12
290	Standardized Delineation of Endocardial Boundaries in Three-Dimensional Left Ventricular Echocardiograms. <i>Journal of the American Society of Echocardiography</i> , 2017 , 30, 1059-1069	5.8	5
289	A competitive strategy for atrial and aortic tract segmentation based on deformable models. <i>Medical Image Analysis</i> , 2017 , 42, 102-116	15.4	11
288	heartBEATS: A hybrid energy approach for real-time B-spline explicit active tracking of surfaces. <i>Computerized Medical Imaging and Graphics</i> , 2017 , 62, 26-33	7.6	1
287	The challenges of measuring in vivo knee collateral ligament strains using ultrasound. <i>Journal of Biomechanics</i> , 2017 , 61, 258-262	2.9	5
286	Fast and Fully Automatic Left Ventricular Segmentation and Tracking in Echocardiography Using Shape-Based B-Spline Explicit Active Surfaces. <i>IEEE Transactions on Medical Imaging</i> , 2017 , 36, 2287-229	6 ^{11.7}	38
285	Volumetric imaging of fast mechanical waves in the heart using a clinical ultrasound system 2017,		2
284	Left ventricular function in relation to chronic residential air pollution in a general population. <i>European Journal of Preventive Cardiology</i> , 2017 , 24, 1416-1428	3.9	22
283	Cardiovascular magnetic resonance myocardial feature tracking using a non-rigid, elastic image registration algorithm: assessment of variability in a real-life clinical setting. <i>Journal of Cardiovascular Magnetic Resonance</i> , 2017 , 19, 24	6.9	50
282	Evaluation of the Transverse Oscillation Technique for Cardiac Phased Array Imaging: A Theoretical Study. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2017 , 64, 320-334	3.2	4

281	Left atrial volumetric assessment using a novel automated framework for 3D echocardiography: a multi-centre analysis. <i>European Heart Journal Cardiovascular Imaging</i> , 2017 , 18, 1008-1015	4.1	5
280	Automatic Definition of an Anatomic Field of View for Volumetric Cardiac Motion Estimation at High Temporal Resolution. <i>Applied Sciences (Switzerland)</i> , 2017 , 7, 752	2.6	O
279	Two-dimensional speckle tracking echocardiography: standardization efforts based on synthetic ultrasound data. <i>European Heart Journal Cardiovascular Imaging</i> , 2016 , 17, 693-701	4.1	51
278	Additive Prognostic Value of Left Ventricular Systolic Dysfunction in a Population-Based Cohort. <i>Circulation: Cardiovascular Imaging</i> , 2016 , 9,	3.9	47
277	Automatic left-atrial segmentation from cardiac 3D ultrasound: a dual-chamber model-based approach 2016 ,		1
276	Spatiotemporal registration of multiple three-dimensional echocardiographic recordings for enhanced field of view imaging. <i>Journal of Medical Imaging</i> , 2016 , 3, 037001	2.6	2
275	High frame rate 3D tissue velocity imaging using sub-aperture beamforming: A pilot study in vivo 2016 ,		2
274	Multi transmit beams for fast cardiac imaging towards clinical routine 2016 ,		5
273	COmplex coronary Bifurcation lesions: RAndomized comparison of a strategy using a dedicated self-expanding biolimus-eluting stent versus a culotte strategy using everolimus-eluting stents: primary results of the COBRA trial. <i>EuroIntervention</i> , 2016 , 11, 1457-67	3.1	10
272	High variability in strain estimation errors when using a commercial ultrasound speckle tracking algorithm on tendon tissue. <i>Acta Radiologica</i> , 2016 , 57, 1223-9	2	6
271	Wide-Angle Tissue Doppler Imaging at High Frame Rate Using Multi-Line Transmit Beamforming: An Experimental Validation In Vivo. <i>IEEE Transactions on Medical Imaging</i> , 2016 , 35, 521-8	11.7	25
270	Standardized Evaluation System for Left Ventricular Segmentation Algorithms in 3D Echocardiography. <i>IEEE Transactions on Medical Imaging</i> , 2016 , 35, 967-77	11.7	58
269	Anatomical Image Registration Using Volume Conservation to Assess Cardiac Deformation From 3D Ultrasound Recordings. <i>IEEE Transactions on Medical Imaging</i> , 2016 , 35, 501-11	11.7	19
268	Integration of Multi-Plane Tissue Doppler and B-Mode Echocardiographic Images for Left Ventricular Motion Estimation. <i>IEEE Transactions on Medical Imaging</i> , 2016 , 35, 89-97	11.7	2
267	Multi-centre validation of an automatic algorithm for fast 4D myocardial segmentation in cine CMR datasets. <i>European Heart Journal Cardiovascular Imaging</i> , 2016 , 17, 1118-27	4.1	14
266	STACCATO (Assessment of Stent sTrut Apposition and Coverage in Coronary ArTeries with Optical coherence tomography in patients with STEMI, NSTEMI and stable/unstable angina undergoing everolimus vs. biolimus A9-eluting stent implantation): a randomised controlled trial.	3.1	17
265	Automatic Detection of Myocardial Infarction Through a Global Shape Feature Based on Local Statistical Modeling. <i>Lecture Notes in Computer Science</i> , 2016 , 208-216	0.9	1
264	Fast myocardial strain estimation from 3D ultrasound through elastic image registration with analytic regularization 2016 ,		1

263	Dense motion field estimation from myocardial boundary displacements. <i>International Journal for Numerical Methods in Biomedical Engineering</i> , 2016 , 32, e02758	2.6	5
262	Automatic short axis orientation of the left ventricle in 3D ultrasound recordings 2016 ,		1
261	Semi-automatic outlining of levator hiatus. <i>Ultrasound in Obstetrics and Gynecology</i> , 2016 , 48, 98-105	5.8	9
2 60	Doppler indexes of left ventricular systolic and diastolic function in relation to the arterial stiffness in a general population. <i>Journal of Hypertension</i> , 2016 , 34, 762-71	1.9	19
259	Diverging Wave Volumetric Imaging Using Subaperture Beamforming. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,</i> 2016 , 63, 2114-2124	3.2	27
258	Delay and Standard Deviation Beamforming to Enhance Specular Reflections in Ultrasound Imaging. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2016 , 63, 2057-2068	3.2	21
257	2D RF-based non-rigid image registration for cardiac motion estimation: Comparison against block matching 2016 ,		3
256	Handling missing strain (rate) curves using K-nearest neighbor imputation 2016,		4
255	A spectroscopic study of the chromatic properties of GafChromicEBT3 films. <i>Medical Physics</i> , 2016 , 43, 1156-66	4.4	24
254	In-vivo validation of a new clinical tool to quantify three-dimensional myocardial strain using ultrasound. <i>International Journal of Cardiovascular Imaging</i> , 2016 , 32, 1707-1714	2.5	5
253	3D tendon strain estimation on high-frequency 3D ultrasound images a simulation and phantom study 2016 ,		2
252	Aortic Valve Tract Segmentation From 3D-TEE Using Shape-Based B-Spline Explicit Active Surfaces. <i>IEEE Transactions on Medical Imaging</i> , 2016 , 35, 2015-2025	11.7	13
251	A Comparison of the Performance of Different Multiline Transmit Setups for Fast Volumetric Cardiac Ultrasound. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2016 , 63, 208	8 2-2 09	110
250	Kidney segmentation in 3D CT images using B-Spline Explicit Active Surfaces 2016 ,		1
249	Ultrasound Physics 2016 , 1-18		1
248	Fast left ventricle tracking in CMR images using localized anatomical affine optical flow 2015,		2
247	Ultrasound speckle tracking for radial, longitudinal and circumferential strain estimation of the carotid arteryan in vitro validation via sonomicrometry using clinical and high-frequency ultrasound. <i>Ultrasonics</i> , 2015 , 56, 399-408	3.5	44
246	Three-dimensional analysis of implanted magnetic-resonance-visible meshes. <i>International Urogynecology Journal</i> , 2015 , 26, 1459-65	2	15

245	Strain assessment in the carotid artery wall using ultrasound speckle tracking: validation in a sheep model. <i>Physics in Medicine and Biology</i> , 2015 , 60, 1107-23	3.8	15
244	Acoustic output of multi-line transmit beamforming for fast cardiac imaging: a simulation study. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2015 , 62, 1320-30	3.2	11
243	Principal Component Analysis for the Classification of Cardiac Motion Abnormalities Based on Echocardiographic Strain and Strain Rate Imaging. <i>Lecture Notes in Computer Science</i> , 2015 , 83-90	0.9	3
242	The influence of frame rate on two-dimensional speckle-tracking strain measurements: a study on silico-simulated models and images recorded in patients. <i>European Heart Journal Cardiovascular Imaging</i> , 2015 , 16, 1137-47	4.1	60
241	Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. <i>European Heart Journal Cardiovascular Imaging</i> , 2015 , 16, 1-11	4.1	541
240	2-D left ventricular flow estimation by combining speckle tracking with Navier-Stokes-based regularization: an in silico, in vitro and in vivo study. <i>Ultrasound in Medicine and Biology</i> , 2015 , 41, 99-113	3.5	9
239	Ultrasound speckle tracking strain estimation of in vivo carotid artery plaque with in vitro sonomicrometry validation. <i>Ultrasound in Medicine and Biology</i> , 2015 , 41, 77-88	3.5	25
238	2015,		2
237	Continuous ultrasound speckle tracking with Gaussian mixtures. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2015 , 2015, 129-32	0.9	O
236	Association Between Myocardial Mechanics and Ischemic LV Remodeling. <i>JACC: Cardiovascular Imaging</i> , 2015 , 8, 1430-1443	8.4	30
235	Towards sub-Nyquist tissue Doppler imaging using non-uniformly spaced stream of pulses 2015,		2
234	HD-PULSE: High channel Density Programmable ULtrasound System based on consumer Electronics 2015 ,		5
233	Generation of ultra-realistic synthetic echocardiographic sequences to facilitate standardization of deformation imaging 2015 ,		4
232	Automatic detection of ischemic myocardium by spatio-temporal analysis of echocardiographic strain and strain rate curves 2015 ,		2
231	A Pipeline for the Generation of Realistic 3D Synthetic Echocardiographic Sequences: Methodology and Open-Access Database. <i>IEEE Transactions on Medical Imaging</i> , 2015 , 34, 1436-1451	11.7	60
230	Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. <i>Journal of the American Society of Echocardiography</i> , 2015 , 28, 183-93	5.8	428
229	Multi-transmit beam forming for fast cardiac imagingexperimental validation and in vivo application. <i>IEEE Transactions on Medical Imaging</i> , 2014 , 33, 1205-19	11.7	74
228	2D localization of specular reflections using ultrasound 2014 ,		5

227	Fast automatic myocardial segmentation in 4D cine CMR datasets. <i>Medical Image Analysis</i> , 2014 , 18, 111	5-34	96
226	Ultrafast cardiac ultrasound imaging: technical principles, applications, and clinical[benefits. <i>JACC: Cardiovascular Imaging</i> , 2014 , 7, 812-23	8.4	112
225	Automated detection and quantification of clusters of malapposed and uncovered intracoronary stent struts assessed with optical coherence tomography. <i>International Journal of Cardiovascular Imaging</i> , 2014 , 30, 839-48	2.5	10
224	Real-time 3D interactive segmentation of echocardiographic data through user-based deformation of B-spline explicit active surfaces. <i>Computerized Medical Imaging and Graphics</i> , 2014 , 38, 57-67	7.6	14
223	Consistent regional heterogeneity of passive diastolic stretch and systolic deformation in the healthy heart: age-related changes in left ventricle contractility. <i>Ultrasound in Medicine and Biology</i> , 2014 , 40, 37-44	3.5	5
222	Improved myocardial motion estimation combining tissue Doppler and B-mode echocardiographic images. <i>IEEE Transactions on Medical Imaging</i> , 2014 , 33, 2098-106	11.7	5
221	Speckle tracking echocardiography in fetuses diagnosed with congenital diaphragmatic hernia. <i>Prenatal Diagnosis</i> , 2014 , 34, 1262-7	3.2	15
220	Safety of fast cardiac imaging using multiple transmit beams: Experimental verification 2014,		4
219	Association of digital vascular function with cardiovascular risk factors: a population study. <i>BMJ Open</i> , 2014 , 4, e004399	3	12
218	Elastic registration vs. block matching for quantification of cardiac function with 3D ultrasound: Initial results of a direct comparison in silico based on a new evaluation pipeline 2014 ,		3
217	2014,		2
216	Wide-angle tissue Doppler imaging at high frame rate using multi-line transmit beamforming: An in-vivo pilot study 2014 ,		1
215	Ultrasound based dosimetry for radiotherapy: In-vitro proof of principle 2014,		1
214	Generation of ultra-realistic synthetic echocardiographic sequences 2014 ,		4
213	Iterative reconstruction of the ultrasound attenuation coefficient from the backscattered radio-frequency signal 2014 ,		2
212	2014,		3
211	Fast volumetric cardiac ultrasound: A comparison of different multi-line transmit setups by computer simulation 2014 ,		2
210	Automatic assessment of stent neointimal coverage by intravascular optical coherence tomography. European Heart Journal Cardiovascular Imaging, 2014, 15, 195-200	4.1	21

209	Whole myocardium tracking in 2D-echocardiography in multiple orientations using a motion constrained level-set. <i>Medical Image Analysis</i> , 2014 , 18, 500-14	15.4	11	
208	A new analytic expression for fast calculation of the transient near and far field of a rectangular baffled piston. <i>Ultrasonics</i> , 2014 , 54, 1071-7	3.5	2	
207	Automatic characterization of neointimal tissue by intravascular optical coherence tomography. <i>Journal of Biomedical Optics</i> , 2014 , 19, 21104	3.5	21	
206	Optical coherence tomography study of healing characteristics of paclitaxel-eluting balloons vs. everolimus-eluting stents for in-stent restenosis: the SEDUCE (Safety and Efficacy of a Drug elUting balloon in Coronary artery rEstenosis) randomised clinical trial. <i>EuroIntervention</i> , 2014 , 10, 439-48	3.1	46	
205	Fast Left Ventricle Tracking in 3D Echocardiographic Data Using Anatomical Affine Optical Flow. <i>Lecture Notes in Computer Science</i> , 2013 , 191-199	0.9	7	
204	Fast Fully Automatic Segmentation of the Myocardium in 2D Cine MR Images. <i>Lecture Notes in Computer Science</i> , 2013 , 71-79	0.9	4	
203	3D strain assessment in ultrasound (Straus): a synthetic comparison of five tracking methodologies. <i>IEEE Transactions on Medical Imaging</i> , 2013 , 32, 1632-46	11.7	43	
202	2-D strain assessment in the mouse through spatial compounding of myocardial velocity data: in vivo feasibility. <i>Ultrasound in Medicine and Biology</i> , 2013 , 39, 1848-60	3.5	2	
201	Elastic image registration to quantify 3-D regional myocardial deformation from volumetric ultrasound: experimental validation in an animal model. <i>Ultrasound in Medicine and Biology</i> , 2013 , 39, 1688-97	3.5	27	
200	Simultaneous quantification of myocardial and blood flow velocities based on duplex mode ultrasound imaging. <i>BioMedical Engineering OnLine</i> , 2013 , 12, 107	4.1		
199	Three-dimensional echocardiography in the evaluation of global and regional function in patients with recent myocardial infarction: a comparison with magnetic resonance imaging. <i>Echocardiography</i> , 2013 , 30, 682-92	1.5	27	
198	2013,		8	
197	Fusion of 3D echo and cardiac magnetic resonance volumes during live scanning 2013,		4	
	Floritation and tractical and a small structure for A.B. and an efficient contraction of the structure of th			
196	Elastic image registration versus speckle tracking for 2-D myocardial motion estimation: a direct comparison in vivo. <i>IEEE Transactions on Medical Imaging</i> , 2013 , 32, 449-59	11.7	42	
196 195		3.2	49	
	comparison in vivo. <i>IEEE Transactions on Medical Imaging</i> , 2013 , 32, 449-59 Multi-transmit beam forming for fast cardiac imaginga simulation study. <i>IEEE Transactions on</i>		<u> </u>	
195	comparison in vivo. <i>IEEE Transactions on Medical Imaging</i> , 2013 , 32, 449-59 Multi-transmit beam forming for fast cardiac imaginga simulation study. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2013 , 60, 1719-31 Fast and fully automatic 3-d echocardiographic segmentation using B-spline explicit active surfaces:	3.2	49	

191	The slope of the segmental stretch-strain relationship as a noninvasive index of LV inotropy. <i>JACC:</i> Cardiovascular Imaging, 2013 , 6, 419-28	8.4	10
190	Current state of three-dimensional myocardial strain estimation using echocardiography. <i>Journal of the American Society of Echocardiography</i> , 2013 , 26, 15-28	5.8	118
189	Determining optimal noninvasive parameters for the prediction of left ventricular remodeling in chronic ischemic patients. <i>Scandinavian Cardiovascular Journal</i> , 2013 , 47, 329-34	2	16
188	Healing responses after bifurcation stenting with the dedicated TRYTON Side-Branch Stentin combination with XIENCE-Viktents: a clinical, angiography, fractional flow reserve, and optical coherence tomography study: the PYTON (Prospective evaluation of the TRYTON Side-Branch	2.7	15
187	Consistent regional heterogeneity of passive diastolic stretch: a mechanism for normal systolic function. <i>European Heart Journal</i> , 2013 , 34, P1101-P1101	9.5	
186	Provisional side branch stenting: presentation of an automated method allowing online 3D OCT guidance. <i>European Heart Journal Cardiovascular Imaging</i> , 2013 , 14, 715	4.1	3
185	Assessment of strain and strain rate by two-dimensional speckle tracking in mice: comparison with tissue Doppler echocardiography and conductance catheter measurements. <i>European Heart Journal Cardiovascular Imaging</i> , 2013 , 14, 765-73	4.1	25
184	Automated tissue characterization of in vivo atherosclerotic plaques by intravascular optical coherence tomography images. <i>Biomedical Optics Express</i> , 2013 , 4, 1014-30	3.5	95
183	Long-term miR-669a therapy alleviates chronic dilated cardiomyopathy in dystrophic mice. <i>Journal of the American Heart Association</i> , 2013 , 2, e000284	6	47
182	Left ventricular radial function associated with genetic variation in the cGMP-dependent protein kinase. <i>Hypertension</i> , 2013 , 62, 1034-9	8.5	5
181	Three-Dimensional Cardiac Motion Estimation Based on Non-rigid Image Registration Using a Novel Transformation Model Adapted to the Heart. <i>Lecture Notes in Computer Science</i> , 2013 , 142-150	0.9	9
180	2013,		2
179	2013,		2
178	Multiview myocardial tracking in echocardiographic 2D sequences using shape and motion constrained level-set 2013 ,		3
177	Fast myocardial motion and strain estimation in 3D cardiac ultrasound with Sparse Demons 2013,		16
176	An automated pipeline for regional cardiac strain estimation from volumetric ultrasound data 2013,		1
175	A GPU-based implementation of the spatial impulse response method for fast calculation of linear sound fields and pulse-echo responses of array transducers 2013 ,		4
174	Fetal echocardiography and pulsed-wave Doppler ultrasound in a rabbit model of intrauterine growth restriction. <i>Journal of Visualized Experiments</i> , 2013 ,	1.6	4

(2012-2013)

173	Increased cardiac myocyte PDE5 levels in human and murine pressure overload hypertrophy contribute to adverse LV remodeling. <i>PLoS ONE</i> , 2013 , 8, e58841	3.7	22
172	Computational and Physical Phantom Setups for the Second Cardiac Motion Analysis Challenge (cMAC2). <i>Lecture Notes in Computer Science</i> , 2013 , 125-133	0.9	4
171	Influence of the Grid Topology of Free-Form Deformation Models on the Performance of 3D Strain Estimation in Echocardiography. <i>Lecture Notes in Computer Science</i> , 2013 , 308-315	0.9	4
170	Cardiac Motion and Deformation Estimation from Tagged MRI Sequences Using a Temporal Coherent Image Registration Framework. <i>Lecture Notes in Computer Science</i> , 2013 , 316-324	0.9	8
169	2D Intracardiac Flow Estimation by Combining Speckle Tracking with Navier-Stokes Based Regularization: A Study with Dynamic Kernels. <i>Lecture Notes in Computer Science</i> , 2013 , 19-26	0.9	2
168	Detection of the whole myocardium in 2D-echocardiography for multiple orientations using a geometrically constrained level-set. <i>Medical Image Analysis</i> , 2012 , 16, 386-401	15.4	46
167	Temporal diffeomorphic free-form deformation: application to motion and strain estimation from 3D echocardiography. <i>Medical Image Analysis</i> , 2012 , 16, 427-50	15.4	104
166	Comparison of the performance of different tools for fast simulation of ultrasound data. <i>Ultrasonics</i> , 2012 , 52, 573-7	3.5	11
165	Regional cardiac motion and strain estimation in three-dimensional echocardiography: a validation study in thick-walled univentricular phantoms. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2012 , 59, 668-82	3.2	39
164	B-spline explicit active surfaces: an efficient framework for real-time 3-D region-based segmentation. <i>IEEE Transactions on Image Processing</i> , 2012 , 21, 241-51	8.7	80
163	Thrombospondin-2 prevents cardiac injury and dysfunction in viral myocarditis through the activation of regulatory T-cells. <i>Cardiovascular Research</i> , 2012 , 94, 115-24	9.9	46
162	2D myocardial strain assessment in the mouse: a comparison between a synthetic lateral phase approach and block-matching using computer simulation. <i>Ultrasonics</i> , 2012 , 52, 936-42	3.5	2
161	Exercise strain rate imaging demonstrates normal right ventricular contractile reserve and clarifies ambiguous resting measures in endurance athletes. <i>Journal of the American Society of Echocardiography</i> , 2012 , 25, 253-262.e1	5.8	103
160	Impact of hypertension on ventricular-arterial coupling and regional myocardial work at rest and during isometric exercise. <i>Journal of the American Society of Echocardiography</i> , 2012 , 25, 882-90	5.8	27
159	Motion and deformation estimation of cardiac ultrasound sequences using an anatomical B-spline transformation model 2012 ,		3
158	Gene-targeting of Phd2 improves tumor response to chemotherapy and prevents side-toxicity. <i>Cancer Cell</i> , 2012 , 22, 263-77	24.3	101
157	Real-time ultrasound simulation using the GPU. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2012 , 59, 885-92	3.2	10
156	2012,		3

155	In regard to: "In vivo strain analysis of the intact supraspinatus tendon by ultrasound speckles tracking imaging" (Journal of Orthopaedic Research, Vol. 29, No. 12, pp. 1931-1937, May 2011). <i>Journal of Orthopaedic Research</i> , 2012 , 30, 2054-6; author reply 2056-7	3.8	3
154	Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage. <i>International Journal of Cardiovascular Imaging</i> , 2012 , 28, 229-41	2.5	80
153	Comparison of a new methodology for the assessment of 3D myocardial strain from volumetric ultrasound with 2D speckle tracking. <i>International Journal of Cardiovascular Imaging</i> , 2012 , 28, 1049-60	2.5	23
152	The relative value of strain and strain rate for defining intrinsic myocardial function. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2012 , 302, H188-95	5.2	100
151	Automatic three-dimensional registration of intravascular optical coherence tomography images. Journal of Biomedical Optics, 2012 , 17, 026005	3.5	18
150	Tendon strain imaging using non-rigid image registration: a validation study 2012,		1
149	Fully automatic three-dimensional visualization of intravascular optical coherence tomography images: methods and feasibility in vivo. <i>Biomedical Optics Express</i> , 2012 , 3, 3291-303	3.5	29
148	Shear wave elastography for characterization of carotid artery plaques - A feasibility study in an experimental setup 2012 ,		2
147	A GPU level-set segmentation framework for 3D Echocardiography 2012,		2
146	2012,		1
146	2012, Comparison of conventional parallel beamforming with plane wave and diverging wave imaging for cardiac applications: a simulation study. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2012, 59, 1654-63	3.2	1 46
	Comparison of conventional parallel beamforming with plane wave and diverging wave imaging for cardiac applications: a simulation study. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and</i>	3.2	,
145	Comparison of conventional parallel beamforming with plane wave and diverging wave imaging for cardiac applications: a simulation study. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2012 , 59, 1654-63	3.2	46
145 144	Comparison of conventional parallel beamforming with plane wave and diverging wave imaging for cardiac applications: a simulation study. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2012 , 59, 1654-63 2012 ,	3.2	46
145 144 143	Comparison of conventional parallel beamforming with plane wave and diverging wave imaging for cardiac applications: a simulation study. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2012 , 59, 1654-63 2012 , Fusion of 3D echocardiographic and cardiac magnetic resonance volumes 2012 , How to optimize intracardiac blood flow tracking by echocardiographic particle image velocimetry? Exploring the influence of data acquisition using computer-generated data sets. <i>European Heart</i>		4633
145 144 143	Comparison of conventional parallel beamforming with plane wave and diverging wave imaging for cardiac applications: a simulation study. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,</i> 2012 , 59, 1654-63 2012 , Fusion of 3D echocardiographic and cardiac magnetic resonance volumes 2012 , How to optimize intracardiac blood flow tracking by echocardiographic particle image velocimetry? Exploring the influence of data acquisition using computer-generated data sets. <i>European Heart Journal Cardiovascular Imaging</i> , 2012 , 13, 490-9 Plane wave imaging for cardiac motion estimation at high temporal resolution: A feasibility study		463335
145 144 143 142	Comparison of conventional parallel beamforming with plane wave and diverging wave imaging for cardiac applications: a simulation study. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2012 , 59, 1654-63 2012 , Fusion of 3D echocardiographic and cardiac magnetic resonance volumes 2012 , How to optimize intracardiac blood flow tracking by echocardiographic particle image velocimetry? Exploring the influence of data acquisition using computer-generated data sets. <i>European Heart Journal Cardiovascular Imaging</i> , 2012 , 13, 490-9 Plane wave imaging for cardiac motion estimation at high temporal resolution: A feasibility study in-vivo 2012 , Tissue Doppler indexes of left ventricular systolic function in relation to the pulsatile and steady	4.1	 46 3 3 35 4

(2010-2011)

137	Recommendations of the European Association of Echocardiography: how to use echo-Doppler in clinical trials: different modalities for different purposes. <i>European Journal of Echocardiography</i> , 2011 , 12, 339-53		118
136	Assessment of peripheral vascular function with photoplethysmographic pulse amplitude. <i>Artery Research</i> , 2011 , 5, 58	2.2	5
135	Automated stent strut coverage and apposition analysis of in-vivo intra coronary optical coherence tomography images 2011 ,		1
134	Left ventricular 2D flow pattern estimation by combining speckle tracking with Navier-Stokes-based regularization in an iterative way 2011 ,		3
133	2011,		5
132	Multi-modal cardiac image fusion and visualization on the GPU 2011 ,		2
131	Fast and accurate specimen-specific simulation of trabecular bone elastic modulus using novel beam-shell finite element models. <i>Journal of Biomechanics</i> , 2011 , 44, 1566-72	2.9	16
130	Multiview myocardial segmentation in echocardiographic images using a piecewise parametric shape prior 2011 ,		1
129	2D myocardial strain in the mouse through spatial compounding: In-vivo feasibility study 2011 ,		1
128	2011,		2
127	Multi-transmit beam forming for fast cardiac imaging 2011 ,		5
126	Non-invasive characterization of the area-at-risk using magnetic resonance imaging in chronic ischaemia. <i>Cardiovascular Research</i> , 2011 , 89, 166-74	9.9	12
125	Real-time ultrasound simulation using the GPU 2011 ,		1
124	Fast 3D echocardiographic segmentation using B-Spline Explicit Active Surfaces: A validation study in a clinical setting 2011 ,		2
123	Algorithms for ultrasound elastography: a survey. <i>Computer Methods in Biomechanics and Biomedical Engineering</i> , 2011 , 14, 283-92	2.1	6
122	Geometric regularization for 2-D myocardial strain quantification in mice: an in-silico study. <i>Ultrasound in Medicine and Biology</i> , 2010 , 36, 1157-68	3.5	8
121	Left ventricular strain and strain rate: characterization of the effect of load in human subjects. <i>European Journal of Echocardiography</i> , 2010 , 11, 283-9		158
120	Deformation imaging describes right ventricular function better than longitudinal displacement of the tricuspid ring. <i>Heart</i> , 2010 , 96, 281-8	5.1	153

119	2010,		3
118	Spatial compounding for 2D strain estimation in the mouse heart: A pilot study 2010 ,		1
117	2010,		4
116	Distribution of active fiber stress at the beginning of ejection depends on left-ventricular shape. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference, 2010 , 2010, 2638-41	0.9	
115	Evaluation of contractile function and inotropic reserve with tissue velocity, strain and strain rate imaging in streptozotocin-induced diabetes. <i>European Journal of Echocardiography</i> , 2010 , 11, 622-9		8
114	Prospective assessment of fetal cardiac function with speckle tracking in healthy fetuses and recipient fetuses of twin-to-twin transfusion syndrome. <i>Journal of the American Society of Echocardiography</i> , 2010 , 23, 301-8	5.8	74
113	Strain rate imaging: fundamental principles and progress so far. <i>Imaging in Medicine</i> , 2010 , 2, 547-563	1	8
112	In-vivo assessment of radial and longitudinal strain in the carotid artery using speckle tracking 2010 ,		2
111	3D motion and strain estimation of the heart: initial clinical findings 2010 ,		2
110	Closed-chest animal model of chronic coronary artery stenosis. Assessment with magnetic resonance imaging. <i>International Journal of Cardiovascular Imaging</i> , 2010 , 26, 299-308	2.5	10
109	Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. <i>Journal of Thoracic and Cardiovascular Surgery</i> , 2010 , 139, 1501-10	1.5	164
108	Influence of left-ventricular shape on passive filling properties and end-diastolic fiber stress and strain. <i>Journal of Biomechanics</i> , 2010 , 43, 1745-53	2.9	29
107	A dual-chamber, thick-walled cardiac phantom for use in cardiac motion and deformation imaging by ultrasound. <i>Ultrasound in Medicine and Biology</i> , 2010 , 36, 1145-56	3.5	32
106	Temporal diffeomorphic free-form deformation for strain quantification in 3D-US images. <i>Lecture Notes in Computer Science</i> , 2010 , 13, 1-8	0.9	14
105	Cardiac 4D Ultrasound Imaging 2010 , 81-104		1
104	A comparison between methods for automatic quantification of global left ventricular function 2009 ,		3
103	The influence of left-ventricular shape on end-diastolic fiber stress and strain. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2009 , 2009, 2887-90	0.9	1
102	Tangential sound field oscillations for 2D motion estimation in echocardiography 2009,		10

An in-vivo study on the difference between principal and cardiac strains 2009, 101 2 Echocardiographic assessment of left ventricular untwist rate: comparison of tissue Doppler and 100 7 speckle tracking methodologies. European Journal of Echocardiography, 2009, 10, 683-90 Ultrastructural and functional remodeling of the coupling between Ca2+ influx and sarcoplasmic reticulum Ca2+ release in right atrial myocytes from experimental persistent atrial fibrillation. 99 15.7 130 Circulation Research, 2009, 105, 876-85 Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial 98 16.6 152 infarction. Journal of Experimental Medicine, 2009, 206, 113-23 Absence of thrombospondin-2 causes age-related dilated cardiomyopathy. Circulation, 2009, 120, 1585-975.7 97 Influence of heart rate reduction on Doppler myocardial imaging parameters in a small animal 96 3.5 10 model. Ultrasound in Medicine and Biology, 2009, 35, 30-5 A fast convolution-based methodology to simulate 2-D/3-D cardiac ultrasound images. IEEE 87 95 3.2 Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 404-9 Level-set segmentation of myocardium and epicardium in ultrasound images using localized 3 94 Bhattacharyya distance 2009, Ultrasound-based 2D strain estimation of the carotid artery: an in-silico feasibility study 2009, 2 93 Improved regional function after autologous bone marrow-derived stem cell transfer in patients with acute myocardial infarction: a randomized, double-blind strain rate imaging study. European 81 92 9.5 Heart Journal, 2009, 30, 662-70 Long-term blinded placebo-controlled study of SNT-MC17/idebenone in the dystrophin deficient mdx mouse: cardiac protection and improved exercise performance. European Heart Journal, 2009, 91 9.5 75 30, 116-24 A Convolution-based Methodology to Simulate Cardiac Ultrasound Data Sets: Integration of 90 0.2 Realistic Beam Profiles. IFMBE Proceedings, 2009, 2520-2523 Three-dimensional cardiac strain estimation using spatio-temporal elastic registration of 89 126 11.7 ultrasound images: a feasibility study. IEEE Transactions on Medical Imaging, 2008, 27, 1580-91 Detection of regional myocardial dysfunction in patients with acute myocardial infarction using 88 5.8 49 velocity vector imaging. Journal of the American Society of Echocardiography, 2008, 21, 879-86 Early regional myocardial dysfunction in young patients with Duchenne muscular dystrophy. 87 5.8 96 Journal of the American Society of Echocardiography, 2008, 21, 1049-54 Strain rate imaging detects early cardiac effects of pegylated liposomal Doxorubicin as adjuvant 86 therapy in elderly patients with breast cancer. Journal of the American Society of Echocardiography, 5.8 146 2008, 21, 1283-9 The correlation between the SOS in trabecular bone and stiffness and density studied by 85 finite-element analysis. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 3.2 13 55, 1234-42 Left ventricular strain and strain rate in a general population. European Heart Journal, 2008, 29, 2014-239.5 84 151

83	Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium. <i>Circulation Research</i> , 2008 , 102, 338-46	15.7	187
82	Myocardial deformation abnormalities in pediatric hypertrophic cardiomyopathy: are all etiologies identical?. European Journal of Echocardiography, 2008 , 9, 784-90		15
81	Doppler myocardial imaging in the diagnosis of early systolic left ventricular dysfunction in diabetic rats. <i>European Journal of Echocardiography</i> , 2008 , 9, 326-33		26
80	Principles and Different Techniques for Speckle Tracking 2008 , 17-25		5
79	2008,		1
78	3D cardiac strain estimation using spatio-temporal elastic registration: In-vivo application 2008,		1
77	Quantitative elastography, solving the inverse elasticity problem using the Gauss-Newton method. 2008 ,		1
76	Estimation of 3D cardiac deformation using spatio-temporal elastic registration of non-scanconverted ultrasound data 2008 ,		2
75	The quantification of dipyridamole induced changes in regional deformation in normal, stunned or infarcted myocardium as measured by strain and strain rate: an experimental study. <i>International Journal of Cardiovascular Imaging</i> , 2008 , 24, 365-76	2.5	11
74	Detection and monitoring of cardiotoxicity-what does modern cardiology offer?. <i>Supportive Care in Cancer</i> , 2008 , 16, 437-45	3.9	82
73	Full or pressure limited reperfusion of an acute myocardial infarct results in a different wall thickness and deformation of the distal myocardiumimplications for clinical reperfusion strategies. <i>European Journal of Echocardiography</i> , 2008 , 9, 458-65		
72	Myocardial dysfunction late after low-dose anthracycline treatment in asymptomatic pediatric patients. <i>Journal of the American Society of Echocardiography</i> , 2007 , 20, 1351-8	5.8	153
71	Regional right ventricular dysfunction in chronic pulmonary hypertension. <i>Journal of the American Society of Echocardiography</i> , 2007 , 20, 1172-80	5.8	106
70	Mechanisms of postsystolic thickening in ischemic myocardium: mathematical modelling and comparison with experimental ischemic substrates. <i>Ultrasound in Medicine and Biology</i> , 2007 , 33, 1963-	7 ₫ ·5	55
69	Acute cardiac functional and morphological changes after Anthracycline infusions in children. <i>American Journal of Cardiology</i> , 2007 , 99, 974-7	3	112
68	Radial strain assessment of the interventricular septum wall by a new technique in healthy subjects. <i>Medical and Biological Engineering and Computing</i> , 2007 , 45, 855-62	3.1	
67	P5C-2 A New Convolution-Based Methodology to Simulate Ultrasound Images in a 2D / 3D Sector Format. <i>Proceedings IEEE Ultrasonics Symposium</i> , 2007 ,		3
66	Regional myocardial deformation in children with hypertrophic cardiomyopathy: morphological and clinical correlations. <i>European Heart Journal</i> , 2007 , 28, 2886-94	9.5	56

65	The potential clinical role of ultrasonic strain and strain rate imaging in diagnosing acute rejection after heart transplantation. <i>European Journal of Echocardiography</i> , 2007 , 8, 213-21		62
64	P4A-5 3D Cardiac Strain Estimation Using Spatio-Temporal Elastic Registration: In Silico Validation 2007 ,		2
63	P4F-3 Comparing Optimization Algorithms for the Young@ Modulus Reconstruction in Ultrasound Elastography. <i>Proceedings IEEE Ultrasonics Symposium</i> , 2007 ,		2
62	Statistical modeling of the radio-frequency signal for partially- and fully-developed speckle based on a generalized gaussian model with application to echocardiography. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2007 , 54, 2189-94	3.2	9
61	A level set framework with a shape and motion prior for segmentation and region tracking in echocardiography. <i>Medical Image Analysis</i> , 2006 , 10, 162-77	15.4	42
60	Comparison of real-time tri-plane and conventional 2D dobutamine stress echocardiography for the assessment of coronary artery disease. <i>European Heart Journal</i> , 2006 , 27, 1719-24	9.5	36
59	Feasibility of strain and strain rate imaging for the assessment of regional left atrial deformation: a study in normal subjects. <i>European Journal of Echocardiography</i> , 2006 , 7, 199-208		142
58	Statistics of the radio-frequency signal based on K distribution with application to echocardiography. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2006 , 53, 1689)- 3 92	20
57	Doppler myocardial imaging in adult male rats: reference values and reproducibility of velocity and deformation parameters. <i>European Journal of Echocardiography</i> , 2006 , 7, 411-7		25
56	Experimental assessment of a new research tool for the estimation of two-dimensional myocardial strain. <i>Ultrasound in Medicine and Biology</i> , 2006 , 32, 1509-13	3.5	67
55	The evaluation of pulmonary hypertension using right ventricular myocardial isovolumic relaxation time. <i>Journal of the American Society of Echocardiography</i> , 2005 , 18, 1113-20	5.8	36
54	New aspects of the ventricular septum and its function: an echocardiographic study. <i>Heart</i> , 2005 , 91, 1343-8	5.1	44
53	Strain rate imaging after dynamic stress provides objective evidence of persistent regional myocardial dysfunction in ischaemic myocardium: regional stunning identified?. <i>Heart</i> , 2005 , 91, 152-60	5.1	27
52	Ultrasonic strain/strain rate imaginga new clinical tool to evaluate the transplanted heart. <i>European Journal of Echocardiography</i> , 2005 , 6, 186-95		24
51	Different deformation patterns in intracardiac tumors. <i>European Journal of Echocardiography</i> , 2005 , 6, 461-4		13
50	Experimental validation of a new ultrasound method for the simultaneous assessment of radial and longitudinal myocardial deformation independent of insonation angle. <i>Circulation</i> , 2005 , 112, 2157-62	16.7	275
49	RF-based two-dimensional cardiac strain estimation: a validation study in a tissue-mimicking phantom. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,</i> 2004 , 51, 1537-46	3.2	61
48	The sequential changes in myocardial thickness and thickening which occur during acute transmural infarction, infarct reperfusion and the resultant expression of reperfusion injury. <i>European Heart Journal</i> 2004 25, 794-803	9.5	68

47	Late post-repair ventricular function in patients with origin of the left main coronary artery from the pulmonary trunk. <i>American Journal of Cardiology</i> , 2004 , 93, 506-8	3	33
46	Quantifying myocardial deformation throughout the cardiac cycle: a comparison of ultrasound strain rate, grey-scale M-mode and magnetic resonance imaging. <i>Ultrasound in Medicine and Biology</i> , 2004 , 30, 591-8	3.5	43
45	Strain and strain rate imaging: a new clinical approach to quantifying regional myocardial function. <i>Journal of the American Society of Echocardiography</i> , 2004 , 17, 788-802	5.8	500
44	Defining the transmurality of a chronic myocardial infarction by ultrasonic strain-rate imaging: implications for identifying intramural viability: an experimental study. <i>Circulation</i> , 2003 , 107, 883-8	16.7	147
43	Quantification of regional right and left ventricular function by ultrasonic strain rate and strain indexes in Friedreich@ataxia. <i>American Journal of Cardiology</i> , 2003 , 91, 622-6	3	48
42	One-dimensional ultrasonic strain and strain rate imaging: a new approach to the quantitation of regional myocardial function in patients with aortic stenosis. <i>Ultrasound in Medicine and Biology</i> , 2003 , 29, 1085-92	3.5	53
41	Comparison of time-domain displacement estimators for two-dimensional RF tracking. <i>Ultrasound in Medicine and Biology</i> , 2003 , 29, 1177-86	3.5	66
40	Towards ultrasound cardiac image segmentation based on the radiofrequency signal. <i>Medical Image Analysis</i> , 2003 , 7, 353-67	15.4	39
39	Can regional strain and strain rate measurement be performed during both dobutamine and exercise echocardiography, and do regional deformation responses differ with different forms of stress testing?. <i>Journal of the American Society of Echocardiography</i> , 2003 , 16, 299-308	5.8	46
38	Identification of acutely ischemic myocardium using ultrasonic strain measurements. A clinical study in patients undergoing coronary angioplasty. <i>Journal of the American College of Cardiology</i> , 2003 , 41, 810-9	15.1	161
37	Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans. <i>Circulation</i> , 2003 , 107, e49; author reply e49	16.7	6
36	The feasibility of ultrasonic regional strain and strain rate imaging in quantifying dobutamine stress echocardiography. <i>European Journal of Echocardiography</i> , 2003 , 4, 81-91		13
35	Myocardial elastographya feasibility study in vivo. Ultrasound in Medicine and Biology, 2002, 28, 475-82	3.5	187
34	Two-dimensional ultrasonic strain rate measurement of the human heart in vivo. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2002 , 49, 281-6	3.2	143
33	Quantification of regional left and right ventricular radial and longitudinal function in healthy children using ultrasound-based strain rate and strain imaging. <i>Journal of the American Society of Echocardiography</i> , 2002 , 15, 20-8	5.8	187
32	Can changes in systolic longitudinal deformation quantify regional myocardial function after an acute infarction? An ultrasonic strain rate and strain study. <i>Journal of the American Society of Echocardiography</i> , 2002 , 15, 723-30	5.8	77
31	Processing radio frequency ultrasound images: a robust method for local spectral features estimation by a spatially constrained parametric approach. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2002 , 49, 1704-19	3.2	12
30	Echocardiographic strain and strain-rate imaging: a new tool to study regional myocardial function. <i>IEEE Transactions on Medical Imaging</i> , 2002 , 21, 1022-30	11.7	97

(1999-2002)

29	Can strain rate and strain quantify changes in regional systolic function during dobutamine infusion, B-blockade, and atrial pacingimplications for quantitative stress echocardiography. <i>Journal of the American Society of Echocardiography</i> , 2002 , 15, 416-24	5.8	120
28	Acute changes in systolic and diastolic events during clinical coronary angioplasty: a comparison of regional velocity, strain rate, and strain measurement. <i>Journal of the American Society of Echocardiography</i> , 2002 , 15, 1-12	5.8	105
27	Doppler tissue velocity, strain, and strain rate imaging with transesophageal echocardiography in the operating room: a feasibility study. <i>Journal of the American Society of Echocardiography</i> , 2002 , 15, 768-76	5.8	51
26	Doppler myocardial imaging. A new tool to assess regional inhomogeneity in cardiac function. <i>Basic Research in Cardiology</i> , 2001 , 96, 595-605	11.8	66
25	Is there a change in myocardial nonlinearity during the cardiac cycle?. <i>Ultrasound in Medicine and Biology</i> , 2001 , 27, 389-98	3.5	4
24	Can natural strain and strain rate quantify regional myocardial deformation? A study in healthy subjects. <i>Ultrasound in Medicine and Biology</i> , 2001 , 27, 1087-97	3.5	222
23	Noninvasive quantification of the contractile reserve of stunned myocardium by ultrasonic strain rate and strain. <i>Circulation</i> , 2001 , 104, 1059-65	16.7	161
22	Parametric study of the peak negative acoustic pressure distribution within the image plane of a phased array transducer. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2001 , 48, 1092-102	3.2	1
21	Quantification of the spectrum of changes in regional myocardial function during acute ischemia in closed chest pigs: an ultrasonic strain rate and strain study. <i>Journal of the American Society of Echocardiography</i> , 2001 , 14, 874-84	5.8	120
20	Changes in systolic and postsystolic wall thickening during acute coronary occlusion and reperfusion in closed-chest pigs: Implications for the assessment of regional myocardial function. <i>Journal of the American Society of Echocardiography,</i> 2001 , 14, 691-7	5.8	39
19	Quantitation of left-ventricular asynergy by cardiac ultrasound. <i>American Journal of Cardiology</i> , 2000 , 86, 4G-9G	3	24
18	High frame rate myocardial integrated backscatter. Does this change our understanding of this acoustic parameter?. <i>European Journal of Echocardiography</i> , 2000 , 1, 32-41		27
17	Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. <i>European Journal of Echocardiography</i> , 2000 , 1, 154-70		705
16	Are changes in myocardial integrated backscatter restricted to the ischemic zone in acute induced ischemia? An in vivo animal study. <i>Journal of the American Society of Echocardiography</i> , 2000 , 13, 306-15	5.8	5
15	Nonlinear propagation effects on broadband attenuation measurements and its implications for ultrasonic tissue characterization. <i>Journal of the Acoustical Society of America</i> , 1999 , 106, 1126-33	2.2	7
14	Robustness of integrated backscatter for myocardial tissue characterization. <i>Ultrasound in Medicine and Biology</i> , 1999 , 25, 95-103	3.5	10
13	Tissue Doppler Echocardiography: Future Developments. <i>Echocardiography</i> , 1999 , 16, 509-520	1.5	27
12	Abnormal postsystolic thickening in acutely ischemic myocardium during coronary angioplasty: a velocity, strain, and strain rate doppler myocardial imaging study. <i>Journal of the American Society of Echocardiography</i> , 1999 , 12, 994-6	5.8	73

11	The calculation of the transient near and far field of a baffled piston using low sampling frequencies. <i>Journal of the Acoustical Society of America</i> , 1997 , 102, 78-86	2.2	19
10	Ultrasound Physics1-14		1
9	A parametric study on processing parameters for two-dimensional cardiac strain estimation: an in-vivo study		2
8	A virtual environment for the evaluation, validation and optimization of strain and strain rate imaging		3
7	Ultrasonic strain and strain rate imaging for the assessment of regional myocardial function in mice		1
6	A statistical model-based approach for the detection of abnormal cardiac deformation		1
5	SPEQLE (Software package for echocardiographic quantification LEuven) an integrated approach to ultrasound-based cardiac deformation quantification		7
4	Calculation of strain values from strain rate curves: how should this be done?		2
3	Evaluation of transmural myocardial deformation and reflectivity characteristics		7
2	Software package for echocardiographic quantification: Leuven (SPEQLE)		1
1	A new method for two-dimensional myocardial strain estimation by ultrasound: an in-vivo comparison with sonomicrometry		1