Qiang Fu

List of Publications by Citations

Source: https://exaly.com/author-pdf/3518711/qiang-fu-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 280
 11,218
 59
 93

 papers
 citations
 h-index
 g-index

 286
 13,676
 7.3
 6.83

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
280	Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. <i>Progress in Polymer Science</i> , 2014 , 39, 627-655	29.6	460
279	Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. Journal of Materials Chemistry, 2012 , 22, 18772		423
278	Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization. <i>Progress in Polymer Science</i> , 2012 , 37, 1425-1455	29.6	295
277	Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 95, 164-71	5.4	250
276	New Understanding in Tuning Toughness of 即olypropylene: The Role of 即ucleated Crystalline Morphology. <i>Macromolecules</i> , 2009 , 42, 9325-9331	5.5	241
275	Water-induced shape memory effect of graphene oxide reinforced polyvinyl alcohol nanocomposites. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 2240-2249	13	235
274	Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer. <i>ACS Applied Materials & Distributed & Distributed & Distributed & Distributed & Distributed </i>	9.5	203
273	Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 3748-3756	7.1	188
272	Tailoring impact toughness of poly(L-lactide)/poly(Laprolactone) (PLLA/PCL) blends by controlling crystallization of PLLA matrix. <i>ACS Applied Materials & Amp; Interfaces</i> , 2012 , 4, 897-905	9.5	188
271	Disulfide bond bridge insertion turns hydrophobic anticancer prodrugs into self-assembled nanomedicines. <i>Nano Letters</i> , 2014 , 14, 5577-83	11.5	177
270	Control of Crystal Morphology in Poly(l-lactide) by Adding Nucleating Agent. <i>Macromolecules</i> , 2011 , 44, 1233-1237	5.5	171
269	Achieving a Collapsible, Strong, and Highly Thermally Conductive Film Based on Oriented Functionalized Boron Nitride Nanosheets and Cellulose Nanofiber. <i>ACS Applied Materials & Interfaces</i> , 2017 , 9, 30035-30045	9.5	167
268	The resistivity Itrain behavior of conductive polymer composites: stability and sensitivity. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 17085-17098	13	132
267	Stereocomplex formation of high-molecular-weight polylactide: A low temperature approach. <i>Polymer</i> , 2012 , 53, 5449-5454	3.9	131
266	Low-dimensional carbonaceous nanofiller induced polymer crystallization. <i>Progress in Polymer Science</i> , 2014 , 39, 555-593	29.6	124
265	Significantly improving oxygen barrier properties of polylactide via constructing parallel-aligned shish-kebab-like crystals with well-interlocked boundaries. <i>Biomacromolecules</i> , 2014 , 15, 1507-14	6.9	121
264	Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(Etaprolactone) and poly(ethylene glycol) as soft segment. <i>European Polymer Journal</i> , 2007 , 43, 1838-1846	5.2	120

26	Self-assembly of biodegradable polyurethanes for controlled delivery applications. <i>Soft Matter</i> , 2012 , 8, 5414	3.6	116	
26:	Design and Preparation of a Unique Segregated Double Network with Excellent Thermal Conductive Property. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 7637-7647	9.5	115	
26:	Toward the next-generation nanomedicines: design of multifunctional multiblock polyurethanes for effective cancer treatment. <i>ACS Nano</i> , 2013 , 7, 1918-28	16.7	114	
260	Formation of Interlinked Shish-Kebabs in Injection-Molded Polyethylene under the Coexistence of Lightly Cross-Linked Chain Network and Oscillation Shear Flow. <i>Macromolecules</i> , 2012 , 45, 6600-6610	5.5	113	
259	Largely improved thermal conductivity of HDPE/expanded graphite/carbon nanotubes ternary composites via filler network-network synergy. <i>Composites Part A: Applied Science and Manufacturing</i> , 2017 , 99, 32-40	8.4	112	
258	Preparation of High-Performance Conductive Polymer Fibers through Morphological Control of Networks Formed by Nanofillers. <i>Advanced Functional Materials</i> , 2010 , 20, 1424-1432	15.6	107	
257	Highly Thermoconductive, Thermostable, and Super-Flexible Film by Engineering 1D Rigid Rod-Like Aramid Nanofiber/2D Boron Nitride Nanosheets. <i>Advanced Materials</i> , 2020 , 32, e1906939	24	101	
250	Remarkably Enhanced Impact Toughness and Heat Resistance of poly(l-Lactide)/Thermoplastic Polyurethane Blends by Constructing Stereocomplex Crystallites in the Matrix. <i>ACS Sustainable</i> Chemistry and Engineering, 2016 , 4, 111-120	8.3	100	
25	Molecular engineered super-nanodevices: smart and safe delivery of potent drugs into tumors. Advanced Materials, 2012 , 24, 3639-45	24	100	
254	Improving impact toughness of polylactide/poly(ether)urethane blends via designing the phase morphology assisted by hydrophilic silica nanoparticles. <i>Polymer</i> , 2014 , 55, 1593-1600	3.9	99	
253	Toughening of poly(l-lactide) with poly(Eaprolactone): Combined effects of matrix crystallization and impact modifier particle size. <i>Polymer</i> , 2013 , 54, 5257-5266	3.9	99	
252	Construction of targeting-clickable and tumor-cleavable polyurethane nanomicelles for multifunctional intracellular drug delivery. <i>Biomacromolecules</i> , 2013 , 14, 4407-19	6.9	98	
25	ShishRebab of polyolefin by thelt manipulationIstrategy in injection-molding: A convenience pathway from fundament to application. <i>Polymer</i> , 2008 , 49, 4745-4755	3.9	98	
250	Selective localization of multi-walled carbon nanotubes in thermoplastic elastomer blends: An effective method for tunable resistivityEtrain sensing behavior. <i>Composites Science and Technology</i> , 2014 , 92, 16-26	8.6	93	
249	Synthesis, degradation, and cytotoxicity of multiblock poly(epsilon-caprolactone urethane)s containing gemini quaternary ammonium cationic groups. <i>Biomacromolecules</i> , 2009 , 10, 2857-65	6.9	93	
24	Recent Advances in Processing of Stereocomplex-Type Polylactide. <i>Macromolecular Rapid Communications</i> , 2017 , 38, 1700454	4.8	91	
24;	Largely enhanced energy storage density of poly(vinylidene fluoride) nanocomposites based on surface hydroxylation of boron nitride nanosheets. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 7573-7584	13	90	
240	Simultaneous reinforcing and toughening of polyurethane via grafting on the surface of microfibrillated cellulose. <i>ACS Applied Materials & amp; Interfaces,</i> 2014 , 6, 2497-507	9.5	90	

245	Highly Sensitive, Ultrastretchable Strain Sensors Prepared by Pumping Hybrid Fillers of Carbon Nanotubes/Cellulose Nanocrystal into Electrospun Polyurethane Membranes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 12968-12977	9.5	87
244	Robust and Mechanically and Electrically Self-Healing Hydrogel for Efficient Electromagnetic Interference Shielding. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 8245-8257	9.5	85
243	Synthesis and surface mobility of segmented polyurethanes with fluorinated side chains attached to hard blocks. <i>Polymer</i> , 2004 , 45, 1495-1502	3.9	84
242	Recent progress on thermal conductive and electrical insulating polymer composites. <i>Composites Communications</i> , 2018 , 8, 74-82	6.7	81
241	Formation of conductive networks with both segregated and double-percolated characteristic in conductive polymer composites with balanced properties. <i>ACS Applied Materials & Double Segregated</i> , 6, 6835-44	9.5	77
240	Surface modification of boron nitride by reduced graphene oxide for preparation of dielectric material with enhanced dielectric constant and well-suppressed dielectric loss. <i>Composites Science and Technology</i> , 2016 , 134, 191-200	8.6	71
239	Preparation of a thermally conductive biodegradable cellulose nanofiber/hydroxylated boron nitride nanosheet film: the critical role of edge-hydroxylation. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 11863-11873	13	71
238	Nanocellulose-assisted dispersion of graphene to fabricate poly(vinyl alcohol)/graphene nanocomposite for humidity sensing. <i>Composites Science and Technology</i> , 2016 , 131, 67-76	8.6	67
237	Towards tunable resistivity Itrain behavior through construction of oriented and selectively distributed conductive networks in conductive polymer composites. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 10048-10058	13	67
236	Cellular uptake of polyurethane nanocarriers mediated by gemini quaternary ammonium. <i>Biomaterials</i> , 2011 , 32, 9515-24	15.6	67
235	Enhancing the melt stability of polylactide stereocomplexes using a solid-state cross-linking strategy during a melt-blending process. <i>Polymer Chemistry</i> , 2014 , 5, 5985-5993	4.9	65
234	Anisotropic multilayer conductive networks in carbon nanotubes filled polyethylene/polypropylene blends obtained through high speed thin wall injection molding. <i>Polymer</i> , 2013 , 54, 6425-6436	3.9	65
233	Preparation of high performance conductive polymer fibres from double percolated structure. Journal of Materials Chemistry, 2011 , 21, 6401		65
232	Tensile properties in the oriented blends of high-density polyethylene and isotactic polypropylene obtained by dynamic packing injection molding. <i>Polymer</i> , 2005 , 46, 3190-3198	3.9	63
231	Selective localization of multi-walled carbon nanotubes in bi-component biodegradable polyester blend for rapid electroactive shape memory performance. <i>Composites Science and Technology</i> , 2016 , 125, 38-46	8.6	62
230	Phase change material with anisotropically high thermal conductivity and excellent shape stability due to its robust cellulose/BNNSs skeleton. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 19364-19373	13	62
229	Largely enhanced thermal and electrical conductivity via constructing double percolated filler network in polypropylene/expanded graphite [Multi-wall carbon nanotubes ternary composites. <i>Composites Science and Technology</i> , 2016 , 130, 28-35	8.6	62
228	A Multidirectionally Thermoconductive Phase Change Material Enables High and Durable Electricity Real-Environment Solar-Thermal-Electric Conversion. <i>ACS Nano</i> , 2020 , 14, 15738-15747	16.7	61

(2020-2018)

227	Fabrication of Highly Stretchable, Washable, Wearable, Water-Repellent Strain Sensors with Multi-Stimuli Sensing Ability. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 31655-31663	9.5	61
226	Completely Green Approach for the Preparation of Strong and Highly Conductive Graphene Composite Film by Using Nanocellulose as Dispersing Agent and Mechanical Compression. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 9102-9113	8.3	61
225	A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes. <i>Scientific Reports</i> , 2016 , 6, 32140	4.9	60
224	Preparation of Transparent and Flexible Shape Memory Polybenzoxazine Film through Chemical Structure Manipulation and Hydrogen Bonding Control. <i>Macromolecules</i> , 2018 , 51, 6561-6570	5.5	60
223	Largely enhanced thermal conductivity of HDPE/boron nitride/carbon nanotubes ternary composites via filler network-network synergy and orientation. <i>Composites Part A: Applied Science and Manufacturing</i> , 2018 , 112, 32-39	8.4	60
222	Fabrication of highly stretchable conductors via morphological control of carbon nanotube network. <i>Small</i> , 2013 , 9, 3620-9	11	59
221	Toward Supertough and Heat-Resistant Stereocomplex-Type Polylactide/Elastomer Blends with Impressive Melt Stability via in Situ Formation of Graft Copolymer during One-Pot Reactive Melt Blending. <i>Macromolecules</i> , 2019 , 52, 1718-1730	5.5	56
220	Metal-Level Robust, Folding Endurance, and Highly Temperature-Stable MXene-Based Film with Engineered Aramid Nanofiber for Extreme-Condition Electromagnetic Interference Shielding Applications. <i>ACS Applied Materials & Descriptions</i> , 12, 26485-26495	9.5	56
219	Conformation-Directed Micelle-to-Vesicle Transition of Cholesterol-Decorated Polypeptide Triggered by Oxidation. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6604-6610	16.4	56
218	Significant Enhancement of Thermal Conductivity in Polymer Composite via Constructing Macroscopic Segregated Filler Networks. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 29071-29081	9.5	55
217	The preparation and properties of polystyrene/functionalized graphene nanocomposite foams using supercritical carbon dioxide. <i>Polymer International</i> , 2013 , 62, 1077-1084	3.3	55
216	Control of the hierarchical structure of polymer articles via atructuring processing. <i>Progress in Polymer Science</i> , 2014 , 39, 891-920	29.6	54
215	A self-reinforcing and self-healing elastomer with high strength, unprecedented toughness and room-temperature reparability. <i>Materials Horizons</i> , 2021 , 8, 267-275	14.4	53
214	Largely Enhanced Stretching Sensitivity of Polyurethane/Carbon Nanotube Nanocomposites via Incorporation of Cellulose Nanofiber. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 2108-2117	3.8	52
213	Surface modifications of boron nitride nanosheets for poly(vinylidene fluoride) based film capacitors: advantages of edge-hydroxylation. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 7664-7674	13	52
212	Shishlebab-like cylindrulite structures resulted from periodical shear-induced crystallization of isotactic polypropylene. <i>Polymer</i> , 2011 , 52, 2970-2978	3.9	52
211	Largely enhanced crystallization of semi-crystalline polymer on the surface of glass fiber by using graphene oxide as a modifier. <i>Polymer</i> , 2013 , 54, 303-309	3.9	51
2 10	Facile one-step preparation of robust hydrophobic cotton fabrics by covalent bonding polyhedral oligomeric silsesquioxane for ultrafast oil/water separation. <i>Chemical Engineering Journal</i> , 2020 , 379, 122391	14.7	51

209	Ultrahigh-performance electrospun polylactide membranes with excellent oil/water separation ability via interfacial stereocomplex crystallization. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 19729-197	37	50
208	Simultaneous the thermodynamics favorable compatibility and morphology to achieve excellent comprehensive mechanics in PLA/OBC blend. <i>Polymer</i> , 2014 , 55, 6409-6417	3.9	49
207	Phase behavior and hydrogen bonding in biomembrane mimicing polyurethanes with long side chain fluorinated alkyl phosphatidylcholine polar head groups attached to hard block. <i>Polymer</i> , 2005 , 46, 7230-7239	3.9	48
206	Recent progress on PEDOT:PSS based polymer blends and composites for flexible electronics and thermoelectric devices. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 3130-3152	7.8	48
205	Cell internalizable and intracellularly degradable cationic polyurethane micelles as a potential platform for efficient imaging and drug delivery. <i>Biomacromolecules</i> , 2014 , 15, 2896-906	6.9	47
204	Biodegradable gemini multiblock poly(Eaprolactone urethane)s toward controllable micellization. <i>Soft Matter</i> , 2010 , 6, 2087	3.6	46
203	Powder metallurgy inspired low-temperature fabrication of high-performance stereocomplexed polylactide products with good optical transparency. <i>Scientific Reports</i> , 2016 , 6, 20260	4.9	45
202	Preparation of highly thermally conductive but electrically insulating composites by constructing a segregated double network in polymer composites. <i>Composites Science and Technology</i> , 2019 , 175, 135-	846 142	44
201	Towards suppressing loss tangent: Effect of polydopamine coating layers on dielectric properties of coreBhell barium titanate filled polyvinylidene fluoride composites. <i>Composites Science and Technology</i> , 2015 , 118, 198-206	8.6	44
200	Clickable and imageable multiblock polymer micelles with magnetically guided and PEG-switched targeting and release property for precise tumor theranosis. <i>Biomaterials</i> , 2017 , 145, 138-153	15.6	44
199	Constructing stereocomplex structures at the interface for remarkably accelerating matrix crystallization and enhancing the mechanical properties of poly(L-lactide)/multi-walled carbon nanotube nanocomposites. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 13835-13847	13	44
198	Towards high-performance poly(L-lactide)/elastomer blends with tunable interfacial adhesion and matrix crystallization via constructing stereocomplex crystallites at the interface. <i>RSC Advances</i> , 2014 , 4, 49374-49385	3.7	43
197	Toward environment-friendly composites of poly(propylene carbonate) reinforced with cellulose nanocrystals. <i>Composites Science and Technology</i> , 2013 , 78, 63-68	8.6	43
196	Synthesis of Janus POSS star polymer and exploring its compatibilization behavior for PLLA/PCL polymer blends. <i>Polymer</i> , 2018 , 136, 84-91	3.9	42
195	Cellulose/Chitosan Composite Multifilament Fibers with Two-Switch Shape Memory Performance. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 6981-6990	8.3	41
194	Mechanically Strong Chitin Fibers with Nanofibril Structure, Biocompatibility, and Biodegradability. <i>Chemistry of Materials</i> , 2019 , 31, 2078-2087	9.6	41
193	Molecular dynamics simulations of orientation induced interfacial enhancement between single walled carbon nanotube and aromatic polymers chains. <i>Composites Part A: Applied Science and Manufacturing</i> , 2015 , 73, 155-165	8.4	41
192	Cooperative effect of shear and nanoclay on the formation of polar phase in poly(vinylidene fluoride) and the resultant properties. <i>Polymer</i> , 2011 , 52, 4970-4978	3.9	41

(2019-2019)

191	shielding based on Pickering emulsions method. <i>Composites Part A: Applied Science and Manufacturing</i> , 2019 , 125, 105558	8.4	40
190	A high-performance temperature sensitive TPV/CB elastomeric composite with balanced electrical and mechanical properties via PF-induced dynamic vulcanization. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 16989-16996	13	39
189	Effect of annealing on the microstructure and mechanical properties of polypropylene with oriented shish-kebab structure. <i>Polymer International</i> , 2012 , 61, 252-258	3.3	39
188	Matrix crystallization induced simultaneous enhancement of electrical conductivity and mechanical performance in poly(l-lactide)/multiwalled carbon nanotubes (PLLA/MWCNTs) nanocomposites. <i>Composites Science and Technology</i> , 2014 , 102, 20-27	8.6	38
187	Fabrication and characterization of waterborne biodegradable polyurethanes 3-dimensional porous scaffolds for vascular tissue engineering. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2010 , 21, 163	7 ³ 5 ⁵ 2	38
186	Facile preparation of polybenzoxazine/graphene nanocomposites for electromagnetic interference shielding. <i>Polymer</i> , 2019 , 162, 20-28	3.9	38
185	Effect of PEG content on the properties of biodegradable amphiphilic multiblock poly(Etaprolactone urethane)s. <i>Polymer Chemistry</i> , 2011 , 2, 885	4.9	37
184	Design of high-performance poly(l-lactide)/elastomer blends through anchoring carbon nanotubes at the interface with the aid of stereocomplex crystallization. <i>Polymer</i> , 2017 , 108, 38-49	3.9	36
183	Synthesis and characterization of biodegradable lysine-based waterborne polyurethane for soft tissue engineering applications. <i>Biomaterials Science</i> , 2016 , 4, 1682-1690	7.4	36
182	Green Production of Regenerated Cellulose/Boron Nitride Nanosheet Textiles for Static and Dynamic Personal Cooling. <i>ACS Applied Materials & Dynamic Personal Cooling</i> . <i>ACS Applied Materials & Dynamic Personal Cooling</i> . 11, 40685-40693	9.5	35
181	Origin of various lamellar orientations in high-density polyethylene/isotactic polypropylene blends achieved via dynamic packing injection molding: bulk crystallization vs. epitaxy. <i>Polymer</i> , 2005 , 46, 819-8	3 2 5	35
180	Plasma modification of PU foam for piezoresistive sensor with high sensitivity, mechanical properties and long-term stability. <i>Chemical Engineering Journal</i> , 2020 , 381, 122666	14.7	35
179	Low-Temperature Sintering of Stereocomplex-Type Polylactide Nascent Powder: Effect of Crystallinity. <i>Macromolecules</i> , 2017 , 50, 7611-7619	5.5	34
178	Deep insight into the key role of carbon black self-networking in the formation of co-continuous-like morphology in polylactide/poly(ether)urethane blends. <i>Polymer</i> , 2016 , 82, 11-21	3.9	34
177	Synthesis and antibacterial characterization of waterborne polyurethanes with gemini quaternary ammonium salt. <i>Science Bulletin</i> , 2015 , 60, 1114-1121	10.6	34
176	Epitaxy growth and directed crystallization of high-density polyethylene in the oriented blends with isotactic polypropylene. <i>Polymer</i> , 2005 , 46, 5258-5267	3.9	34
175	Mechanically Strong Multifilament Fibers Spun from Cellulose Solution via Inducing Formation of Nanofibers. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 5314-5321	8.3	33
174	Nickel hydroxide as novel filler for high energy density dielectric polymer composites. <i>Composites Science and Technology</i> , 2019 , 172, 117-124	8.6	32

(2018-2018)

155	titanate/nickel hydroxide for polyvinylidene fluoride based composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2018 , 104, 24-31	8.4	24	
154	Synthesis and microphase separated structures of polydimethylsiloxane/polycarbonate-based polyurethanes. <i>RSC Advances</i> , 2013 , 3, 8291	3.7	24	
153	Is filler orientation always good for thermal management performance: A visualized study from experimental results to simulative analysis. <i>Chemical Engineering Journal</i> , 2020 , 394, 124929	14.7	23	
152	Realizing the full nanofiller enhancement in melt-spun fibers of poly(vinylidene fluoride)/carbon nanotube composites. <i>Nanotechnology</i> , 2011 , 22, 355707	3.4	23	
151	A promising strategy for fabricating high-performance stereocomplex-type polylactide products via carbon nanotubes-assisted low-temperature sintering. <i>Polymer</i> , 2019 , 162, 50-57	3.9	23	
150	Controlled polymerization of 3,4-dihydro-2H-1,3-benzoxazine and its properties tailored by Lewis acids. <i>Reactive and Functional Polymers</i> , 2019 , 139, 75-84	4.6	22	
149	The combined effect of reactive and high-shear extrusion on the phase morphologies and properties of PLA/OBC/EGMA ternary blends. <i>Polymer</i> , 2019 , 169, 66-73	3.9	22	
148	Effect of stretching on the mechanical properties in melt-spun poly(butylene succinate)/microfibrillated cellulose (MFC) nanocomposites. <i>Carbohydrate Polymers</i> , 2016 , 140, 383-92	10.3	22	
147	Inducing of dominant polar forms in poly(vinylidene fluoride) with super toughness by adding alkyl ammonium salt. <i>Polymer</i> , 2012 , 53, 5455-5458	3.9	22	
146	Stereocomplex-type polylactide with remarkably enhanced melt-processability and electrical performance via incorporating multifunctional carbon black. <i>Polymer</i> , 2020 , 188, 122136	3.9	22	
145	Dragonfly wing-inspired architecture makes a stiff yet tough healable material. <i>Matter</i> , 2021 , 4, 2474-2	4 89 .7	22	
144	Improving Damping Properties and Thermal Stability of Epoxy/Polyurethane Grafted Copolymer by Adding Glycidyl POSS. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2018 , 36, 1297-1302	3.5	21	
143	Preparation of nylon MXD6/EG/CNTs ternary composites with excellent thermal conductivity and electromagnetic interference shielding effectiveness. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2017 , 35, 1497-1507	3.5	21	
142	Achieving excellent dispersion and electrical conductivity of olefin block copolymer/MWCNTs composites efficiently via high-shear processing. <i>Polymer</i> , 2017 , 123, 65-72	3.9	21	
141	Towards polylactide/core-shell rubber blends with balanced stiffness and toughness via the formation of rubber particle network with the aid of stereocomplex crystallites. <i>Polymer</i> , 2018 , 159, 23-31	3.9	21	
140	Surface Distribution and Biophysicochemical Properties of Polymeric Micelles Bearing Gemini Cationic and Hydrophilic Groups. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 2138-2149	9.5	20	
139	Largely enhanced energy density of polypropylene based nanocomposites via synergistic hybrid fillers and high shear extrusion assisted dispersion. <i>Composites Part A: Applied Science and Manufacturing</i> , 2019 , 119, 134-144	8.4	20	
138	Manipulating the Filler Network Structure and Properties of Polylactide/Carbon Black Nanocomposites with the Aid of Stereocomplex Crystallites. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 4232-4240	3.8	20	

137	Super Strong All-Cellulose Composite Filaments by Combination of Inducing Nanofiber Formation and Adding Nanofibrillated Cellulose. <i>Biomacromolecules</i> , 2018 , 19, 4386-4395	6.9	20
136	Gradient Polydopamine Coating: A Simple and General Strategy toward Multishape Memory Effects. ACS Applied Materials & Interfaces, 2018, 10, 32922-32934	9.5	20
135	Thermal responsiveness of hydrogen bonding and dielectric property of polybenzoxazines with different Mannich bridge structures. <i>Polymer</i> , 2019 , 175, 302-309	3.9	19
134	Ultrasensitive Thin-Film Pressure Sensors with a Broad Dynamic Response Range and Excellent Versatility Toward Pressure, Vibration, Bending, and Temperature. <i>ACS Applied Materials & Interfaces</i> , 2020 , 12, 20998-21008	9.5	19
133	Utilizing ammonium persulfate assisted expansion to fabricate flexible expanded graphite films with excellent thermal conductivity by introducing wrinkles. <i>Carbon</i> , 2019 , 153, 565-574	10.4	19
132	The effect of filler morphology on the dielectric performance of polyvinylidene fluoride (PVDF) based composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2019 , 118, 336-343	8.4	19
131	Fabrication of electrospun PVDF nanofibers with higher content of polar phase and smaller diameter by adding a small amount of dioctadecyl dimethyl ammonium chloride. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2017 , 35, 992-1000	3.5	18
130	A waterborne polyurethane 3D scaffold containing PLGA with a controllable degradation rate and an anti-inflammatory effect for potential applications in neural tissue repair. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 4434-4446	7.3	18
129	Effect of salt concentration in spinning solution on fiber diameter and mechanical property of electrospun styrene-butadiene-styrene tri-block copolymer membrane. <i>Polymer</i> , 2018 , 153, 61-69	3.9	18
128	Low-temperature sintering of stereocomplex-type polylactide nascent powder: The role of optical purity in directing the chain interdiffusion and cocrystallization across the particle interfaces. <i>Polymer</i> , 2018 , 150, 169-176	3.9	17
127	Morphology and internal structure control over PLA microspheres by compounding PLLA and PDLA and effects on drug release behavior. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 172, 105-112	6	17
126	Monodispersed hybrid microparticles based on polyhedral oligomeric silsesquioxane with good UV resistance and high thermal stability: From organic to inorganic. <i>Polymer</i> , 2019 , 178, 121609	3.9	17
125	Multifunctional Mixed Micelles Cross-Assembled from Various Polyurethanes for Tumor Therapy. <i>Biomacromolecules</i> , 2016 , 17, 2148-59	6.9	17
124	Stereocomplex-type polylactide with bimodal melting temperature distribution: Toward desirable melt-processability and thermomechanical performance. <i>Polymer</i> , 2019 , 169, 21-28	3.9	17
123	Preparation of expanded graphite/poly (phenylene sulfide) composites with high thermal and electrical conductivity by rotating solid-state premixing and melt processing. <i>Journal of Materials Science</i> , 2013 , 48, 1932-1939	4.3	16
122	Optically transparent poly(methyl methacrylate) with largely enhanced mechanical and shape memory properties via in-situ formation of polylactide stereocomplex in the matrix. <i>Polymer</i> , 2017 , 126, 231-239	3.9	16
121	Biomimetic Approach to Facilitate the High Filler Content in Free-Standing and Flexible Thermoelectric Polymer Composite Films Based on PVDF and AgSe Nanowires. <i>ACS Applied Materials & Discourse (Naterials & Discourse)</i> 12, 51506-51516	9.5	15
120	Fluoride ion encapsulated polyhedral oligomeric silsesquioxane: A novel filler for polymer nanocomposites with enhanced dielectric constant and reduced dielectric loss. <i>Composites Science and Technology</i> , 2020 , 189, 108035	8.6	15

(2015-2018)

119	A biomimetic hierarchical structure with a hydrophilic surface and a hydrophobic subsurface constructed from waterborne polyurethanes containing a self-assembling peptide extender. Journal of Materials Chemistry B, 2018, 6, 4326-4337	7.3	15
118	One-step alkyl-modification on boron nitride nanosheets for polypropylene nanocomposites with enhanced thermal conductivity and ultra-low dielectric loss. <i>Composites Science and Technology</i> , 2021 , 208, 108756	8.6	15
117	Fabrication of superhydrophilic and underwater superoleophobic membranes for fast and effective oil/water separation with excellent durability. <i>Journal of Membrane Science</i> , 2021 , 620, 118898	9.6	15
116	Tailor-Made Dispersion and Distribution of Stereocomplex Crystallites in Poly(l-lactide)/Elastomer Blends toward Largely Enhanced Crystallization Rate and Impact Toughness. <i>Journal of Physical Chemistry B</i> , 2017 , 121, 6271-6279	3.4	14
115	High impact performance induced by a synergistic effect of heteroepitaxy and oriented layer-unoriented layer alternated structure in iPP/HDPE injection molded part. <i>Polymer</i> , 2019 , 175, 206	-214	14
114	Using POSSII60 giant molecules as a novel compatibilizer for PS/PMMA polymer blends. <i>RSC Advances</i> , 2016 , 6, 18924-18928	3.7	14
113	Morphology and mechanical properties of immiscible polyethylene/polyamide12 blends prepared by high shear processing. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2017 , 35, 1132-1142	3.5	14
112	Mechanical Property, Thermal Property and Crystal Structure of Isotactic Polypropylene Samples Prepared by Vibration Injection Molding. <i>Polymer Bulletin</i> , 2008 , 59, 855-864	2.4	14
111	Enhancing crystallization and mechanical properties of poly(lactic acid)/milled glass fiber composites via self-assembled nanoscale interfacial structures. <i>Composites Part A: Applied Science and Manufacturing</i> , 2019 , 117, 219-229	8.4	14
110	Improved dielectric and energy storage properties of polypropylene by adding hybrid fillers and high-speed extrusion. <i>Polymer</i> , 2021 , 214, 123348	3.9	14
109	Superior strength and highly thermoconductive cellulose/ boron nitride film by stretch-induced alignment. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 10304-10315	13	14
108	Tailoring the crystalline morphology and mechanical property of olefin block copolymer via blending with a small amount of UHMWPE. <i>Polymer</i> , 2017 , 109, 137-145	3.9	13
107	Recent Progress on the Confinement, Assembly, and Relaxation of Inorganic Functional Fillers in Polymer Matrix during Processing. <i>Macromolecular Rapid Communications</i> , 2017 , 38, 1700444	4.8	13
106	Albumin-Modified Cationic Nanocarriers To Potentially Create a New Platform for Drug Delivery Systems. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 16421-16429	9.5	13
105	Symmetry-Dictated Mesophase Formation and Phase Diagram of Perfluorinated Polyhedral Oligomeric Silsesquioxanes. <i>Macromolecules</i> , 2019 , 52, 2361-2370	5.5	13
104	An unusual decrease in dielectric constant due to the addition of nickel hydroxide into silicone rubber. <i>Composites Part B: Engineering</i> , 2020 , 193, 108006	10	13
103	Preparation of Polylactide Composite with Excellent Flame Retardance and Improved Mechanical Properties. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2018 , 36, 1385-1393	3.5	13
102	Effects of interaction between a polycation and a nonionic polymer on their cross-assembly into mixed micelles. <i>Soft Matter</i> , 2015 , 11, 4197-207	3.6	13

101	A generalizable strategy toward highly tough and heat-resistant stereocomplex-type polylactide/elastomer blends with substantially enhanced melt processability. <i>Polymer</i> , 2021 , 224, 12	3736	13
100	Morphology Evolution of Polymer Blends under Intense Shear During High Speed Thin-Wall Injection Molding. <i>Journal of Physical Chemistry B</i> , 2017 , 121, 6257-6270	3.4	12
99	The effect of multilayered film structure on the dielectric properties of composites films based on P(VDF-HFP)/Ni(OH)2. <i>Nanocomposites</i> , 2019 , 5, 36-48	3.4	12
98	Facile Construction of Porous Magnetic Nanoparticles from Ferrocene-Functionalized Polyhedral Oligomeric Silsesquioxane-Containing Microparticles for Dye Adsorption. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 9532-9540	3.9	12
97	The synergistic effect of hierarchical structure and alkyl chain length on the antifouling and bactericidal properties of cationic/zwitterionic block polymer brushes. <i>Biomaterials Science</i> , 2020 , 8, 6890-6902	7.4	12
96	The role of mandrel rotation speed on morphology and mechanical properties of polyethylene pipes produced by rotational shear. <i>Polymer</i> , 2019 , 184, 121915	3.9	12
95	Polymer nanocomposite with enhanced energy storage capacity by introducing hierarchically-designed 1-dimension hybrid nanofiller. <i>Polymer</i> , 2020 , 201, 122608	3.9	11
94	Crosslinking Induced Reassembly of Multiblock Polymers: Addressing the Dilemma of Stability and Responsivity. <i>Advanced Science</i> , 2020 , 7, 1902701	13.6	11
93	Shear induced formation and destruction behavior of conductive networks in nickel/polyurethane composites during strain sensing. <i>Composites Part A: Applied Science and Manufacturing</i> , 2020 , 130, 10)57 \$7	11
92	Dual-functional anticoagulant and antibacterial blend coatings based on gemini quaternary ammonium salt waterborne polyurethane and heparin. <i>RSC Advances</i> , 2016 , 6, 17336-17344	3.7	11
91	Toward all stereocomplex-type polylactide with outstanding melt stability and crystallizability via solid-state transesterification between enantiomeric poly(l-lactide) and poly(d-lactide). <i>Polymer</i> , 2020 , 205, 122850	3.9	11
90	Improving high-temperature energy storage performance of PI dielectric capacitor films through boron nitride interlayer. <i>Advanced Composites and Hybrid Materials</i> ,1	8.7	11
89	Preparation and Properties of Ultrathin Flexible Expanded Graphite Film via Adding Natural Rubber. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2019 , 37, 806-814	3.5	10
88	Symmetry-guided, divergent assembly of regio-isomeric molecular Janus particles. <i>Chemical Communications</i> , 2019 , 55, 6425-6428	5.8	10
87	Insight into shear-induced modification for improving processability of polymers: Effect of shear rate on the evolution of entanglement state. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2019 , 57, 598-606	2.6	10
86	Flexible and Giant Terahertz Modulation Based on Ultra-Strain-Sensitive Conductive Polymer Composites. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 9790-9796	9.5	10
85	Fully Organic Bulk Polymer with Metallic Thermal Conductivity and Tunable Thermal Pathways. <i>Advanced Science</i> , 2021 , 8, e2004821	13.6	10
84	Understanding the effect of alkyl chains of gemini cations on the physicochemical and cellular properties of polyurethane micelles. <i>Biomaterials Science</i> , 2018 , 6, 1899-1907	7.4	10

(2015-2020)

83	Aligned 3D porous polyurethane scaffolds for biological anisotropic tissue regeneration. <i>International Journal of Energy Production and Management</i> , 2020 , 7, 19-27	5.3	9
82	Multiblock Copolymers toward Segmentation-Driven Morphological Transition. <i>Macromolecules</i> , 2020 , 53, 5992-6001	5.5	9
81	Photo-responsive Self-Reducible Polymers: Overcoming the Spatiotemporal Barriers for Hypersensitivity 2020 , 2, 602-609		9
80	Carbonized polybenzoxazine for electromagnetic interference shielding. <i>Materials Chemistry and Physics</i> , 2019 , 236, 121806	4.4	9
79	Polyhedral Oligomeric Silsesquioxanes Based Ultralow-k Materials: The Effect of Cage Size. <i>Advanced Functional Materials</i> , 2021 , 31, 2102074	15.6	9
78	Property enhancement of graphene fiber by adding small loading of cellulose nanofiber. <i>Nanocomposites</i> , 2016 , 2, 8-17	3.4	9
77	Low-Temperature Sintering of Stereocomplex-Type Polylactide Nascent Powder: From Compression Molding to Injection Molding. <i>Macromolecular Materials and Engineering</i> , 2018 , 303, 18001	78	9
76	A novel interpenetrating segregated functional filler network structure for ultra-high electrical conductivity and efficient EMI shielding in CPCs containing carbon nanotubes. <i>Materials Today Physics</i> , 2021 , 21, 100483	8	9
75	Biodegradable, anti-adhesive and tough polyurethane hydrogels crosslinked by triol crosslinkers. Journal of Biomedical Materials Research - Part A, 2019 , 107, 2205-2221	5.4	8
74	Low-temperature sintering of stereocomplex-type polylactide nascent powder: The role of poly(methyl methacrylate) in tailoring the interfacial crystallization between powder particles. <i>Polymer</i> , 2020 , 210, 123031	3.9	8
73	Largely enhanced electrical properties of polymer composites via the combined effect of volume exclusion and synergy. <i>RSC Advances</i> , 2016 , 6, 51900-51907	3.7	8
72	Toward multi-functional polymer composites through selectively distributing functional fillers. <i>Composites Part A: Applied Science and Manufacturing</i> , 2016 , 82, 20-33	8.4	8
71	Epitaxial crystallization and oriented structure of linear low-density polyethylene/isotactic polypropylene blends obtained via dynamic packing injection molding. <i>Polymers for Advanced Technologies</i> , 2011 , 22, 225-231	3.2	8
70	Enhancement of mechanical property and absorption capability of hydrophobically associated polyacrylamide hydrogels by adding cellulose nanofiber. <i>Materials Research Express</i> , 2020 , 7, 015319	1.7	8
69	Processing condition induced structural evolution in the alternating multi-layer structure during high speed thin-wall injection molding. <i>Polymer</i> , 2016 , 99, 49-58	3.9	8
68	Controlled Vertically Aligned Structures in Polymer Composites: Natural Inspiration, Structural Processing, and Functional Application. <i>Advanced Materials</i> , 2021 , e2103495	24	8
67	"Toolbox" for the Processing of Functional Polymer Composites Nano-Micro Letters, 2021 , 14, 35	19.5	8
66	Preparation and properties of polystyrene nanocomposites containing dumbbell-shaped molecular nanoparticles based on polyhedral oligomeric silsesquioxane and [60]fullerene. RSC Advances, 2015, 5, 70051-70058	3.7	7

65	Simultaneous Improvement of Oxidative and Hydrolytic Resistance of Polycarbonate Urethanes Based on Polydimethylsiloxane/Poly(hexamethylene carbonate) Mixed Macrodiols. Biomacromolecules, 2018, 19, 2137-2145	6.9	7
64	Largely Improved Stretch Ductility and 盱orm Room-temperature Durability of Poly(vinylidene fluoride) by Incorporating Aliphatic Polyketone. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2018 , 36, 1277-1285	3.5	7
63	Manipulating the Strength Toughness Balance of Poly(l-lactide) (PLLA) via Introducing Ductile Poly(Etaprolactone) (PCL) and Strong Shear Flow. <i>Industrial & Discounty Chemistry Research</i> , 2020 , 59, 1000-1009	3.9	7
62	FRET-based polymer materials for detection of cellular microenvironments. <i>Chinese Chemical Letters</i> , 2020 , 31, 1490-1498	8.1	7
61	Green and Economical Strategy for Spinning Robust Cellulose Filaments. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 14927-14937	8.3	7
60	Tough and biodegradable polyurethane-curcumin composited hydrogel with antioxidant, antibacterial and antitumor properties. <i>Materials Science and Engineering C</i> , 2021 , 121, 111820	8.3	7
59	Design and Construction of Deformable Heaters: Materials, Structure, and Applications. <i>Advanced Electronic Materials</i> ,2100452	6.4	7
58	Poly(vinyl alcohol)/MXene biomimetic aerogels with tunable mechanical properties and electromagnetic interference shielding performance controlled by pore structure. <i>Polymer</i> , 2021 , 230, 124101	3.9	7
57	Preparation of modified hexagonal boron nitride by ball-milling and enhanced thermal conductivity of epoxy resin. <i>Materials Research Express</i> , 2019 , 6, 1050d8	1.7	6
56	Preparation of high-performance cellulose composite membranes from LiOH/urea solvent system. <i>Nanocomposites</i> , 2019 , 5, 49-60	3.4	6
55	The retarded recovery of disentangled state by blending HDPE with ultra-high molecular weight polyethylene. <i>Polymer</i> , 2020 , 192, 122329	3.9	6
54	Enhanced Hydrolytic Resistance of Fluorinated Silicon-Containing Polyether Urethanes. <i>Biomacromolecules</i> , 2020 , 21, 1460-1470	6.9	6
53	Crystallographic features of poly(vinylidene fluoride) film upon an attractive substrate of KBr. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 27828-27838	3.6	6
52	Thermal annealing-induced superior toughness in polypropylene/poly(ethylene glycol) blend and its structural origin. <i>Polymer Engineering and Science</i> , 2013 , 53, 2053-2060	2.3	6
51	A Structured Phase Change Material with Controllable Thermoconductive Highways Enables Unparalleled Electricity via Solar-Thermal-Electric Conversion. <i>Advanced Functional Materials</i> ,2109255	15.6	6
50	Effect of thermal annealing on crystal structure and properties of PLLA/PCL blend. <i>Journal of Polymer Research</i> , 2020 , 27, 1	2.7	6
49	Thermo-conductive phase change materials with binary fillers of core-shell-like distribution. <i>Composites Part A: Applied Science and Manufacturing</i> , 2021 , 144, 106326	8.4	6
48	Efficient disentanglement of polycarbonate melts under complex shear field. <i>Polymer</i> , 2020 , 201, 1226	19 .9	5

(2018-2021)

47	Constructing fibrillated skeleton with highly aligned boron nitride nanosheets confined in alumina fiber via electrospinning and sintering for thermally conductive composite. <i>Composites Part A: Applied Science and Manufacturing</i> , 2021 , 143, 106282	8.4	5
46	A novel method to fabricate two-dimensional nanomaterial based on electrospinning. <i>Composites Part A: Applied Science and Manufacturing</i> , 2021 , 143, 106275	8.4	5
45	The effect of cellulose molecular weight on internal structure and properties of regenerated cellulose fibers as spun from the alkali/urea aqueous system. <i>Polymer</i> , 2021 , 215, 123379	3.9	5
44	Understanding the effect of chain entanglement state on melt crystallization of the polymer freeze-extracted from solution: The role of critical overlap concentration. <i>Polymer</i> , 2019 , 178, 121588	3.9	4
43	Addressing the challenge of fabricating a high content regenerated cellulose/nanomaterial composite: the magical effect of urea. <i>Green Chemistry</i> , 2020 , 22, 4121-4127	10	4
42	Remarkably Improved Impact Fracture Toughness of Isotactic Polypropylene via Combining the Effects of Shear Layer-Spherulites Layer Alternated Structure and Thermal Annealing. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 15069-15078	3.9	4
41	Improving the flexibility of graphene nanosheets films by using aramid nanofiber framework. <i>Composites Part A: Applied Science and Manufacturing</i> , 2021 , 142, 106265	8.4	4
40	Enhanced thermal conductivity and wear resistance of polytetrafluoroethylene via incorporating hexagonal boron nitride and alumina particles. <i>Journal of Applied Polymer Science</i> , 2022 , 139, 51497	2.9	4
39	Highly thermo-conductive yet electrically insulating material with perpendicularly engineered assembly of boron nitride nanosheets. <i>Composites Science and Technology</i> , 2021 , 214, 108995	8.6	4
38	Ultrahigh sensitivity and wide strain range of porous pressure sensor based on binary conductive fillers by in-situ polymerization. <i>Journal of Polymer Research</i> , 2021 , 28, 1	2.7	3
37	Importance of Low-Temperature Melt-Mixing on the Construction of Stereocomplex Crystallites with Superior Nucleation Efficiency in Asymmetric Poly(l-lactide)/Poly(d-lactide) Blends. <i>Macromolecular Materials and Engineering</i> , 2021 , 306, 2100091	3.9	3
36	Spherical hybrid filler BN@Al2O3 via chemical adhesive for enhancing thermal conductivity and processability of silicon rubber. <i>Journal of Applied Polymer Science</i> , 2021 , 138, 51211	2.9	3
35	Effectively maintaining the disentangled state of isotactic polypropylene in the presence of graphene nanoplatelet. <i>Polymer</i> , 2021 , 226, 123806	3.9	3
34	Highly thermo-conductive but electrically insulating filament via a volume-confinement self-assembled strategy for thermoelectric wearables. <i>Chemical Engineering Journal</i> , 2021 , 421, 127764	14.7	3
33	Ordered Conformation-Regulated Vesicular Membrane Permeability. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 22529-22536	16.4	3
32	Role of Melt Plasticizing Temperature in Morphology and Properties of PE100 Pipes Prepared by a Rotational Shear System. <i>ACS Omega</i> , 2020 , 5, 12660-12671	3.9	2
31	Evolution of iPP/HDPE Morphology under Different Mold Temperatures via Multiflow Vibration Injection Molding: Thermal Field Simulation and Oriented Structures. <i>Industrial & Discourse amp; Engineering Chemistry Research</i> , 2020 , 59, 6741-6750	3.9	2
30	Enhanced fracture energy during deformation through the construction of an alternating multilayered structure for polyolefin blends. <i>Polymer International</i> , 2018 , 67, 1094-1102	3.3	2

29	Alternating multilayer structure of polyethylene/polypropylene blends obtained through injection molding. <i>Journal of Applied Polymer Science</i> , 2012 , 124, n/a-n/a	2.9	2
28	Effect of Different Shear Modes on Morphology and Mechanical Properties of Polypropylene Pipes Produced by Rotational Shear. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2020 , 38, 1392-1402	3.5	2
27	Mussel-Inspired, Injectable Polyurethane Tissue Adhesives Demonstrate In Situ Gel Formation under Mild Conditions ACS Applied Bio Materials, 2021, 4, 5352-5361	4.1	2
26	Improving Impact Toughness of Polylactide/Ethylene-co-vinyl-acetate Blends via Adding Fumed Silica Nanoparticles: Effects of Specific Surface Area-dependent Interfacial Selective Distribution of Silica. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2021 , 39, 1040-1049	3.5	2
25	Engineering the Surface Pattern of Microparticles: From Raspberry-like to Golf Ball-like. <i>ACS Applied Materials & District Applied & D</i>	9.5	2
24	Biodegradable polyurethane nerve guide conduits with different moduli influence axon regeneration in transected peripheral nerve injury. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 7979-7990	7-3	2
23	Stereocomplex Crystallization Induced Significant Improvement in Transparency and StiffnessToughness Performance of Core-Shell Rubber Nanoparticles Toughened Poly(I-lactide) Blends. <i>Macromolecular Materials and Engineering</i> , 2021 , 306, 2100021	3.9	2
22	Aramid nanofiber framework supporting graphene nanoplate via wet-spinning for a high-performance filament. <i>Carbon</i> , 2021 , 179, 655-665	10.4	2
21	Phase Behaviors of Multi-tailed B2AB2-Type Regio-isomeric Giant Surfactants at the Columnar-Spherical Boundary Chinese Journal of Chemistry, 2021 , 39, 3261	4.9	2
20	The effect of filler permittivity on the dielectric properties of polymer-based composites. <i>Composites Science and Technology</i> , 2022 , 222, 109342	8.6	2
19	The preparation of high performance Multi-functional porous sponge through a biomimic coating strategy based on polyurethane dendritic colloids. <i>Chemical Engineering Journal</i> , 2022 , 438, 135659	14.7	2
18	Fabricating high performance multi-functional hygroelectric generator through a biomimic approach. <i>Nano Energy</i> , 2022 , 98, 107241	17.1	2
17	Property enhancement of poly(butylene succinate)/poly(ethyleneglycol-co-cyclohexane-1,4-dimethanolterephthalate) blends via high-speed extrusion and in situ fibrillation. <i>Journal of Applied Polymer Science</i> , 2019 , 136, 47549	2.9	1
16	Balanced physical properties for thermoplastic silicone vulcanizate-based polymer composites containing functional filler. <i>Polymer Composites</i> , 2020 , 41, 4307-4317	3	1
15	A Dual-Crosslinked and Anisotropic Regenerated Cellulose/Boron Nitride Nanosheets Film With High Thermal Conductivity, Mechanical Strength, and Toughness. <i>Frontiers in Bioengineering and Biotechnology</i> , 2020 , 8, 602318	5.8	1
14	Controlling the selective distribution of hydrophilic silica nanoparticles in polylactide/ethylene-co-vinyl-acetate blends via tailoring the OH surface concentration of silica. <i>Composites Communications</i> , 2021 , 25, 100737	6.7	1
13	Drug-induced hierarchical self-assembly of poly(amino acid) for efficient intracellular drug delivery. <i>Chinese Chemical Letters</i> , 2021 , 32, 1563-1566	8.1	1
12	Effect of mandrel rotation speed on morphology and mechanical properties of polypropylene pipes produced by rotational shear. <i>Journal of Polymer Research</i> , 2021 , 28, 1	2.7	1

LIST OF PUBLICATIONS

11	The influence of blend composition and filler on the microstructure, crystallization, and mechanical behavior of polymer blends with multilayered structures. <i>Nanocomposites</i> , 2018 , 4, 178-189	3.4	1
10	In Situ Microfibril Structure in Incompatible Isotactic Polypropylene/Polylactic Acid Blends Controlled By Viscosity Ratio. <i>Polymer Engineering and Science</i> , 2020 , 60, 832-840	2.3	1
9	Preparation of Low-k Poly(dicyclopentadiene) nanocomposites with excellent comprehensive properties by adding larger POSS. <i>Chemical Engineering Journal</i> , 2022 , 439, 135737	14.7	1
8	Structure Evolution and Hoop-Reinforcing Mechanism of Bionic-Inspired Off-Axial Glass Fiber-Reinforced High-Density Polyethylene Pipes Fabricated via Rotating Co-extrusion. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 10407-10418	3.9	O
7	Synergic Enhancement of High-density Polyethylene through Ultrahigh Molecular Weight Polyethylene and Multi-flow Vibration Injection Molding: A Facile Fabrication with Potential Industrial Prospects. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2021 , 39, 756	3.5	0
6	Ordered Conformation-Regulated Vesicular Membrane Permeability. <i>Angewandte Chemie</i> , 2021 , 133, 22703-22710	3.6	0
5	para-Aramid Nanofiber Membranes for High-Performance and Multifunctional Materials. <i>ACS Applied Nano Materials</i> , 2022 , 5, 747-758	5.6	0
4	Knittable Composite Fiber Allows Constant and Tremendous Self-Powering Based on the Transpiration-Driven Electrokinetic Effect. <i>Advanced Functional Materials</i> ,2203666	15.6	O
3	Manipulating Matrix Crystallization and Impact Toughness of Polylactide/Elastomer Blends Via Tailoring Size and Packing Density of Stereocomplex Crystallites Formed at the Interface. <i>Macromolecular Materials and Engineering</i> ,2100698	3.9	
2	Investigating the Influence of Incorporation of Boron Nitride on the Kinetics of Isotactic Polypropylene Entanglement Recovery. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 1290	ગ4ે-929	10
1	Mussel-inspired polyurethane coating for bio-surface functionalization to enhance substrate adhesion and cell biocompatibility. <i>Journal of Biomaterials Science, Polymer Edition</i> ,1-13	3.5	