
Kazuyuki Shimizu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3518543/publications.pdf Version: 2024-02-01

Κλ7ΗΥΠΚΙ ΩΗΙΜΙΖΗ

#	Article	IF	CITATIONS
1	Metabolic Regulation and Coordination of the Metabolism in Bacteria in Response to a Variety of Growth Conditions. Advances in Biochemical Engineering/Biotechnology, 2015, 155, 1-54.	0.6	36
2	Regulation Systems of Bacteria such as Escherichia coli in Response to Nutrient Limitation and Environmental Stresses. Metabolites, 2014, 4, 1-35.	1.3	212
3	Metabolic Flux Analysis for Escherichia coli by Flux Balance Analysis. Methods in Molecular Biology, 2014, 1191, 237-260.	0.4	4
4	13C-Metabolic Flux Analysis for Escherichia coli. Methods in Molecular Biology, 2014, 1191, 261-289.	0.4	2
5	Effect of acidic condition on the metabolic regulation of Escherichia coli and its phoB mutant. Archives of Microbiology, 2013, 195, 161-171.	1.0	17
6	Metabolic Regulation of a Bacterial Cell System with Emphasis on <i>Escherichia coli</i> Metabolism. , 2013, 2013, 1-47.		88
7	Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants. Microbial Cell Factories, 2011, 10, 67.	1.9	79
8	Metabolic regulation of Escherichia coli and its phoB and phoR genes knockout mutants under phosphate and nitrogen limitations as well as at acidic condition. Microbial Cell Factories, 2011, 10, 39.	1.9	91
9	Metabolic regulation of anÂfnrgene knockoutEscherichia coliunder oxygen limitation. Bioengineered Bugs, 2011, 2, 331-337.	2.0	7
10	Metabolic regulation of Escherichia coli and its gdhA, glnL, gltB, D mutants under different carbon and nitrogen limitations in the continuous culture. Microbial Cell Factories, 2010, 9, 8.	1.9	41
11	Toward systematic metabolic engineering based on the analysis of metabolic regulation by the integration of different levels of information. Biochemical Engineering Journal, 2009, 46, 235-251.	1.8	44
12	Effects of arcA and arcB genes knockout on the metabolism in Escherichia coli under aerobic condition. Biochemical Engineering Journal, 2009, 44, 240-250.	1.8	45
13	Effect of cra gene knockout together with edd and iclR genes knockout on the metabolism in Escherichia coli. Archives of Microbiology, 2008, 190, 559-571.	1.0	54
14	Growth phase-dependent changes in the expression of global regulatory genes and associated metabolic pathways in Escherichia coli. Biotechnology Letters, 2008, 30, 853-860.	1.1	23
15	Effects of arcA and arcB genes knockout on the metabolism in Escherichia coli under anaerobic and microaerobic conditions. Biochemical Engineering Journal, 2008, 42, 229-236.	1.8	38
16	Effect of cra gene knockout together with other genes knockouts on the improvement of substrate consumption rate in Escherichia coli under microaerobic condition. Biochemical Engineering Journal, 2008, 42, 224-228.	1.8	16
17	Altered acetate metabolism and biomass production in several Escherichia coli mutants lacking rpoS-dependent metabolic pathway genes. Molecular BioSystems, 2008, 4, 160-169.	2.9	18
18	Effect of temperature up-shift on fermentation and metabolic characteristics in view of gene expressions in Escherichia coli. Microbial Cell Factories, 2008, 7, 35.	1.9	38

Казичикі Ѕнімізи

#	Article	IF	CITATIONS
19	Multiple High-Throughput Analyses Monitor the Response of E. coli to Perturbations. Science, 2007, 316, 593-597.	6.0	694
20	Effect of fadR gene knockout on the metabolism of Escherichia coli based on analyses of protein expressions, enzyme activities and intracellular metabolite concentrations. Enzyme and Microbial Technology, 2006, 38, 512-520.	1.6	29
21	Investigation into the effect of soxR and soxS genes deletion on the central metabolism of Escherichia coli based on gene expressions and enzyme activities. Biochemical Engineering Journal, 2006, 30, 39-47.	1.8	14
22	Effect ofrpoS gene knockout on the metabolism ofEscherichia coli during exponential growth phase and early stationary phase based on gene expressions, enzyme activities and intracellular metabolite concentrations. Biotechnology and Bioengineering, 2006, 94, 585-595.	1.7	89
23	Effect of a single-gene knockout on the metabolic regulation in Escherichia coli for D-lactate production under microaerobic condition. Metabolic Engineering, 2005, 7, 104-115.	3.6	107
24	Metabolic Flux Analysis Based on 13C-Labeling Experiments and Integration of the Information with Gene and Protein Expression Patterns. Advances in Biochemical Engineering/Biotechnology, 2004, 91, 1-49.	0.6	39
25	Analysis of Gene Expression in Escherichia coli in Response to Changes of Growth-Limiting Nutrient in Chemostat Cultures. Applied and Environmental Microbiology, 2004, 70, 2354-2366.	1.4	155
26	Metabolic flux analysis for appcmutantEscherichia colibased on13C-labelling experiments together with enzyme activity assays and intracellular metabolite measurements. FEMS Microbiology Letters, 2004, 235, 17-23.	0.7	88
27	Responses of theCentral Metabolism in Escherichia coli to Phosphoglucoselsomerase and Glucose-6-Phosphate DehydrogenaseKnockouts. Journal of Bacteriology, 2003, 185, 7053-7067.	1.0	173
28	Metabolic Flux Analysis Based on Isotope Labeling Technique and Metabolic Regulation Analysis with Gene and Protein Expressions. ACS Symposium Series, 2003, , 233-253.	0.5	0
29	Metabolic Systems Engineering Approach for Efficient Microbial Fermentation and Future Perspectives. ACS Symposium Series, 2002, , 8-29.	0.5	0
30	Periodic change in DO concentration for efficient poly-β-hydroxy-butyrate production using temperature-inducible recombinantEscherichia coli with proteome analysis. Biotechnology and Bioprocess Engineering, 2002, 7, 281-288.	1.4	2
31	Metabolic flux analysis of a poly-β-hydroxybutyrate producing cyanobacterium,Synechococcus sp. MA19, grown under photoautotrophic conditions. Biotechnology and Bioprocess Engineering, 2002, 7, 295-302.	1.4	9
32	Effects of Glucose, Vitamins, and DO Concentrations on Pyruvate Fermentation Using Torulopsis glabrata IFO 0005 with Metabolic Flux Analysis. Biotechnology Progress, 2001, 17, 62-68.	1.3	22
33	The Characteristics of Mixed Culture Where One Type of Microorganism Assimilates the Metabolite Produced by Another Kagaku Kogaku Ronbunshu, 2000, 26, 861-868.	0.1	0
34	Metabolic Pathway of Propionibacterium Growing with Oxygen: Enzymes, 13C NMR Analysis, and Its Application for Vitamin B12 Production with Periodic Fermentation. Biotechnology Progress, 1999, 15, 201-207.	1.3	27
35	Fermentation Characteristics in Conversion of Organic Acids Obtained by Oxidation of Low-Rank Coals to Poly(.BETAhydroxybutyrate) Using A. eutrophus Cells with Some Analysis on Metabolic Flux Distribution Kagaku Kogaku Ronbunshu, 1999, 25, 226-232.	0.1	0
36	On-line metabolic pathway analysis based on metabolic signal flow diagram. , 1998, 58, 139-148.		14

3

Казичикі Ѕнімізи

#	Article	IF	CITATIONS
37	On the development of an intelligent control system for recombinant cell culture. International Journal of Intelligent Systems, 1998, 13, 539-560.	3.3	2
38	Cell Recycle and Broth Reuse Fermentation with Cross-Flow Filtration and Ion-Exchange Resin. Journal of Chemical Technology and Biotechnology, 1996, 66, 223-226.	1.6	19
39	On-line Optimisation of Culture Temperature for Ethanol Fermentation Using a Genetic Algorithm. Journal of Chemical Technology and Biotechnology, 1996, 66, 217-222.	1.6	25
40	Novel Repeated Batch Operation for Flash Fermentation System: Experimental Data and Mathematical Modelling. Journal of Chemical Technology and Biotechnology, 1996, 66, 340-346.	1.6	15
41	Optimal Temperature and pH Pattern for the Cultivation of Temperature Inducible Gene Engineered Escherichia coli Utilizing Genetic Algorithm Kagaku Kogaku Ronbunshu, 1996, 22, 1391-1399.	0.1	0
42	Efficient production of ethanol by a fermentation system employing temperature profiling and recycle. Journal of Chemical Technology and Biotechnology, 1995, 63, 141-146.	1.6	5
43	Optimal Operation Derived by Green's Theorem for the Cell-Recycle Filter Fermentation Focusing on the Efficient Use of the Medium. Biotechnology Progress, 1994, 10, 258-262.	1.3	14
44	Efficient fuzzy control strategies for the application of pH-stat to fed-batch cultivation of genetically engineeredEscherichia coli. Journal of Chemical Technology and Biotechnology, 1994, 61, 273-281.	1.6	10