
Snjezana Snow Stolnik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3518422/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. Journal of Controlled Release, 1999, 57, 171-185.	4.8	868
2	Long circulating microparticulate drug carriers. Advanced Drug Delivery Reviews, 1995, 16, 195-214.	6.6	624
3	Nanoparticles for direct nose-to-brain delivery of drugs. International Journal of Pharmaceutics, 2009, 379, 146-157.	2.6	593
4	Polyethylenimine-graft-Poly(ethylene glycol) Copolymers:Â Influence of Copolymer Block Structure on DNA Complexation and Biological Activities as Gene Delivery System. Bioconjugate Chemistry, 2002, 13, 845-854.	1.8	516
5	Mechanisms of Nanoparticle Internalization and Transport Across an Intestinal Epithelial Cell Model: Effect of Size and Surface Charge. Molecular Pharmaceutics, 2014, 11, 4363-4373.	2.3	308
6	Physicochemical Evaluation of Nanoparticles Assembled from Poly(lactic acid)â^'Poly(ethylene glycol) (PLAâ^'PEG) Block Copolymers as Drug Delivery Vehicles. Langmuir, 2001, 17, 3168-3174.	1.6	268
7	Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers. Pharmaceutical Research, 1994, 11, 1800-1808.	1.7	265
8	PEGylated chitosan derivatives: Synthesis, characterizations and pharmaceutical applications. Progress in Polymer Science, 2012, 37, 659-685.	11.8	204
9	Defining the drug incorporation properties of PLA–PEG nanoparticles. International Journal of Pharmaceutics, 2000, 199, 95-110.	2.6	197
10	Tight junction modulation by chitosan nanoparticles: Comparison with chitosan solution. International Journal of Pharmaceutics, 2010, 400, 183-193.	2.6	197
11	Colloidal stability and drug incorporation aspects of micellar-like PLA–PEG nanoparticles. Colloids and Surfaces B: Biointerfaces, 1999, 16, 147-159.	2.5	190
12	Poly(lactic acid)â^'Poly(ethylene oxide) (PLAâ^'PEG) Nanoparticles:Â NMR Studies of the Central Solidlike PLA Core and the Liquid PEG Corona. Langmuir, 2002, 18, 3669-3675.	1.6	181
13	Penetration and Uptake of Nanoparticles in 3D Tumor Spheroids. Bioconjugate Chemistry, 2019, 30, 1371-1384.	1.8	141
14	Star-Shaped Poly(ethylene glycol)-block-polyethylenimine Copolymers Enhance DNA Condensation of Low Molecular Weight Polyethylenimines. Biomacromolecules, 2002, 3, 926-936.	2.6	139
15	Coreâ^'Shell Structure of PLAâ^'PEG Nanoparticles Used for Drug Delivery. Langmuir, 2003, 19, 8428-8435.	1.6	135
16	The effect of surface coverage and conformation of poly(ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1514, 261-279.	1.4	125
17	Copolymers of amine methacrylate with poly(ethylene glycol) as vectors for gene therapy. Journal of Controlled Release, 2001, 73, 359-380.	4.8	125
18	Alginate encapsulation technology supports embryonic stem cells differentiation into insulin-producing cells. Journal of Biotechnology, 2009, 144, 304-312.	1.9	125

#	Article	IF	CITATIONS
19	Nose-to-Brain Delivery: Investigation of the Transport of Nanoparticles with Different Surface Characteristics and Sizes in Excised Porcine Olfactory Epithelium. Molecular Pharmaceutics, 2015, 12, 2755-2766.	2.3	124
20	Effect of Polymer Ionization on the Interaction with DNA in Nonviral Gene Delivery Systems. Biomacromolecules, 2003, 4, 683-690.	2.6	123
21	The effect of poly(ethylene glycol) molecular architecture on cellular interaction and uptake of DNA complexes. Journal of Controlled Release, 2004, 97, 143-156.	4.8	118
22	Effect of physicochemical properties on intranasal nanoparticle transit into murine olfactory epithelium. Journal of Drug Targeting, 2009, 17, 543-552.	2.1	105
23	Phosphorylcholine–polycation diblock copolymers as synthetic vectors for gene delivery. Journal of Controlled Release, 2004, 100, 293-312.	4.8	103
24	PEGylated nanomedicines: recent progress and remaining concerns. Expert Opinion on Drug Delivery, 2014, 11, 139-154.	2.4	102
25	Effect of PEGylation on the Toxicity and Permeability Enhancement of Chitosan. Biomacromolecules, 2010, 11, 2854-2865.	2.6	92
26	Investigation of the interaction between peanut agglutinin and synthetic glycopolymeric multivalent ligands. Organic and Biomolecular Chemistry, 2005, 3, 1476.	1.5	86
27	Structural Study of DNA Condensation Induced by Novel Phosphorylcholine-Based Copolymers for Gene Delivery and Relevance to DNA Protection. Langmuir, 2005, 21, 3591-3598.	1.6	86
28	Observation of DNA-polymer condensate formation in real time at a molecular level. FEBS Letters, 2000, 480, 106-112.	1.3	80
29	Polymer chemical structure is a key determinant of physicochemical and colloidal properties of polymer–DNA complexes for gene delivery. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1517, 1-18.	2.4	77
30	Polylactide-poly(ethylene Glycol) Micellar-like Particles as Potential Drug Carriers: Production, Colloidal Properties and Biological Performance. Journal of Drug Targeting, 2001, 9, 361-378.	2.1	76
31	The colloidal properties of surfactant-free biodegradable nanospheres from poly(l²-malic) Tj ETQq1 1 0.784314 rg and Engineering Aspects, 1995, 97, 235-245.	gBT /Overlo 2.3	ock 10 Tf 50 75
32	Long circulating microparticulate drug carriers. Advanced Drug Delivery Reviews, 2012, 64, 290-301.	6.6	75
33	Basement membrane influences intestinal epithelial cell growth and presents a barrier to the movement of macromolecules. Experimental Cell Research, 2014, 323, 218-231.	1.2	68
34	Microscopic Investigations into PEGâ^'Cationic Polymer-Induced DNA Condensation. Langmuir, 2001, 17, 3185-3193.	1.6	65
35	Absorption-promoting effects of chitosan in airway and intestinal cell lines: A comparative study. International Journal of Pharmaceutics, 2012, 430, 151-160.	2.6	63
36	Influence of polymer architecture on the structure of complexes formed by PEG–tertiary amine methacrylate copolymers and phosphorothioate oligonucleotide. Journal of Controlled Release, 2002, 81, 185-199.	4.8	62

#	Article	IF	CITATIONS
37	Long circulating biodegradable poly(phosphazene) nanoparticles surface modified with poly(phosphazene)-poly(ethylene oxide) copolymer. Biomaterials, 1997, 18, 1147-1152.	5.7	58
38	Structural basis of Lewis ^b antigen binding by the <i>Helicobacter pylori</i> adhesin BabA. Science Advances, 2015, 1, e1500315.	4.7	58
39	Ligand density and clustering effects on endocytosis of folate modified nanoparticles. RSC Advances, 2012, 2, 3025.	1.7	54
40	Enhanced uptake in 2D- and 3D- lung cancer cell models of redox responsive PEGylated nanoparticles with sensitivity to reducing extra- and intracellular environments. Journal of Controlled Release, 2018, 277, 126-141.	4.8	54
41	Recent advances in oral delivery of biologics: nanomedicine and physical modes of delivery. Expert Opinion on Drug Delivery, 2018, 15, 759-770.	2.4	54
42	In Vitro Displacement by Rat Serum of Adsorbed Radiolabeled Poloxamer and Poloxamine Copolymers from Model and Biodegradable Nanospheres. Journal of Pharmaceutical Sciences, 1998, 87, 1242-1248.	1.6	53
43	Mechanism of Mucosal Permeability Enhancement of CriticalSorb® (Solutol® HS15) Investigated In Vitro in Cell Cultures. Pharmaceutical Research, 2015, 32, 516-527.	1.7	51
44	Nanoparticle Transport in Epithelial Cells: Pathway Switching Through Bioconjugation. Small, 2013, 9, 3282-3294.	5.2	50
45	Polymers in drug delivery. Current Opinion in Colloid and Interface Science, 1996, 1, 660-666.	3.4	49
46	Formulations for delivery of therapeutic proteins. Biotechnology Letters, 2009, 31, 1-11.	1.1	49
47	Modular Construction of Multifunctional Bioresponsive Cell-Targeted Nanoparticles for Gene Delivery. Bioconjugate Chemistry, 2011, 22, 156-168.	1.8	49
48	Thermodynamic Analysis of Polycationâ^'DNA Interaction Applying Titration Microcalorimetry. Langmuir, 2003, 19, 9387-9394.	1.6	48
49	The preparation of sub-200 nm biodegradable colloidal particles from poly(β-malic acid-co-benzyl) Tj ETQq1 1 0. Journal of Controlled Release, 1994, 30, 57-67.	784314 rg 4.8	BT /Overlock 46
50	Hydrogen bonding and electrostatic interaction contributions to the interaction of a cationic drug with polyaspartic acid. Pharmaceutical Research, 2000, 17, 871-877.	1.7	45
51	Synthesis of a novel PEG-block-poly(aspartic acid-stat-phenylalanine) copolymer shows potential for formation of a micellar drug carrier. International Journal of Pharmaceutics, 2005, 297, 242-253.	2.6	45
52	Pathways of cellular internalisation of liposomes delivered siRNA and effects on siRNA engagement with target mRNA and silencing in cancer cells. Scientific Reports, 2018, 8, 3748.	1.6	44
53	Drug–polyionic block copolymer interactions for micelle formation: physicochemical characterisation. Journal of Controlled Release, 2001, 75, 249-258.	4.8	41
54	Fc-mediated transport of nanoparticles across airway epithelial cell layers. Journal of Controlled Release, 2012, 158, 479-486.	4.8	41

#	Article	IF	CITATIONS
55	Uptake and transport of B 12 -conjugated nanoparticles in airway epithelium. Journal of Controlled Release, 2013, 172, 374-381.	4.8	36
56	In vitro investigation on the impact of airway mucus on drug dissolution and absorption at the air-epithelium interface in the lungs. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 141, 210-220.	2.0	36
57	Surface Characterisation of Bioadhesive PLGA/Chitosan Microparticles Produced by Supercritical Fluid Technology. Pharmaceutical Research, 2011, 28, 1668-1682.	1.7	34
58	Barrier characteristics of epithelial cultures modelling the airway and intestinal mucosa: A comparison. Biochemical and Biophysical Research Communications, 2011, 415, 579-585.	1.0	33
59	Total internal reflection microscopy for live imaging of cellular uptake of subâ€micron nonâ€fluorescent particles. Journal of Microscopy, 2008, 231, 168-179.	0.8	32
60	Multi-component bioresponsive nanoparticles for synchronous delivery of docetaxel and TUBB3 siRNA to lung cancer cells. Nanoscale, 2021, 13, 11414-11426.	2.8	32
61	Surface Modification of Microspheres with Steric Stabilizing and Cationic Polymers for Gene Delivery. Langmuir, 2008, 24, 7138-7146.	1.6	30
62	Interleukin-4-Inducing Principle from Schistosoma mansoni Eggs Contains a Functional C-Terminal Nuclear Localization Signal Necessary for Nuclear Translocation in Mammalian Cells but Not for Its Uptake. Infection and Immunity, 2011, 79, 1779-1788.	1.0	30
63	Water-soluble substituted chitosan derivatives as technology platform for inhalation delivery of siRNA. Drug Delivery, 2018, 25, 644-653.	2.5	29
64	Adsorption behaviour and conformation of selected poly(ethylene oxide) copolymers on the surface of a model colloidal drug carrier. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 122, 151-159.	2.3	28
65	The assessment of hookworm calreticulin as a potential vaccine for necatoriasis. Parasite Immunology, 2005, 27, 139-146.	0.7	28
66	Synthesis, Structure–Activity Relationships and In Vitro Toxicity Profile of Lactose-Based Fatty Acid Monoesters as Possible Drug Permeability Enhancers. Pharmaceutics, 2018, 10, 81.	2.0	27
67	Development of multicomponent DNA delivery systems based upon poly(amidoamine)–PEG co-polymers. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1576, 269-286.	2.4	26
68	Aggregation promotes cell viability, proliferation, and differentiation in an <i>in vitro</i> model of injection cell therapy. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, e61-e73.	1.3	26
69	The immune response to a model antigen associated with PLG microparticles prepared using different surfactants. Vaccine, 1997, 15, 1888-1897.	1.7	23
70	Modification of the copolymers poloxamer 407 and poloxamine 908 can affect the physical and biological properties of surface modified nanospheres. Pharmaceutical Research, 1998, 15, 318-324.	1.7	23
71	Complex formation between the anionic polymer (PAA) and a cationic drug (procaine HCI): characterization by microcalorimetric studies. Pharmaceutical Research, 1999, 16, 1125-1131.	1.7	23
72	Targeted PEG-poly(glutamic acid) complexes for inhalation protein delivery to the lung. Journal of Controlled Release, 2019, 316, 250-262.	4.8	23

#	Article	IF	CITATIONS
73	The Macrostopper Route:Â A New Synthesis Concept Leading Exclusively to Diblock Copolymers with Enhanced DNA Condensation Potential. Macromolecules, 2002, 35, 9854-9856.	2.2	21
74	Suitability of polymer materials for production of pulmonary microparticles using a PGSS supercritical fluid technique: Preparation of microparticles using PEG, fatty acids and physical or chemicals blends of PEG and fatty acids. International Journal of Pharmaceutics, 2013, 441, 580-588.	2.6	20
75	Improved expression and purification of the Helicobacter pylori adhesin BabA through the incorporation of a hexa-lysine tag. Protein Expression and Purification, 2015, 106, 25-30.	0.6	20
76	New Perspectives on Iron Uptake in Eukaryotes. Frontiers in Molecular Biosciences, 2018, 5, 97.	1.6	20
77	Microencapsulated monosialoganglioside CM1: Physical properties andin vivoeffects. Journal of Microencapsulation, 1989, 6, 35-42.	1.2	19
78	Folate conjugated phosphorylcholine-based polycations for specific targeting in nucleic acids delivery. Journal of Drug Targeting, 2009, 17, 512-523.	2.1	19
79	Effect of polymer topology on non-covalent polymer–protein complexation: miktoarm versus linear mPEG-poly(glutamic acid) copolymers. Polymer Chemistry, 2017, 8, 2210-2220.	1.9	19
80	Temperature-Responsive Methylcellulose–Hyaluronic Hydrogel as a 3D Cell Culture Matrix. Biomacromolecules, 2020, 21, 4737-4746.	2.6	19
81	Poly(organo phosphazene) nanoparticles surface modified with poly(ethylene oxide). , 1996, 52, 89-95.		18
82	Mammalianâ€Cellâ€Ðriven Polymerisation of Pyrrole. ChemBioChem, 2019, 20, 1008-1013.	1.3	18
83	Self-consistent field modelling of poly(lactic acid)–poly(ethylene glycol) particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 179, 79-91.	2.3	17
84	Ultra-Resolution Imaging of a Self-Assembling Biomolecular System Using Robust Carbon Nanotube AFM Probes. Langmuir, 2007, 23, 3906-3911.	1.6	16
85	Epithelial Toxicity of Alkylglycoside Surfactants. Journal of Pharmaceutical Sciences, 2013, 102, 114-125.	1.6	16
86	Dry-powder formulations of non-covalent protein complexes with linear or miktoarm copolymers for pulmonary delivery. International Journal of Pharmaceutics, 2018, 540, 78-88.	2.6	16
87	Exposure to a Nonionic Surfactant Induces a Response Akin to Heat-Shock Apoptosis in Intestinal Epithelial Cells: Implications for Excipients Safety. Molecular Pharmaceutics, 2019, 16, 618-631.	2.3	15
88	A simple and efficient method for polymer coating of iron oxide nanoparticles. Journal of Drug Delivery Science and Technology, 2020, 55, 101460.	1.4	14
89	Live Imaging of Cellular Internalization of Single Colloidal Particle by Combined Label-Free and Fluorescence Total Internal Reflection Microscopy. Molecular Pharmaceutics, 2015, 12, 3862-3870.	2.3	13
90	Synthetic glycopolymers as modulators of protein aggregation: influences of chemical composition, topology and concentration. Journal of Materials Chemistry B, 2018, 6, 1044-1054.	2.9	13

#	Article	IF	CITATIONS
91	Insight into the relationship between the cell culture model, cell trafficking and siRNA silencing efficiency. Biochemical and Biophysical Research Communications, 2016, 477, 260-265.	1.0	12
92	Application of Novel Biomaterials in Colloidal Drug Delivery Systems. MRS Bulletin, 1999, 24, 49-56.	1.7	11
93	Structural variations in hyperbranched polymers prepared via thermal polycondensation of lysine and histidine and their effects on DNA delivery. Journal of Interdisciplinary Nanomedicine, 2018, 3, 38-54.	3.6	11
94	Mechanistic insight into heterogeneity of trans-plasma membrane electron transport in cancer cell types. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 628-639.	0.5	11
95	Poly(triazolyl methacrylate) glycopolymers as potential targeted unimolecular nanocarriers. Nanoscale, 2019, 11, 21155-21166.	2.8	11
96	Macroporous surface modified microparticles. Soft Matter, 2008, 4, 1597.	1.2	9
97	The involvement of microtubules and actin filaments in the intracellular transport of non-viral gene delivery system. Journal of Drug Targeting, 2011, 19, 56-66.	2.1	9
98	Suitability of polymer materials for production of pulmonary microparticles using a PGSS supercritical fluid technique: Thermodynamic behaviour of fatty acids, PEGs and PEG-fatty acids. International Journal of Pharmaceutics, 2012, 438, 225-231.	2.6	9
99	Electrochemical System for the Study of Trans-Plasma Membrane Electron Transport in Whole Eukaryotic Cells. Analytical Chemistry, 2018, 90, 2780-2786.	3.2	9
100	Investigating the intracellular effects of hyperbranched polycation–DNA complexes on lung cancer cells using LC-MS-based metabolite profiling. Molecular Omics, 2019, 15, 77-87.	1.4	9
101	Characterisation of poly(lactic acid):poly(ethyleneoxide) (PLA:PEG) nanoparticles using the self-consistent theory modelling approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 212, 57-64.	2.3	8
102	Development of an In Vitro System to Study the Interactions of Aerosolized Drugs with Pulmonary Mucus. Pharmaceutics, 2020, 12, 145.	2.0	8
103	Study on Significance of Receptor Targeting in Killing of Intracellular Bacteria with Membraneâ€Impermeable Antibiotics. Advanced Therapeutics, 2021, 4, 2100168.	1.6	8
104	Use of Viscoelastic Measurements for Investigating Interparticle Interactions in Dispersions of Micellar-like Poly(lactic acid)â^'Poly(ethylene glycol) Nanoparticles. Langmuir, 2002, 18, 7663-7668.	1.6	7
105	Introduction of a C-terminal hexa-lysine tag increases thermal stability of the LacDiNac binding adhesin (LabA) exodomain from Helicobacter pylori. Protein Expression and Purification, 2019, 163, 105446.	0.6	7
106	Evaluation of calcium depletion as a strategy for enhancement of mucosal absorption of macromolecules. Biochemical and Biophysical Research Communications, 2012, 418, 128-133.	1.0	6
107	Rapid formulation of redox-responsive oligo-β-aminoester polyplexes with siRNA <i>via</i> jet printing. Journal of Materials Chemistry B, 2018, 6, 6550-6558.	2.9	6
108	<scp>3D</scp> hydrogels reveal medulloblastoma subgroup differences and identify extracellular matrix subtypes that predict patient outcome. Journal of Pathology, 2021, 253, 326-338.	2.1	6

SNJEZANA SNOW STOLNIK

#	Article	IF	CITATIONS
109	Nanospheres prepared from poly(?-malic acid) benzyl ester copolymers: evidence for their in vitro degradation. Journal of Materials Science: Materials in Medicine, 1996, 7, 161-166.	1.7	5
110	Application of In Vivo MRI Imaging to Track a Coated Capsule and Its Disintegration in the Gastrointestinal Tract in Human Volunteers. Pharmaceutics, 2022, 14, 270.	2.0	5
111	Enhanced permeation by amphiphilic surfactant is spatially heterogenous at membrane and cell level. Journal of Controlled Release, 2022, 345, 734-743.	4.8	5
112	Differences in the adsorption behaviour of poly(ethylene oxide) copolymers onto model polystyrene nanoparticles assessed by isothermal titration microcalorimetry correspond to the biological differences. Journal of Drug Targeting, 2005, 13, 449-458.	2.1	4
113	Structural and binding characterization of the LacdiNAc-specific adhesin (LabA; HopD) exodomain from Helicobacter pylori. Current Research in Structural Biology, 2021, 3, 19-29.	1.1	4
114	Investigating histidinylated highly branched poly(lysine) for siRNA delivery. Journal of Materials Chemistry B, 2022, 10, 236-246.	2.9	4
115	A mechanoresponsive nano-sized carrier achieves intracellular release of drug on external ultrasound stimulus. RSC Advances, 2022, 12, 16561-16569.	1.7	3
116	A High Resolution Atomic Force Microscopy Study of Poly(lactic acid-co-ethylene glycol). Polymer Journal, 2000, 32, 444-446.	1.3	1
117	Stem cells: The therapeutic role in the treatment of diabetes mellitus. Biotechnology and Genetic Engineering Reviews, 2010, 27, 285-304.	2.4	0
118	Assessing Lymphatic Uptake of Lipids Using Magnetic Resonance Imaging: A Feasibility Study in Healthy Human Volunteers with Potential Application for Tracking Lymph Node Delivery of Drugs and Formulation Excipients. Pharmaceutics, 2021, 13, 1343.	2.0	0
119	Cationic Liposome-Mediated Delivery of siRNA in Lung Cancer. , 2016, , .		0
120	Use of Engineered Nanoparticles (ENPs) for the Study of High-Affinity IgE FcεRI Receptor Engagement and Rat Basophilic Leukemia (RBL) Cell Degranulation. Methods in Molecular Biology, 2020, 2163, 171-180.	0.4	0