Xinqi Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3518333/publications.pdf

Version: 2024-02-01

236833 243529 2,038 49 25 44 h-index citations g-index papers 49 49 49 1196 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of microstructure heterogeneity on the mechanical properties of friction stir welded reduced activation ferritic/martensitic steel. Scripta Materialia, 2022, 207, 114306.	2.6	10
2	Characteristics of Friction Plug Joints for AA2219-T87 FSW Welds. Materials, 2022, 15, 1525.	1.3	1
3	Microstructural heterogeneity and bonding strength of planar interface formed in additive manufacturing of Alâ^'Mgâ^'Si alloy based on friction and extrusion. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1755-1769.	2.4	15
4	Zigzag line defect in friction stir butt-weld of ferritic stainless steel. Materials Letters, 2021, 288, 129361.	1.3	2
5	The influence of post-weld tempering temperatures on microstructure and strength in the stir zone of friction stir welded reduced activation ferritic/martensitic steel. Materials Science & Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 814, 141224.	2.6	10
6	Numerical analyses of material flows and thermal processes during friction plug welding for AA2219 aluminum alloy. Journal of Materials Processing Technology, 2020, 278, 116466.	3.1	7
7	Numerical and experimental investigation on friction stir welding of Ti- and Nb-modified 12 % Cr ferritic stainless steel. Journal of Manufacturing Processes, 2020, 59, 223-237.	2.8	10
8	Pipe Crack Recognition Based on Eddy Current NDT and 2D Impedance Characteristics. Applied Sciences (Switzerland), 2019, 9, 689.	1.3	10
9	Interfacial bonding features of friction stir additive manufactured build for 2195-T8 aluminum-lithium alloy. Journal of Manufacturing Processes, 2019, 38, 396-410.	2.8	58
10	Effects of supporting plate hole and welding force on weld formation and mechanical property of friction plug joints for AA2219-T87 friction stir welds. Welding in the World, Le Soudage Dans Le Monde, 2019, 63, 989-1000.	1.3	17
11	Microstructure and properties of CLAM/316L steel friction stir welded joints. Journal of Materials Processing Technology, 2019, 271, 189-201.	3.1	30
12	Effects of welding parameters on microstructure and mechanical properties of underwater wet friction taper plug welded pipeline steel. Welding in the World, Le Soudage Dans Le Monde, 2019, 63, 11-22.	1.3	3
13	Microstructural characteristics and mechanical properties of friction-stir-welded modified 9Cr–1Mo steel. Journal of Materials Science, 2019, 54, 6632-6650.	1.7	13
14	Effect of friction stir processing on microstructure and work hardening behavior of reduced activation ferritic/martensitic steel. Journal of Manufacturing Processes, 2019, 37, 220-231.	2.8	16
15	Evaluation of inhomogeneity in tensile strength and fracture toughness of underwater wet friction taper plug welded joints for low-alloy pipeline steels. Journal of Manufacturing Processes, 2018, 32, 280-287.	2.8	8
16	Microstructural characteristics and mechanical heterogeneity of underwater wet friction taper plug welded joints for low-alloy pipeline steel. Materials Science & Dipeline Structural Materials: Properties, Microstructure and Processing, 2017, 695, 279-290.	2.6	7
17	Weakening mechanism and tensile fracture behavior of AA 2219-T87 friction plug welds. Materials Science & Science & Science and Processing, 2017, 693, 129-135.	2.6	25
18	Thermal process influence on microstructure and mechanical behavior for friction taper plug welding in structural steel S355. International Journal of Advanced Manufacturing Technology, 2017, 88, 3459-3466.	1.5	5

#	Article	IF	CITATIONS
19	Analysis and Comparison of Long-Distance Pipeline Failures. Journal of Petroleum Engineering, 2017, 2017, 1-7.	0.6	34
20	Fabricating Defect-Free API X65 Steel Welds under Underwater Wet Conditions using Friction Taper Plug Welding. Materials and Manufacturing Processes, 2016, 31, 2123-2129.	2.7	6
21	Influence of weld geometry and process parameters on the quality of underwater wet friction taper plug welding. International Journal of Advanced Manufacturing Technology, 2016, 86, 2339-2351.	1.5	10
22	The local strength and toughness for stationary shoulder friction stir weld on AA6061-T6 alloy. Materials Characterization, 2016, 111, 114-121.	1.9	23
23	Characteristics of friction plug welding to 10 mm thick AA2219-T87 sheet: Weld formation, microstructure and mechanical property. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 654, 21-29.	2.6	44
24	Study on the Microstructures and Properties of Underwater Friction Hydro Pillar/Taper-Pillar Welded Joints for Dissimilar Steels. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2016, 52, 44.	0.7	0
25	Investigation on welding parameters and bonding characteristics of underwater wet friction taper plug welding for pipeline steel. International Journal of Advanced Manufacturing Technology, 2015, 81, 851-861.	1.5	20
26	Investigation of stationary shoulder friction stir welding of aluminum alloy 7075-T651. Journal of Materials Processing Technology, 2015, 222, 391-398.	3.1	81
27	Material flow influence on the weld formation and mechanical performance in underwater friction taper plug welds for pipeline steel. Materials and Design, 2015, 88, 990-998.	3.3	25
28	Defect features and mechanical properties of friction stir lap welded dissimilar AA2024–AA7075 aluminum alloy sheets. Materials & Design, 2014, 55, 9-18.	5.1	133
29	Microstructure and mechanical properties of friction spot welded 6061-T4 aluminum alloy. Materials & Design, 2014, 54, 766-778.	5.1	103
30	Influences of joint geometry on defects and mechanical properties of friction stir welded AA6061-T4 T-joints. Materials & Design, 2014, 53, 106-117.	5.1	41
31	Effect of welding parameters on microstructure and mechanical properties of AA6061-T6 butt welded joints by stationary shoulder friction stir welding. Materials & Design, 2014, 64, 251-260.	5.1	74
32	Friction taper plug welding for S355 steel in underwater wet conditions: Welding performance, microstructures and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 611, 15-28.	2.6	54
33	Experimental study of friction taper plug welding for low alloy structure steel: Welding process, defects, microstructures and mechanical properties. Materials & Design, 2014, 62, 271-281.	5.1	33
34	Process parameter influence on defects and tensile properties of friction stir welded T-joints on AA6061-T4 sheets. Materials & Design, 2013, 51, 161-174.	5.1	38
35	Mechanical properties and failure mechanisms of friction stir spot welds of AA 6061-T4 sheets. Materials & Design, 2013, 49, 181-191.	5.1	67
36	Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joints. Materials & Design, 2013, 44, 476-486.	5.1	184

#	Article	IF	Citations
37	Enhancement of mechanical properties and failure mechanism of electron beam welded 300M ultrahigh strength steel joints. Materials & Design, 2013, 45, 56-66.	5.1	33
38	Microstructures and fatigue properties of friction stir lap welds in aluminum alloy AA6061-T6. Materials & Design, 2012, 35, 175-183.	5.1	44
39	Quenching microstructure and properties of 300M ultra-high strength steel electron beam welded joints. Materials & Design, 2012, 40, 386-391.	5.1	23
40	Characteristics of defects and tensile behaviors on friction stir welded AA6061-T4 T-joints. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 543, 58-68.	2.6	73
41	Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy. Materials & Design, 2011, 32, 4461-4470.	5.1	205
42	The influence of zigzag-curve defect on the fatigue properties of friction stir welds in 7075-T6 Al alloy. Materials Chemistry and Physics, 2007, 104, 244-248.	2.0	46
43	Effect of root flaws on the fatigue property of friction stir welds in 2024-T3 aluminum alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 418, 155-160.	2.6	90
44	Comparative study on fatigue properties between AA2024-T4 friction stir welds and base materials. Materials Science & Description of Structural Materials: Properties, Microstructure and Processing, 2006, 435-436, 389-395.	2.6	68
45	Effect of kissing bond on fatigue behavior of friction stir welds on Al 5083 alloy. Journal of Materials Science, 2006, 41, 2771-2777.	1.7	55
46	Effect of oxide array on the fatigue property of friction stir welds. Scripta Materialia, 2006, 54, 1515-1520.	2.6	57
47	Investigation of microstructures and fatigue properties of friction stir welded Al–Mg alloy. Materials Chemistry and Physics, 2006, 98, 285-290.	2.0	35
48	Fatigue properties of friction stir welds in Al 5083 alloy. Scripta Materialia, 2005, 53, 1187-1191.	2.6	90
49	Effect of mismatching on J-integral for pipe-welded joints with circumferential through-wall crack. International Journal of Pressure Vessels and Piping, 1999, 76, 857-862.	1.2	2