
Andrew J Watson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3517854/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of palmitic acid on localization of embryo cell fate and blastocyst formation gene products. Reproduction, 2022, 163, 133-143.	1.1	1
2	Free fatty acid treatment of mouse preimplantation embryos demonstrates contrasting effects of palmitic acid and oleic acid on autophagy. American Journal of Physiology - Cell Physiology, 2022, 322, C833-C848.	2.1	4
3	Flow Cytometric Characterization of Pluripotent Cell Protein Markers in NaÃ ⁻ ve, Formative, and Primed Pluripotent Stem Cells. Methods in Molecular Biology, 2022, 2490, 81-92.	0.4	0
4	3D Immunofluorescent Image Colocalization Quantification in Mouse Epiblast Stem Cells. Methods in Molecular Biology, 2022, 2490, 69-79.	0.4	0
5	InÂvitro fertilization cycles stimulated with follitropin delta result in similar embryo development and quality when compared with cycles stimulated with follitropin alfa or follitropin beta. F&S Reports, 2021, 2, 30-35.	0.4	3
6	Analysis of TERT Isoforms across TCGA, GTEx and CCLE Datasets. Cancers, 2021, 13, 1853.	1.7	5
7	Differential localization patterns of pyruvate kinase isoforms in murine naÃ ⁻ ve, formative, and primed pluripotent states. Experimental Cell Research, 2021, 405, 112714.	1.2	6
8	Oleic Acid Counters Impaired Blastocyst Development Induced by Palmitic Acid During Mouse Preimplantation Development: Understanding Obesity-Related Declines in Fertility. Reproductive Sciences, 2020, 27, 2038-2051.	1.1	14
9	CD-1 mouse fertility rapidly declines and is accompanied with early pregnancy loss under conventional housing conditions. Theriogenology, 2018, 108, 245-254.	0.9	2
10	Knockdown of p66Shc Alters Lineage-Associated Transcription Factor Expression in Mouse Blastocysts. Stem Cells and Development, 2018, 27, 1479-1493.	1.1	3
11	Treatment with AICAR inhibits blastocyst development, trophectoderm differentiation and tight junction formation and function in mice. Molecular Human Reproduction, 2017, 23, 771-785.	1.3	17
12	P66Shc, a key regulator of metabolism and mitochondrial ROS production, is dysregulated by mouse embryo culture. Molecular Human Reproduction, 2016, 22, 634-647.	1.3	14
13	Effects of American Ginseng on Preimplantation Development and Pregnancy in Mice. The American Journal of Chinese Medicine, 2016, 44, 981-995.	1.5	7
14	Implantation Failure in Female Kiss1â^'/â^' Mice Is Independent of Their Hypogonadic State and Can Be Partially Rescued by Leukemia Inhibitory Factor. Endocrinology, 2014, 155, 3065-3078.	1.4	61
15	Stressâ€inducible phosphoprotein 1 has unique cochaperone activity during development and regulates cellular response to ischemia <i>via</i> the prion protein. FASEB Journal, 2013, 27, 3594-3607.	0.2	86
16	p38 MAPK Regulates Cavitation and Tight Junction Function in the Mouse Blastocyst. PLoS ONE, 2013, 8, e59528.	1.1	40
17	Embryo collection induces transient activation of XBP1 arm of the ER stress response while embryo vitrification does not. Molecular Human Reproduction, 2012, 18, 229-242.	1.3	30
18	Outer Space and Oocyte Developmental Competence. Biology of Reproduction, 2012, 86, 75.	1.2	1

#	Article	IF	CITATIONS
19	Ouabain Stimulates a Na+/K+-ATPase-Mediated SFK-Activated Signalling Pathway That Regulates Tight Junction Function in the Mouse Blastocyst. PLoS ONE, 2011, 6, e23704.	1.1	14
20	Culture medium, gas atmosphere and MAPK inhibition affect regulation of RNA-binding protein targets during mouse preimplantation development. Reproduction, 2011, 142, 689-698.	1.1	8
21	Oocyte peptides as paracrine tools for ovarian stimulation and oocyte maturation. Molecular Human Reproduction, 2009, 15, 789-794.	1.3	14
22	Mitogen-activated protein kinase (MAPK) pathways mediate embryonic responses to culture medium osmolarity by regulating Aquaporin 3 and 9 expression and localization, as well as embryonic apoptosis. Human Reproduction, 2009, 24, 1373-1386.	0.4	59
23	SNAI1 and SNAI2 Are Asymmetrically Expressed at the 2-Cell Stage and Become Segregated to the TE in the Mouse Blastocyst. PLoS ONE, 2009, 4, e8530.	1.1	12
24	Genomic RNA profiling and the programme controlling preimplantation mammalian development. Molecular Human Reproduction, 2008, 14, 691-701.	1.3	59
25	Preimplantation embryo programming: transcription, epigenetics, and culture environment. Reproduction, 2008, 135, 141-150.	1.1	97
26	Na/K-ATPase β1 Subunit Expression Is Required for Blastocyst Formation and Normal Assembly of Trophectoderm Tight Junction-associated Proteins. Journal of Biological Chemistry, 2007, 282, 12127-12134.	1.6	90
27	Mouse preimplantation embryo responses to culture medium osmolarity include increased expression of CCM2 and p38 MAPK activation. BMC Developmental Biology, 2007, 7, 2.	2.1	46
28	PP2Cδ (Ppm1d, WIP1), an endogenous inhibitor of p38 MAPK, is regulated along WithTrp53 andCdkn2a following p38 MAPK inhibition during mouse preimplantation development. Molecular Reproduction and Development, 2007, 74, 821-834.	1.0	14
29	Na+/K+-ATPase regulates tight junction formation and function during mouse preimplantation development. Developmental Biology, 2006, 289, 406-419.	0.9	63
30	Potential and limitations of bovine-specific arrays for the analysis of mRNA levels in early development: preliminary analysis using a bovine embryonic array. Reproduction, Fertility and Development, 2005, 17, 47.	0.1	46
31	Mitogen-activated protein kinase (MAPK) blockade of bovine preimplantation embryogenesis requires inhibition of both p38 and extracellular signal-regulated kinase (ERK) pathways. Reproduction, 2005, 130, 41-51.	1.1	33
32	Effect of serum and cumulus cell expansion on marker gene transcripts in bovine cumulus-oocyte complexes during maturation in vitro. Fertility and Sterility, 2005, 83, 1077-1085.	0.5	38
33	Roles of Na,K-ATPase in Early Development and Trophectoderm Differentiation. Seminars in Nephrology, 2005, 25, 352-355.	0.6	21
34	p38 mitogen-activated protein kinase (MAPK) first regulates filamentous actin at the 8-16-cell stage during preimplantation development. Biology of the Cell, 2005, 97, 629-640.	0.7	46
35	RGS14 Is a Mitotic Spindle Protein Essential from the First Division of the Mammalian Zygote. Developmental Cell, 2004, 7, 763-769.	3.1	59
36	p38 MAPK signaling during murine preimplantation development. Developmental Biology, 2004, 268, 76-88.	0.9	90

#	Article	IF	CITATIONS
37	Responsiveness of bovine cumulus-oocyte-complexes (COC) to porcine and recombinant human FSH, and the effect of COC quality on gonadotropin receptor and Cx43 marker gene mRNAs during maturation in vitro. Reproductive Biology and Endocrinology, 2003, 1, 14.	1.4	56
38	Aquaporin proteins in murine trophectoderm mediate transepithelial water movements during cavitation. Developmental Biology, 2003, 256, 342-354.	0.9	133
39	A null mutation for Tissue Inhibitor of Metalloproteinases-3 (Timp-3) impairs murine bronchiole branching morphogenesis. Developmental Biology, 2003, 261, 313-323.	0.9	83
40	Ovarian Stanniocalcin Is Structurally Unique in Mammals and Its Production and Release Are Regulated through the Luteinizing Hormone Receptor. Endocrinology, 2002, 143, 3925-3934.	1.4	24
41	Rac-1 and IQGAP are potential regulators of E-cadherin–catenin interactions during murine preimplantation development. Mechanisms of Development, 2002, 119, S21-S26.	1.7	20
42	Targeting gene expression in the preimplantation mouse embryo using morpholino antisense oligonucleotides. Molecular Reproduction and Development, 2002, 63, 413-421.	1.0	25
43	Regulation of blastocyst formation. Frontiers in Bioscience - Landmark, 2001, 6, d708.	3.0	126
44	Regulation of blastocyst formation. Frontiers in Bioscience - Landmark, 2001, 6, d708-730.	3.0	86
45	Cyclooxygenase-2 and Prostaglandin E2(PGE2) Receptor Messenger RNAs Are Affected by Bovine Oocyte Maturation Time and Cumulus-Oocyte Complex Quality, and PGE2 Induces Moderate Expansion of the Bovine Cumulus In Vitro1. Biology of Reproduction, 2001, 65, 135-140.	1.2	71
46	Characterization of a bovine cDNA encoding citrate synthase, and presence of citrate synthase mRNA during bovine pre-attachment development. Molecular Reproduction and Development, 2000, 55, 14-19.	1.0	7
47	Assessment by differential display-RT-PCR of mRNA transcript transitions and ?-amanitin sensitivity during bovine preattachment development. Molecular Reproduction and Development, 2000, 55, 152-163.	1.0	44
48	Genetic reprogramming of lactate dehydrogenase, citrate synthase, and phosphofructokinase mRNA in bovine nuclear transfer embryos produced using bovine fibroblast cell nuclei. Molecular Reproduction and Development, 2000, 56, 458-464.	1.0	56
49	mRNAs encoding aquaporins are present during murine preimplantation development. Molecular Reproduction and Development, 2000, 57, 323-330.	1.0	66
50	Impact of Bovine Oocyte Maturation Media on Oocyte Transcript Levels, Blastocyst Development, Cell Number, and Apoptosis1. Biology of Reproduction, 2000, 62, 355-364.	1.2	156
51	Differential Involvement of Na+,K+-ATPase Isozymes in Preimplantation Development of the Mouse. Developmental Biology, 2000, 222, 486-498.	0.9	57
52	Genetic reprogramming of lactate dehydrogenase, citrate synthase, and phosphofructokinase mRNA in bovine nuclear transfer embryos produced using bovine fibroblast cell nuclei. , 2000, 56, 458.		2
53	Reprogramming of Fibroblast Nuclei after Transfer into Bovine Oocytes. Cloning, 1999, 1, 63-69.	2.1	57
54	Prospects for improved pregnancy outcomes by assisted reproductive technologies. Seminars in Fetal and Neonatal Medicine, 1999, 4, 115-123.	2.8	0

#	Article	IF	CITATIONS
55	Analysis of variation in relative mRNA abundance for specific gene transcripts in single bovine oocytes and early embryos. Molecular Reproduction and Development, 1998, 49, 119-130.	1.0	71
56	Role of the α and β subunits of Na+, K+-ATPase in trophectoderm differentiation and cavitation. Placenta, 1998, 19, 87-99.	0.7	0
57	Na/K-ATPase-Mediated86Rb+Uptake and Asymmetrical Trophectoderm Localization of α1 and α3 Na/K-ATPase Isoforms during Bovine Preattachment Development. Developmental Biology, 1998, 197, 77-92.	0.9	47
58	Transient Expression of a Translation Initiation Factor Is Conservatively Associated with Embryonic Gene Activation in Murine and Bovine Embryos1. Biology of Reproduction, 1998, 59, 969-977.	1.2	59
59	Analysis of variation in relative mRNA abundance for specific gene transcripts in single bovine oocytes and early embryos. , 1998, 49, 119.		3
60	Bovine Oviductal and Embryonic Insulin-Like Growth Factor Binding Proteins: Possible Regulators of "Embryotrophic―Insulin-Like Growth Factor Circuits1. Biology of Reproduction, 1997, 56, 1415-1423.	1.2	70
61	Ouabain sensitivity and expression of Na/K-ATPase α- and β-subunit isoform genes during bovine early development. Molecular Reproduction and Development, 1997, 46, 114-126.	1.0	54
62	Effect of estrogen-treated porcine ampulla oviductal epithelial cells on early embryonic development in vitro and characterization of their protein synthetic activity. Animal Reproduction Science, 1996, 45, 217-229.	0.5	9
63	Regulation of Early Embryonic Development by Growth Factors: Growth Factor Gene Expression in Cloned Bovine Embryos. Journal of Animal Science, 1996, 74, 50.	0.2	10
64	A Growth Factor Phenotype Map for Ovine Preimplantation Development1. Biology of Reproduction, 1994, 50, 725-733.	1.2	107
65	Preimplantation Development of in Vitro-Matured and in Vitro-Fertilized Ovine Zygotes: Comparison between Coculture on Oviduct Epithelial Cell Monolayers and Culture under Low Oxygen Atmosphere1. Biology of Reproduction, 1994, 50, 715-724.	1.2	88
66	Expression of IGF ligand and receptor genes during preimplantation mammalian development. Molecular Reproduction and Development, 1993, 35, 414-420.	1.0	52
67	Activation of the Embryonic Genome: Comparisons Between Mouse and Bovine Development. , 1993, , 115-130.		3
68	Expression of Bovine Trophoblast Interferon in Conceptuses Derived by in Vitro Techniques1. Biology of Reproduction, 1992, 47, 374-380.	1.2	137
69	How to make a blastocyst. Biochemistry and Cell Biology, 1992, 70, 849-855.	0.9	31
70	Expression of growth factor ligand and receptor genes in the preimplantation bovine embryo. Molecular Reproduction and Development, 1992, 31, 87-95.	1.0	295
71	U2 small nuclear RNA localization and expression during bovine preimplantation development. Molecular Reproduction and Development, 1992, 31, 231-240.	1.0	29
72	The cell biology of blastocyst development. Molecular Reproduction and Development, 1992, 33, 492-504.	1.0	145

#	Article	IF	CITATIONS
73	Effects of maturation and co-culture treatments on the developmental capacity of early bovine embryos. Molecular Reproduction and Development, 1991, 30, 330-338.	1.0	70
74	Transition from maternal to embryonic control in early mammalian development: A comparison of several species. Molecular Reproduction and Development, 1990, 26, 90-100.	1.0	802
75	Cell polarity and development of the first epithelium. BioEssays, 1990, 12, 67-73.	1.2	79
76	Expression of NA, K-ATpase $\hat{l}\pm$ and \hat{l}^2 subunit genes during preimplantation development of the mouse. Genesis, 1990, 11, 41-48.	3.1	63
77	Differentiation of an epithelium: Factors affecting the polarized distribution of Na+,K+-ATPase in mouse trophectoderm. Developmental Biology, 1990, 141, 104-114.	0.9	75
78	Immunofluorescence assessment of the timing of appearance and cellular distribution of Na/K-ATPase during mouse embryogenesis. Developmental Biology, 1988, 126, 80-90.	0.9	145
79	Analysis of the embryonic transcriptome. , 0, , 269-277.		0