David M Roth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/351778/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of anesthesia on cardiac function during echocardiography in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H2134-H2140.	3.2	282
2	Cardiac-Directed Adenylyl Cyclase Expression Improves Heart Function in Murine Cardiomyopathy. Circulation, 1999, 99, 3099-3102.	1.6	165
3	Mechanisms of cardiac protection from ischemia/reperfusion injury: a role for caveolae and caveolinâ€1. FASEB Journal, 2007, 21, 1565-1574.	0.5	126
4	Cardiac-Specific Overexpression of Caveolin-3 Induces Endogenous Cardiac Protection by Mimicking Ischemic Preconditioning. Circulation, 2008, 118, 1979-1988.	1.6	126
5	Management of the Waiting List for Cadaveric Kidney Transplants. Journal of the American Society of Nephrology: JASN, 2002, 13, 528-535.	6.1	95
6	Mitochondriaâ€localized caveolin in adaptation to cellular stress and injury. FASEB Journal, 2012, 26, 4637-4649.	0.5	88
7	Cardiac-Specific Overexpression of Caveolin-3 Attenuates Cardiac Hypertrophy and Increases Natriuretic Peptide Expression and Signaling. Journal of the American College of Cardiology, 2011, 57, 2273-2283.	2.8	86
8	Focal Adhesions in (Myo)fibroblasts Scaffold Adenylyl Cyclase with Phosphorylated Caveolin. Journal of Biological Chemistry, 2006, 281, 17173-17179.	3.4	83
9	Ischaemic preconditioning preferentially increases protein S-nitrosylation in subsarcolemmal mitochondria. Cardiovascular Research, 2015, 106, 227-236.	3.8	74
10	Efficacy of Methylprednisolone in Preventing Lung Injury Following Pulmonary Thromboendarterectomy. Chest, 2012, 141, 27-35.	0.8	56
11	Role of Caveolin-3 and Glucose Transporter-4 in Isoflurane-induced Delayed Cardiac Protection. Anesthesiology, 2010, 112, 1136-1145.	2.5	52
12	Caveolin-3 Overexpression Attenuates Cardiac Hypertrophy via Inhibition of T-type Ca2+ Current Modulated by Protein Kinase Cα in Cardiomyocytes. Journal of Biological Chemistry, 2015, 290, 22085-22100.	3.4	50
13	Indirect intracoronary delivery of adenovirus encoding adenylyl cyclase increases left ventricular contractile function in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H172-H177.	3.2	37
14	Sarcolemmal cholesterol and caveolin-3 dependence of cardiac function, ischemic tolerance, and opioidergic cardioprotection. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H895-H903.	3.2	34
15	Role of Caveolae in Cardiac Protection. Pediatric Cardiology, 2011, 32, 329-333.	1.3	31
16	Caveolin-3 KO disrupts t-tubule structure and decreases t-tubular <i>I</i> _{Ca} density in mouse ventricular myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1101-H1111.	3.2	31
17	Nitroprusside Increases Gene Transfer Associated with Intracoronary Delivery of Adenovirus. Human Gene Therapy, 2004, 15, 989-994.	2.7	29
18	Caveolin-1 regulation of <i>disrupted-in-schizophrenia</i> -1 as a potential therapeutic target for schizophrenia. Journal of Neurophysiology, 2017, 117, 436-444.	1.8	27

DAVID M ROTH

#	Article	IF	CITATIONS
19	Caveolin-3 plays a critical role in autophagy after ischemia-reperfusion. American Journal of Physiology - Cell Physiology, 2016, 311, C854-C865.	4.6	25
20	Long-term atorvastatin treatment leads to alterations in behavior, cognition, and hippocampal biochemistry. Behavioural Brain Research, 2014, 267, 6-11.	2.2	24
21	Caveolin modulates integrin function and mechanical activation in the cardiomyocyte. FASEB Journal, 2015, 29, 374-384.	0.5	24
22	Metabolomic analysis of serum and myocardium in compensated heart failure after myocardial infarction. Life Sciences, 2019, 221, 212-223.	4.3	19
23	The Effects of Aging on the Regulation of T-Tubular ICa by Caveolin in Mouse Ventricular Myocytes. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 711-719.	3.6	16
24	Electrophysiology and metabolism of caveolin-3-overexpressing mice. Basic Research in Cardiology, 2016, 111, 28.	5.9	15
25	Helium-Induced Changes in Circulating Caveolin in Mice Suggest a Novel Mechanism of Cardiac Protection. International Journal of Molecular Sciences, 2019, 20, 2640.	4.1	14
26	Cardiac-directed expression of adenylyl cyclase and heart rate regulation. Basic Research in Cardiology, 2003, 98, 380-387.	5.9	13
27	Modulation of caveolins, integrins and plasma membrane repair proteins in anthracycline-induced heart failure in rabbits. PLoS ONE, 2017, 12, e0177660.	2.5	12
28	Cardiacâ€specific overexpression of caveolinâ€3 preserves tâ€ŧubular I Ca during heart failure in mice. Experimental Physiology, 2019, 104, 654-666.	2.0	11
29	Chronic β 1 -adrenoceptor blockade impairs ischaemic tolerance and preconditioning in murine myocardium. European Journal of Pharmacology, 2016, 789, 1-7.	3.5	8
30	Protective role of cardiac-specific overexpression of caveolin-3 in cirrhotic cardiomyopathy. American Journal of Physiology - Renal Physiology, 2020, 318, G531-G541.	3.4	6
31	Signaling Epicenters: The Role of Caveolae and Caveolins in Volatile Anesthetic Induced Cardiac Protection. Current Pharmaceutical Design, 2014, 20, 5681-5689.	1.9	6
32	Role of caveolin-3 in lymphocyte activation. Life Sciences, 2015, 121, 35-39.	4.3	3
33	Caveolin and the aged myocardium. FASEB Journal, 2010, 24, 819.2.	0.5	1
34	Role of caveolinâ€3 and mitochondria in protecting the aged myocardium. FASEB Journal, 2012, 26, 864.16.	0.5	1
35	Caveolinâ€1 overexpression repairs neuronal degradation in the setting of traumatic brain injury. FASEB Journal, 2013, 27, 693.10.	0.5	1
36	Dexmedetomidine and Cardiac "Postconditioning― Anesthesia and Analgesia, 2020, 130, 87-89.	2.2	0

David M Roth

#	Article	IF	CITATIONS
37	Caveolinâ€l knockout mice have decreased enrichment of redoxâ€sensitive enzymes in renal caveolar fractions. FASEB Journal, 2007, 21, A1424.	0.5	0
38	Cardiac‧pecific Overexpression of Caveolinâ€3 Enhances Akt Phosphorylation. FASEB Journal, 2007, 21, A794.	0.5	0
39	Tissue plasminogen activator blocks ISOFLURANEâ€mediated neuronal apoptosis in developing neurons. FASEB Journal, 2008, 22, 648.24.	0.5	Ο
40	Increased GlcNacation and decreased caveolinâ€3 in cardiac myocyte caveolae during diabetes mellitus. FASEB Journal, 2009, 23, 990.26.	0.5	0
41	Dynamin and caveolae in cardiac ischemic preconditioning. FASEB Journal, 2009, 23, LB381.	0.5	0
42	Cardiac myocyteâ€specific caveolinâ€3 overexpression modulates ANP production and attenuates cardiac hypertrophy in vivo. FASEB Journal, 2009, 23, 576.10.	0.5	0
43	Cerebral ischemic preconditioning protects neurons from apoptosis via decoy receptors. FASEB Journal, 2009, 23, 614.10.	0.5	0
44	A role for miRâ€471 in cardiac ischemiaâ€reperfusion injury. FASEB Journal, 2010, 24, 626.2.	0.5	0
45	Regulation of mitochondrial function by caveolinâ€3. FASEB Journal, 2010, 24, 819.1.	0.5	0
46	EFFECT OF EPICATECHIN AND NALOXONE ON CARDIOâ€PROTECTIVE PHENOTYPE. FASEB Journal, 2010, 24, 1029.8.	0.5	0
47	Caveolinâ€3 regulates isofluraneâ€induced postconditioning. FASEB Journal, 2011, 25, 1097.8.	0.5	Ο
48	Effects of noble gas conditioning on Caveolin expression in the rat heart in vivo. FASEB Journal, 2012, 26, 1114.17.	0.5	0
49	Decreased caveolinâ€3 and increased ClcNAcation in cardiac myocyte caveolae during diabetes mellitus. FASEB Journal, 2012, 26, 1127.14.	0.5	0
50	Myocardial cholesterol homeostasis is altered by age and Cavâ€3 knockdown. FASEB Journal, 2012, 26, 1117.5.	0.5	0
51	Effect of lowâ€dose epicatechin on mitochondrial function and membrane fluidity. FASEB Journal, 2012, 26, 852.1.	0.5	0
52	AKIP1 protects against cardiac injury via enhanced mitochondrial function. FASEB Journal, 2013, 27, 657.3.	0.5	0
53	Angiotensinâ€l induced cardiac hypertrophic responses are mediated via PKC and NFAT signaling is attenuated by caveolinâ€3 in ventricular myocytes. FASEB Journal, 2013, 27, 1197.2.	0.5	0
54	Novel Roles for Catestatin in Cardiac Metabolism and Physiology. FASEB Journal, 2015, 29, 1025.12.	0.5	0

David M Roth

#	Article	IF	CITATIONS
55	Ischemic Tolerance and Conventional Preconditioning are Impaired by Chronic β 1 â€Blockade. FASEB Journal, 2015, 29, 635.1.	0.5	0
56	Sex Differences in Typeâ€2 Diabetes: Implications for Caveolinâ€3 Regulated Mitochondrial Function. FASEB Journal, 2019, 33, 830.4.	0.5	0
57	Effect of Mediators in the Plasma of Eâ€Cigarette Users on Endothelial and Epithelial Cell Metabolism. FASEB Journal, 2022, 36, .	0.5	0
58	Abstract 24070: Cardiac-Specific Overexpression Of Caveolin-3 Expedites Cardiac Relaxation After Adrenergic Stimulation. Circulation, 2017, 136, .	1.6	0