Dong Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3517635/publications.pdf

Version: 2024-02-01

331670 276875 2,019 87 21 41 citations h-index g-index papers 88 88 88 1439 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Combustion and emissions of RP-3 jet fuel and diesel fuel in a single-cylinder diesel engine. Frontiers in Energy, 2023, 17, 664-677.	2.3	10
2	Influences of C5 esters addition on anti-knock and auto-ignition tendency of a gasoline surrogate fuel. International Journal of Engine Research, 2022, 23, 1782-1791.	2.3	6
3	An experimental and modeling study on polyoxymethylene dimethyl ether 3 (PODE3) oxidation in a jet stirred reactor. Fundamental Research, 2022, 2, 738-747.	3.3	4
4	Theoretical study on isomerization, decomposition and ring-closure reaction kinetics of methyl pentanoate radicals. Combustion and Flame, 2022, 237, 111848.	5.2	2
5	Gasoline octane number prediction from near-infrared spectroscopy with an ANN-based model. Fuel, 2022, 318, 123543.	6.4	8
6	Effects of branch structure of alkylbenzenes on spray auto-ignition of $\langle i \rangle n \langle i \rangle$ -decane and alkylbenzenes blends. International Journal of Engine Research, 2021, 22, 1636-1651.	2.3	5
7	Influences of isomeric butanol addition on anti-knock tendency of primary reference fuel and toluene primary reference fuel gasoline surrogates. International Journal of Engine Research, 2021, 22, 39-49.	2.3	27
8	An experimental study on spray auto-ignition of RP-3 jet fuel and its surrogates. Frontiers in Energy, 2021, 15, 396-404.	2.3	10
9	Rural-Spatial Restructuring Promoted by Land-Use Transitions: A Case Study of Zhulin Town in Central China. Land, 2021, 10, 234.	2.9	17
10	Exergy loss characteristics of DME/air and ethanol/air mixtures with temperature and concentration fluctuations under HCCI/SCCI conditions: A DNS study. Combustion and Flame, 2021, 226, 334-346.	5.2	15
11	Fuel octane number prediction based on topological indices and active subspace method. Fuel, 2021, 293, 120494.	6.4	4
12	An experimental and modeling study on the low-temperature oxidation of methylcyclopentane in a jet-stirred reactor. Fuel, 2021, 293, 120374.	6.4	9
13	Numerical study on the physical and chemical processes in n-decane spray ignition. Chemical Engineering Science, 2021, 241, 116716.	3.8	4
14	Numerical study on explosion limits of ammonia/hydrogen/oxygen mixtures: Sensitivity and eigenvalue analysis. Fuel, 2021, 300, 120964.	6.4	17
15	Synthesis and properties of fluorinated <scp>benzotriazoleâ€based donorâ€acceptorâ€type</scp> conjugated polymers via <scp>Pdâ€catalyzed</scp> direct <scp>CH</scp> / <scp>CH</scp> coupling polymerization. Journal of Polymer Science, 2021, 59, 240-250.	3.8	9
16	1,2-Dimyristoyl- <i>sn-glycero</i> -3-phosphocholine promotes the adhesion of nanoparticles to bio-membranes and transport in rat brain. RSC Advances, 2021, 11, 35455-35462.	3.6	4
17	Comparative Study on Spray Auto-Ignition of Di-n-Butyl Ether and Diesel Blends at Engine-Like Conditions. Journal of Energy Resources Technology, Transactions of the ASME, 2021, 143, .	2.3	4
18	Elesesterpenes A–K: Lupane-type Triterpenoids From the Leaves of Eleutherococcus sessiliflorus. Frontiers in Chemistry, 2021, 9, 813764.	3.6	2

#	Article	IF	CITATIONS
19	Effects of mechanism reduction on the exergy losses analysis in n-heptane autoignition processes. International Journal of Engine Research, 2020, 21, 1764-1777.	2.3	8
20	A comparative study on soot particle size distributions in premixed flames of RP-3 jet fuel and its surrogates. Fuel, 2020, 259, 116222 .	6.4	17
21	Effects of butanol blending on spray auto-ignition of gasoline surrogate fuels. Fuel, 2020, 260, 116368.	6.4	13
22	Second-law thermodynamic analysis on non-premixed counterflow methane flames with hydrogen addition. Journal of Thermal Analysis and Calorimetry, 2020, 139, 2577-2583.	3 . 6	7
23	A strategy for iron oxide nanoparticles to adhere to the neuronal membrane in the substantia nigra of mice. Journal of Materials Chemistry B, 2020, 8, 758-766.	5.8	6
24	MicroRNA-23a suppresses the apoptosis of inflammatory macrophages and foam cells in atherogenesis by targeting HSP90. Gene, 2020, 729, 144319.	2.2	11
25	Second-law thermodynamic analysis on premixed syngas flames. International Journal of Exergy, 2020, 32, 174.	0.4	1
26	Effects of fuel combination and IVO timing on combustion and emissions of a dual-fuel HCCI combustion engine. Frontiers in Energy, 2020, 14, 778-789.	2.3	8
27	Spray Auto-ignition Behaviors of Diesel and Jet Fuel at Reduced Oxygen Environments. Combustion Science and Technology, 2020, , 1-15.	2.3	6
28	Prediction of Standard Enthalpies of Formation Based on Hydrocarbon Molecular Descriptors and Active Subspace Methodology. Industrial & Engineering Chemistry Research, 2020, 59, 4785-4791.	3.7	11
29	Soot size distribution in lightly sooting premixed flames of benzene and toluene. Frontiers in Energy, 2020, 14, 18-26.	2.3	3
30	Combustion and emissions of isomeric butanol/gasoline surrogates blends on an optical GDI engine. Fuel, 2020, 272, 117690.	6.4	39
31	Soot particle size distributions in premixed flames of RP-3 jet fuel and its distillates. Fuel, 2020, 267, 117244.	6.4	6
32	Application of Active Subspace Method in Gas Exchange Strategy Calibration on a Variable Valve Timing Gasoline Engine. Journal of Engineering for Gas Turbines and Power, 2020, 142, .	1.1	2
33	Attachment of streptavidin-modified superparamagnetic iron oxide nanoparticles to the PC-12 cell membrane. Biomedical Materials (Bristol), 2020, 15, 045014.	3.3	4
34	Hydraulic dynamics in split fuel injection on a common rail system and their artificial neural network prediction. Fuel, 2019, 255, 115792.	6.4	11
35	Autoignition of n-heptane and butanol isomers blends in a constant volume combustion chamber. Fuel, 2019, 254, 115638.	6.4	20
36	Impact of Short-Range Clustering on the Multistage Work-Hardening Behavior in Cu–Ni Alloys. Metals, 2019, 9, 151.	2.3	22

#	Article	IF	CITATIONS
37	Analysis of exergy losses in laminar premixed flames of methane/hydrogen blends. International Journal of Hydrogen Energy, 2019, 44, 24043-24053.	7.1	18
38	Exergy losses in premixed flames of dimethyl ether and hydrogen blends. Frontiers in Energy, 2019, 13, 658-666.	2.3	6
39	Experimental and modeling validation of a large diesel surrogate: Autoignition in heated rapid compression machine and oxidation in flow reactor. Combustion and Flame, 2019, 202, 195-207.	5 . 2	29
40	Second-law thermodynamic analysis for premixed hydrogen flames with diluents of argon/nitrogen/carbon dioxide. International Journal of Hydrogen Energy, 2019, 44, 5020-5029.	7.1	21
41	Size Distribution of Nascent Soot in Premixed <i>n</i> -Hexane, Cyclohexane, and Methylcyclohexane Flames. Energy & Energ	5.1	6
42	Numerical study on exergy losses of iso-octane constant-volume combustion with water addition. Fuel, 2019, 248, 127-135.	6.4	11
43	Autoignition Comparison of <i>n</i> -Dodecane/Benzene and <i>n</i> -Dodecane/Toluene Blends in a Constant Volume Combustion Chamber. Energy & Energy & Samp; Fuels, 2019, 33, 5647-5654.	5.1	13
44	Autoignition of <i>n</i> -Hexane, Cyclohexane, and Methylcyclohexane in a Constant Volume Combustion Chamber. Energy & En	5.1	27
45	Second-Law Thermodynamic Analysis in Premixed Flames of Ammonia and Hydrogen Binary Fuels. Journal of Engineering for Gas Turbines and Power, 2019, 141, .	1.1	17
46	Cetane number prediction for hydrocarbons from molecular structural descriptors based on active subspace methodology. Fuel, 2019, 249, 1-7.	6.4	18
47	Hydrolyzed polyacrylamide biotransformation in an up-flow anaerobic sludge blanket reactor system: key enzymes, functional microorganisms, and biodegradation mechanisms. Bioprocess and Biosystems Engineering, 2019, 42, 941-951.	3.4	24
48	Applicability of high dimensional model representation correlations for ignition delay times of n-heptane/air mixtures. Frontiers in Energy, 2019, 13, 367-376.	2.3	10
49	The synthesis and characterization of glutathione-modified superparamagnetic iron oxide nanoparticles and their distribution in rat brains after injection in substantia nigra. Journal of Materials Science: Materials in Medicine, 2019, 30, 5.	3.6	11
50	Development and Production of High Rate MRPC for CBM TOF., 2019,,.		2
51	Size Distribution of Soot Particles in Premixed <i>n</i> -Heptane and Methylcyclohexane Flames. Energy & Energy	5.1	6
52	Nozzle effects on the injection characteristics of diesel and gasoline blends on a common rail system. Energy, 2018, 153, 223-230.	8.8	18
53	A new methodology for diesel surrogate fuel formulation: Bridging fuel fundamental properties and real engine combustion characteristics. Energy, 2018, 148, 424-447.	8.8	76
54	Dilution, Thermal, and Chemical Effects of Carbon Dioxide on the Exergy Destruction in n-Heptane and Iso-octane Autoignition Processes: A Numerical Study. Energy & Energy & 2018, 32, 5559-5570.	5.1	17

#	Article	IF	CITATIONS
55	Effect of mixing methane, ethane, propane and ethylene on the soot particle size distribution in a premixed propene flame. Combustion and Flame, 2018, 193, 54-60.	5.2	20
56	Long-term system load forecasting based on data-driven linear clustering method. Journal of Modern Power Systems and Clean Energy, 2018, 6, 306-316.	5.4	36
57	Pressure-Based Approach to Estimating the Injection Start and End in Single and Split Common Rail Injection Processes. Journal of Shanghai Jiaotong University (Science), 2018, 23, 28-33.	0.9	1
58	Recent progress and challenges in process optimization: Review of recent work at ECUST. Canadian Journal of Chemical Engineering, 2018, 96, 2115-2123.	1.7	2
59	Chemical Mechanism of Exhaust Gas Recirculation on Polycyclic Aromatic Hydrocarbons Formation Based on Laser-Induced Fluorescence Measurement. Energy & Energy & 2018, 32, 7112-7124.	5.1	39
60	Exergy losses in auto-ignition processes of DME and alcohol blends. Fuel, 2018, 229, 116-125.	6.4	24
61	Effects of Exhaust Gas Recirculation Constituents on Methyl Decanoate Auto-Ignition: A Kinetic Study. Journal of Engineering for Gas Turbines and Power, 2018, 140, .	1.1	8
62	A six-component surrogate of diesel from direct coal liquefaction for spray analysis. Fuel, 2018, 234, 1259-1268.	6.4	16
63	Laminar flame propagation and nonpremixed stagnation ignition of toluene and xylenes. Proceedings of the Combustion Institute, 2017, 36, 479-489.	3.9	24
64	Macroscopic and microscopic spray characteristics of fatty acid esters on a common rail injection system. Fuel, 2017, 203, 370-379.	6.4	32
65	Size evolution of soot particles from gasoline and n-heptane/toluene blend in a burner stabilized stagnation flame. Fuel, 2017, 203, 135-144.	6.4	20
66	Numerical study on fuel physical effects on the split injection processes on a common rail injection system. Energy Conversion and Management, 2017, 134, 47-58.	9.2	31
67	Evaluating the impact of smart grid technologies on generation expansion planning under uncertainties. International Transactions on Electrical Energy Systems, 2016, 26, 934-951.	1.9	11
68	Octane rating effects of direct injection fuels on dual fuel HCCI-DI stratified combustion mode with port injection of n-heptane. Energy, 2016, 111, 1003-1016.	8.8	33
69	Active fuel design—A way to manage the right fuel for HCCl engines. Frontiers in Energy, 2016, 10, 14-28.	2.3	9
70	Experimental study of the two-stage injection process of fatty acid esters on a common rail injection system. Fuel, 2016, 163, 214-222.	6.4	25
71	An analytical method for quantitative reconstruction of X-ray fluorescence computed tomography with attenuation correction. , $2015, , .$		0
72	Experimental study on the two stage injection of diesel and gasoline blends on a common rail injection system. Fuel, 2015, 159, 470-475.	6.4	18

#	Article	IF	CITATIONS
73	A robust optimization approach to evaluate the impact of smart grid technologies on generation plans. , $2014,$, .		2
74	Structural and Biochemical Characterization Reveals LysGH15 as an Unprecedented "EF-Hand-Like― Calcium-Binding Phage Lysin. PLoS Pathogens, 2014, 10, e1004109.	4.7	85
75	Experimental study on injection characteristics of fatty acid esters on a diesel engine common rail system. Fuel, 2014, 123, 19-25.	6.4	38
76	Experimental study on compound HCCI (homogenous charge compression ignition) combustion fueled with gasoline and diesel blends. Energy, 2014, 64, 707-718.	8.8	78
77	An experimental study of injection and spray characteristics of diesel and gasoline blends on a common rail injection system. Energy, 2014, 75, 513-519.	8.8	41
78	Risk assessment model for wind power integrated power systems using conditional value-at-risk. , 2014, , .		1
79	Experimental study on dual-fuel compound homogeneous charge compression ignition combustion. International Journal of Engine Research, 2013, 14, 23-33.	2.3	19
80	Effects of equivalence ratio and carbon dioxide concentration on premixed charge compression ignition of gasoline and diesel-like fuel blends. Journal of Mechanical Science and Technology, 2013, 27, 2507-2512.	1.5	1
81	Fuel design and management for the control of advanced compression-ignition combustion modes. Progress in Energy and Combustion Science, 2011, 37, 741-783.	31.2	462
82	Premixed low-temperature combustion of blends of diesel and gasoline in a high speed compression ignition engine. Proceedings of the Combustion Institute, 2011, 33, 3039-3046.	3.9	142
83	Attainment and Load Extension of High-Efficiency Premixed Low-Temperature Combustion with Dieseline in a Compression Ignition Engine. Energy & Energy & 2010, 24, 3517-3525.	5.1	95
84	Influence of Fuel Supply Timing and Mixture Preparation on the Characteristics of Stratified Charge Compression Ignition Combustion with N-Heptane Fuel. Combustion Science and Technology, 2009, 181, 1327-1344.	2.3	10
85	Dilution, Thermal and Chemical Effects of Carbon Dioxide on n-heptane Two-Stage Auto-Ignition Process. , 0, , .		9
86	Spatiotemporal Evolution of Specialized Villages in the Yellow River Basin and Its Influencing Factors. Papers in Applied Geography, 0 , , 1 -18.	1.4	1
87	The influence of spatial interfaces on rural economic restructuring in rapidly industrializing areas: A case study of Gongyi city in central China. Growth and Change, 0, , .	2.6	4