
Alexander Rusanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3517028/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of p53 knockdown on protein dataset of HaCaT cells. Data in Brief, 2022, 42, 108274.	1.0	3
2	Proteomic characterization of HaCaT keratinocytes provides new insights into changes associated with SDS exposure. Biomedical Dermatology, 2020, 4, .	7.7	8
3	Impact of p53 modulation on interactions between p53 family members during HaCaT keratinocytes differentiation. Bulletin of Russian State Medical University, 2020, , .	0.2	2
4	A Cell Model of Human Small Intestinal Wall Based on Genetically Modified Caco-2 Cells. Bulletin of Experimental Biology and Medicine, 2018, 166, 174-177.	0.8	1
5	Changes in the Proteome of HaCaT Keratinocytes Induced by Cytotoxic Substance Triton X-100. Bulletin of Experimental Biology and Medicine, 2017, 163, 620-622.	0.8	5
6	Proteome of the human HaCaT keratinocytes: Identification of the oxidative stress proteins after sodium dodecyl sulpfate exposur. Molecular Biology, 2017, 51, 748-758.	1.3	4
7	Sodium Dodecyl Sulfate Cytotoxicity towards HaCaT Keratinocytes: Comparative Analysis of Methods for Evaluation of Cell Viability. Bulletin of Experimental Biology and Medicine, 2017, 163, 284-288.	0.8	21
8	Effects of cadmium chloride on the functional state of human intestinal cells. Toxicology in Vitro, 2015, 29, 1006-1011.	2.4	26
9	Design, synthesis and biological evaluation of novel potent MDM2/p53 small-molecule inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 404-409.	2.2	46
10	Expression of Stress-Dependent Genes in Hepatocytes Spheroids after Cisplatin Treatment. Bulletin of Experimental Biology and Medicine, 2014, 157, 603-607.	0.8	2
11	Effect of gamma-ray irradiation on the size and properties of CdS quantum dots in reverse micelles. Radiation Physics and Chemistry, 2013, 92, 87-92.	2.8	23
12	Fluorescent optical fiber sensors for cell viability monitoring. Analyst, The, 2013, 138, 4066.	3.5	9
13	Biodistribution of intact fluorescent CdSe/CdS/ZnS quantum dots coated by mercaptopropionic acid after intravenous injection into mice. Journal of Biophotonics, 2012, 5, 848-859.	2.3	13
14	FLIM-FRET Imaging of Caspase-3 Activity in Live Cells Using Pair of Red Fluorescent Proteins. Theranostics, 2012, 2, 215-226.	10.0	35
15	Effect of CdS nanoparticles on the properties of a protein matrix. Inorganic Materials, 2011, 47, 830-836.	0.8	5
16	Conformational Partitioning in pH-Induced Fluorescence of the Kindling Fluorescent Protein (KFP). Journal of Physical Chemistry B, 2011, 115, 9195-9201.	2.6	12
17	Fluorescence resonance energy transfer between fluorescent proteins as powerful toolkits for in vivo studies. Laser Physics Letters, 2011, 8, 91-102.	1.4	9
18	The origin of radiationless conversion of the excited state in the kindling fluorescent protein (KFP): femtosecond studies and quantum modeling. Laser Physics Letters, 2011, 8, 469-474.	1.4	8

#	Article	IF	CITATIONS
19	Lifetime imaging of FRET between red fluorescent proteins. Journal of Biophotonics, 2010, 3, 774-783.	2.3	25
20	Genetically encoded FRET-pair on the basis of terbium-binding peptide and red fluorescent protein. Applied Biochemistry and Microbiology, 2010, 46, 154-158.	0.9	8
21	Fluorescence dynamics from a single silver nanoparticle in an R-phycoerythrin molecule. Doklady Physical Chemistry, 2010, 430, 10-12.	0.9	1
22	FRET-sensor for imaging with lifetime resolution. Proceedings of SPIE, 2010, , .	0.8	7
23	Role of pH in the appearance of the fluorescent state of chromo protein asCP595 and its mutant KFP. , 2007, , .		Ο
24	Multipopulation desaggregation behavior of zFP538 upon dilution. , 2006, , .		0