
Zhizhi Sheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3516990/publications.pdf Version: 2024-02-01

7HIZHI SHENC

#	Article	IF	CITATIONS
1	Recyclable thermo-insulating panels made by reversible gelling of dispersed silica aerogel microparticles. Journal of Sol-Gel Science and Technology, 2023, 106, 432-443.	1.1	2
2	Liquid Gating Meniscusâ€Shaped Deformable Magnetoelastic Membranes with Selfâ€Driven Regulation of Gas/Liquid Release. Advanced Materials, 2022, 34, e2107327.	11.1	24
3	Liquid Gating Meniscusâ€Shaped Deformable Magnetoelastic Membranes with Selfâ€Driven Regulation of Gas/Liquid Release (Adv. Mater. 3/2022). Advanced Materials, 2022, 34, .	11.1	1
4	Performance prediction of magnetorheological fluidâ€based liquid gating membrane by kriging machine learning method. , 2022, 1, 157-169.		17
5	Nanoporous Kevlar Aerogel Confined Phase Change Fluids Enable Superâ€Flexible Thermal Diodes. Advanced Functional Materials, 2022, 32, .	7.8	13
6	General Suspended Printing Strategy toward Programmatically Spatial Kevlar Aerogels. ACS Nano, 2022, 16, 4905-4916.	7.3	19
7	Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption. Nature Communications, 2022, 13, 1227.	5.8	168
8	Laminated Structural Engineering Strategy toward Carbon Nanotube-Based Aerogel Films. ACS Nano, 2022, 16, 9378-9388.	7.3	58
9	Reconfiguring confined magnetic colloids with tunable fluid transport behavior. National Science Review, 2021, 8, nwaa301.	4.6	25
10	Solid–Liquid Host–Guest Composites: The Marriage of Porous Solids and Functional Liquids. Advanced Materials, 2021, 33, e2104851.	11.1	37
11	Solid–Liquid–Vapor Triphase Gel. Langmuir, 2021, 37, 13501-13511.	1.6	4
12	Liquid-based porous membranes. Chemical Society Reviews, 2020, 49, 7907-7928.	18.7	89
13	A sequential reliability assessment and optimization strategy for multidisciplinary problems with active learning kriging model. Structural and Multidisciplinary Optimization, 2020, 62, 2975-2994.	1.7	8
14	Highly stretchable and reliable graphene oxide-reinforced liquid gating membranes for tunable gas/liquid transport. Microsystems and Nanoengineering, 2020, 6, 43.	3.4	24
15	A simple and effective strategy to enhance the stability and solid–liquid interfacial interaction of an emulsion by the interfacial dilational rheological properties. Soft Matter, 2020, 16, 5650-5658.	1.2	5
16	Building Magnetoresponsive Composite Elastomers for Bionic Locomotion Applications. Journal of Bionic Engineering, 2020, 17, 405-420.	2.7	20
17	Metallic Liquid Gating Membranes. ACS Nano, 2020, 14, 2465-2474.	7.3	30
18	Controllable Liquid-Liquid Printing with Defect-free, Corrosion-Resistance, Unrestricted Wetting Condition. IScience, 2019, 19, 93-100.	1.9	12

Zhizhi Sheng

#	Article	IF	CITATIONS
19	Dynamic Curvature Nanochannelâ€Based Membrane with Anomalous Ionic Transport Behaviors and Reversible Rectification Switch. Advanced Materials, 2019, 31, e1805130.	11.1	114
20	Mobile Liquid Gating Membrane System for Smart Piston and Valve Applications. Industrial & Engineering Chemistry Research, 2019, 58, 11976-11984.	1.8	29
21	Two dimensional nanomaterialâ€based separation membranes. Electrophoresis, 2019, 40, 2029-2040.	1.3	47
22	Visual Chemical Detection Mechanism by a Liquid Gating System with Dipoleâ€Induced Interfacial Molecular Reconfiguration. Angewandte Chemie, 2019, 131, 4007-4011.	1.6	8
23	Visual Chemical Detection Mechanism by a Liquid Gating System with Dipoleâ€Induced Interfacial Molecular Reconfiguration. Angewandte Chemie - International Edition, 2019, 58, 3967-3971.	7.2	33
24	Dynamic air/liquid pockets for guiding microscale flow. Nature Communications, 2018, 9, 733.	5.8	51
25	Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport. Science Advances, 2018, 4, eaao6724.	4.7	96
26	Development and application of bio-inspired microfluidics. International Journal of Modern Physics B, 2018, 32, 1840013.	1.0	6
27	Bioinspired approaches for medical devices. Chinese Chemical Letters, 2017, 28, 1131-1134.	4.8	28
28	CaO-MgO-Al ₂ O ₃ -SiO ₂ (CMAS) Corrosion of Gd ₂ Zr ₂ O ₇ and Sm ₂ Zr ₂ O ₇ . Journal of the Electrochemical Society, 2016, 163, C643-C648.	1.3	20
29	Function of Reaction Layer in Pyrochlore Thermal Barrier Coatings against CMAS Corrosion. ECS Transactions 2015, 66, 53-59	0.3	5