
Maranda Esterhuizen-Londt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3516958/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	β-N-methylamino-l-alanine (BMAA) in novel South African cyanobacterial isolates. Ecotoxicology and Environmental Safety, 2008, 71, 309-313.	6.0	163
2	Still challenging: the ecological function of the cyanobacterial toxin microcystin – What we know so far. Toxin Reviews, 2018, 37, 87-105.	3.4	87
3	The Influence of New and Artificial Aged Microplastic and Leachates on the Germination of Lepidium sativum L Plants, 2020, 9, 339.	3.5	79
4	Assessment of microplastic pollution: occurrence and characterisation in Vesijä⁄i lake and Pikku Vesijä⁄i pond, Finland. Environmental Monitoring and Assessment, 2019, 191, 652.	2.7	74
5	Distinguishing the cyanobacterial neurotoxin β-N-methylamino-l-alanine (BMAA) from its structural isomer 2,4-diaminobutyric acid (2,4-DAB). Toxicon, 2010, 56, 868-879.	1.6	63
6	Self-contamination from clothing in microplastics research. Ecotoxicology and Environmental Safety, 2020, 189, 110036.	6.0	60
7	Pharmaceutical Pollution in Aquatic Environments: A Concise Review of Environmental Impacts and Bioremediation Systems. Frontiers in Microbiology, 2022, 13, 869332.	3.5	58
8	Ageing affects microplastic toxicity over time: Effects of aged polycarbonate on germination, growth, and oxidative stress of Lepidium sativum. Science of the Total Environment, 2021, 790, 148166.	8.0	53
9	Rise of toxic cyanobacterial blooms in temperate freshwater lakes: causes, correlations and possible countermeasures. Toxicological and Environmental Chemistry, 2017, 99, 543-577.	1.2	52
10	The effect of β-N-methylamino-l-alanine (BMAA) on oxidative stress response enzymes of the macrophyte Ceratophyllum demersum. Toxicon, 2011, 57, 803-810.	1.6	45
11	β-N-Methylamino-l-alanine (BMAA) uptake by the aquatic macrophyte Ceratophyllum demersum. Ecotoxicology and Environmental Safety, 2011, 74, 74-77.	6.0	36
12	Using aquatic fungi for pharmaceutical bioremediation: Uptake of acetaminophen by Mucor hiemalis does not result in an enzymatic oxidative stress response. Fungal Biology, 2016, 120, 1249-1257.	2.5	36
13	Effects of polypropylene, polyvinyl chloride, polyethylene terephthalate, polyurethane, high-density polyethylene, and polystyrene microplastic on Nelumbo nucifera (Lotus) in water and sediment. Environmental Science and Pollution Research, 2022, 29, 17580-17590.	5.3	34
14	β-N-methylamino-l-alanine (BMAA) uptake by the animal model, Daphnia magna and subsequent oxidative stress. Toxicon, 2015, 100, 20-26.	1.6	30
15	The effect of oxytetracycline on physiological and enzymatic defense responses in aquatic plant species <i>Egeria densa, Azolla caroliniana</i> , and <i>Taxiphyllum barbieri</i> . Toxicological and Environmental Chemistry, 2017, 99, 104-116.	1.2	29
16	Enchytraeus crypticus Avoid Soil Spiked with Microplastic. Toxics, 2020, 8, 10.	3.7	29
17	Microplastics Exposure Causes Negligible Effects on the Oxidative Response Enzymes Glutathione Reductase and Peroxidase in the Oligochaete Tubifex tubifex. Toxics, 2020, 8, 14.	3.7	26
18	Mycoremediation of diclofenac using <i>Mucor hiemalis</i> . Toxicological and Environmental Chemistry, 2017, 99, 795-808.	1.2	24

#	Article	IF	CITATIONS
19	Oxidative stress responses in the animal model, Daphnia pulex exposed to a natural bloom extract versus artificial cyanotoxin mixtures. Aquatic Toxicology, 2016, 179, 151-157.	4.0	23
20	Antioxidative stress responses in the floating macrophyte Lemna minor L. with cylindrospermopsin exposure. Aquatic Toxicology, 2015, 169, 188-195.	4.0	21
21	Phytoremediation: green technology for the removal of mixed contaminants of a water supply reservoir. International Journal of Phytoremediation, 2019, 21, 372-379.	3.1	21
22	Vegetables cultivated with exposure to pure and naturally occurring β-N-methylamino-L-alanine (BMAA) via irrigation. Environmental Research, 2019, 169, 357-361.	7.5	17
23	LC–MS/MS method development for quantitative analysis of acetaminophen uptake by the aquatic fungus Mucor hiemalis. Ecotoxicology and Environmental Safety, 2016, 128, 230-235.	6.0	15
24	Responses of the antioxidative and biotransformation enzymes in the aquatic fungus Mucor hiemalis exposed to cyanotoxins. Biotechnology Letters, 2017, 39, 1201-1209.	2.2	14
25	In vivo oxidative stress responses of the freshwater basket clam Corbicula javanicus to microplastic fibres and particles. Chemosphere, 2022, 296, 134037.	8.2	14
26	Reactive Oxygen Species in the Adverse Outcome Pathway Framework: Toward Creation of Harmonized Consensus Key Events. Frontiers in Toxicology, 0, 4, .	3.1	14
27	Uptake and biotransformation of pure commercial microcystin-LR versus microcystin-LR from a natural cyanobacterial bloom extract in the aquatic fungus Mucor hiemalis. Biotechnology Letters, 2017, 39, 1537-1545.	2.2	12
28	Protein association of β- <i>N</i> -methylamino-L-alanine in <i>Triticum aestivum</i> via irrigation. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 732-740.	2.3	12
29	Mycoremediation of acetaminophen: Culture parameter optimization to improve efficacy. Chemosphere, 2021, 263, 128117.	8.2	12
30	β-N-methylamino-L-alanine (BMAA) metabolism in the aquatic macrophyte Ceratophyllum demersum. Ecotoxicology and Environmental Safety, 2015, 120, 88-92.	6.0	11
31	Reviewing Interspecies Interactions as a Driving Force Affecting the Community Structure in Lakes via Cyanotoxins. Microorganisms, 2021, 9, 1583.	3.6	11
32	Interspecies interactions between Microcystis aeruginosa PCC 7806 and Desmodesmus subspicatus SAG 86.81 in a co-cultivation system at various growth phases. Environment International, 2019, 131, 105052.	10.0	10
33	Development and validation of an inâ€house quantitative analysis method for cylindrospermopsin using hydrophilic interaction liquid chromatography–tandem mass spectrometry: Quantification demonstrated in 4 aquatic organisms. Environmental Toxicology and Chemistry, 2015, 34, 2878-2883.	4.3	9
34	Case Study Comparing Effects of Microplastic Derived from Bottle Caps Collected in Two Cities on Triticum aestivum (Wheat). Environments - MDPI, 2021, 8, 64.	3.3	9
35	Physiological responses of <i>Cladophora glomerata</i> to cyanotoxins: a potential new phytoremediation species for the Green Liver Systems. Toxicological and Environmental Chemistry, 2016, 98, 241-259.	1.2	8
36	Uptake, Growth, and Pigment Changes in Lemna minor L. Exposed to Environmental Concentrations of Cylindrospermopsin. Toxins, 2019, 11, 650.	3.4	8

#	Article	IF	CITATIONS
37	Fate of Enrofloxacin in Lake Sediment: Biodegradation, Transformation Product Identification, and Ecotoxicological Implications. Soil and Sediment Contamination, 2018, 27, 357-368.	1.9	6
38	Desmodesmus subspicatus co-cultured with microcystin producing (PCC 7806) and the non-producing (PCC 7005) strains of Microcystis aeruginosa. Ecotoxicology, 2019, 28, 834-842.	2.4	6
39	Uptake and Effects of Cylindrospermopsin: Biochemical, Physiological and Biometric Responses in The Submerged Macrophyte Egeria densa Planch. Water (Switzerland), 2020, 12, 2997.	2.7	6
40	Inability to detect free cylindrospermopsin in spiked aquatic organism extracts plausibly suggests protein binding. Toxicon, 2016, 122, 89-93.	1.6	4
41	Toxicity and Toxin Composition of Microcystis aeruginosa from Wangsong Reservoir. Toxicology and Environmental Health Sciences, 2018, 10, 179-185.	2.1	4
42	Translocation of the cyanobacterial toxin microcystin-LR into guttation drops of Triticum aestivum and remaining toxicity. Environmental Pollution, 2019, 253, 61-67.	7.5	4
43	Large-Scale Green Liver System for Sustainable Purification of Aquacultural Wastewater: Construction and Case Study in a Semiarid Area of Brazil (Itacuruba, Pernambuco) Using the Naturally Occurring Cyanotoxin Microcystin as Efficiency Indicator. Toxins, 2020, 12, 688.	3.4	4
44	Fungal pellets as potential tools to control water pollution: Strategic approach for the pelletization and subsequent microcystin-LR uptake by Mucor hiemalis. Journal of Applied Biology & Biotechnology, 0, , .	1.1	4
45	Report of the 1st and 2nd Mystery of Reactive Oxygen Species Conferences. ALTEX: Alternatives To Animal Experimentation, 2022, 39, 336-338.	1.5	4
46	Solid phase extraction of β-N-methylamino-L-alanine (BMAA) from South African water supplies. Water S A, 2011, 37, .	0.4	3
47	Microcystins as environmental and human health hazards. , 2020, , 591-604.		1
48	Bioavailability of microcystin-LR in two different soil types to the legume Alfalfa Medicago sativa L International Journal of Environmental Science and Technology, 2021, 18, 3845.	3.5	1
49	Photocatalytic degradation of microcystin-LR by modified high-energy {001} titanium dioxide: Kinetics and mechanism study of HF8. SDRP Journal of Earth Sciences & Environmental Studies, 2018, 3, 1-10.	0.1	1