Edith Chow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3516949/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Advances in Paper-Based Sensors. Sensors, 2012, 12, 11505-11526.	2.1	545
2	DNA Recognition Interfaces:Â The Influence of Interfacial Design on the Efficiency and Kinetics of Hybridization. Langmuir, 2005, 21, 6957-6965.	1.6	153
3	Exploring the use of the tripeptide Gly–Gly–His as a selective recognition element for the fabrication of electrochemical copper sensors. Analyst, The, 2003, 128, 712-718.	1.7	127
4	Peptide Modified Electrodes as Electrochemical Metal Ion Sensors. Electroanalysis, 2006, 18, 1437-1448.	1.5	113
5	Voltammetric detection of cadmium ions at glutathione-modified gold electrodes. Analyst, The, 2005, 130, 831.	1.7	87
6	The electrochemical detection of cadmium using surface-immobilized DNA. Electrochemistry Communications, 2007, 9, 845-849.	2.3	87
7	Gold Nanoparticle Chemiresistor Sensors:  Direct Sensing of Organics in Aqueous Electrolyte Solution. Analytical Chemistry, 2007, 79, 7333-7339.	3.2	79
8	Electrochemical detection of lead ions via the covalent attachment of human angiotensin I to mercaptopropionic acid and thioctic acid self-assembled monolayers. Analytica Chimica Acta, 2005, 543, 167-176.	2.6	73
9	Inkjet-printed gold nanoparticle chemiresistors: Influence of film morphology and ionic strength on the detection of organics dissolved in aqueous solution. Analytica Chimica Acta, 2009, 632, 135-142.	2.6	71
10	Sintered gold nanoparticles as an electrode material for paper-based electrochemical sensors. RSC Advances, 2013, 3, 8683.	1.7	59
11	Analytical performance and characterization of MPA-Gly-Gly-His modified sensors. Sensors and Actuators B: Chemical, 2005, 111-112, 540-548.	4.0	58
12	Study of Factors Affecting the Performance of Voltammetric Copper Sensors Based on Gly-Gly-His Modified Glassy Carbon and Gold Electrodes. Electroanalysis, 2006, 18, 1141-1151.	1.5	57
13	Gold Nanoparticle Chemiresistor Sensor Array that Differentiates between Hydrocarbon Fuels Dissolved in Artificial Seawater. Analytical Chemistry, 2010, 82, 3788-3795.	3.2	55
14	Toward Paper-Based Sensors: Turning Electrical Signals into an Optical Readout System. ACS Applied Materials & Interfaces, 2015, 7, 19201-19209.	4.0	45
15	Nanozymes for Environmental Pollutant Monitoring and Remediation. Sensors, 2021, 21, 408.	2.1	44
16	His–Ser–Gln–Lys–Val–Phe as a selective ligand for the voltammetric determination of Cd2+. Electrochemistry Communications, 2005, 7, 101-106.	2.3	43
17	Detection of organics in aqueous solution using gold nanoparticles modified with mixed monolayers of 1-hexanethiol and 4-mercaptophenol. Sensors and Actuators B: Chemical, 2010, 143, 704-711.	4.0	39
18	Application of N-PLS calibration to the simultaneous determination of Cu2+, Cd2+ and Pb2+ using peptide modified electrochemical sensors. Analyst, The, 2006, 131, 1051.	1.7	37

Edith Chow

#	Article	IF	CITATIONS
19	Gold Nanoparticle Chemiresistor Sensors in Aqueous Solution: Comparison of Hydrophobic and Hydrophilic Nanoparticle Films. Journal of Physical Chemistry C, 2009, 113, 15390-15397.	1.5	37
20	High-Throughput Fabrication and Screening Improves Gold Nanoparticle Chemiresistor Sensor Performance. ACS Combinatorial Science, 2015, 17, 120-129.	3.8	32
21	Performance of graphene, carbon nanotube, and gold nanoparticle chemiresistor sensors for the detection of petroleum hydrocarbons in water. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	29
22	Direct plasma printing of nano-gold from an inorganic precursor. Journal of Materials Chemistry C, 2019, 7, 6369-6374.	2.7	27
23	Biosensors for Detecting Metal Ions: New Trends. Australian Journal of Chemistry, 2003, 56, 159.	0.5	23
24	Application of Plasma-Printed Paper-Based SERS Substrate for Cocaine Detection. Sensors, 2021, 21, 810.	2.1	23
25	Extending the dynamic range of electrochemical sensors using multiple modified electrodes. Analytical and Bioanalytical Chemistry, 2007, 387, 1489-1498.	1.9	22
26	An Integrated Paperâ€Based Readout System and Piezoresistive Pressure Sensor for Measuring Bandage Compression. Advanced Materials Technologies, 2016, 1, 1600143.	3.0	22
27	Characterization of the Sensor Response of Gold Nanoparticle Chemiresistors. Journal of Physical Chemistry C, 2010, 114, 17529-17534.	1.5	20
28	Gold nanoparticle chemiresistors operating in biological fluids. Lab on A Chip, 2012, 12, 3040.	3.1	20
29	Detection of bacterial metabolites for the discrimination of bacteria utilizing gold nanoparticle chemiresistor sensors. Sensors and Actuators B: Chemical, 2015, 220, 895-902.	4.0	20
30	Multi-analyte sensing: a chemometrics approach to understanding the merits of electrode arrays versus single electrodes. Analyst, The, 2008, 133, 1090.	1.7	18
31	A Potentiometric Sensor for pH Monitoring with an Integrated Electrochromic Readout on Paper. Australian Journal of Chemistry, 2017, 70, 979.	0.5	18
32	Dynamic response of gold nanoparticle chemiresistors to organic analytes in aqueous solution. Physical Chemistry Chemical Physics, 2011, 13, 18208.	1.3	16
33	Quantifying BTEX in aqueous solutions with potentially interfering hydrocarbons using a partially selective sensor array. Analyst, The, 2015, 140, 3233-3238.	1.7	16
34	Quantifying mixtures of hydrocarbons dissolved in water with a partially selective sensor array using random forests analysis. Sensors and Actuators B: Chemical, 2014, 202, 279-285.	4.0	15
35	Flow-controlled synthesis of gold nanoparticles in a biphasic system with inline liquid–liquid separation. Reaction Chemistry and Engineering, 2020, 5, 356-366.	1.9	13
36	A balance-in-a-box: an integrated paper-based weighing balance for infant birth weight determination. Analytical Methods, 2017, 9, 66-75.	1.3	7

Edith Chow

#	Article	IF	CITATIONS
37	Solvent-induced modulation of the chemical sensing performance of gold nanoparticle film chemiresistors. Sensors and Actuators B: Chemical, 2019, 284, 316-322.	4.0	7
38	Chemical Sensor Array That Can Differentiate Complex Hydrocarbon Mixtures Dissolved in Seawater. Sensor Letters, 2011, 9, 609-611.	0.4	7
39	Electrochemical Detection of Heavy Metal Ions Using Amino Acids and Oligopeptides as Complexing Ligands. Australian Journal of Chemistry, 2005, 58, 306.	0.5	6
40	Transistorâ€Like Modulation of Gold Nanoparticle Film Conductivity Using Hydrophobic Ions. Advanced Materials Interfaces, 2014, 1, 1400062.	1.9	5
41	Influence of Gold Nanoparticle Film Porosity on the Chemiresistive Sensing Performance. Electroanalysis, 2013, 25, 2313-2320.	1.5	4
42	Electrical noise in gold nanoparticle chemiresistors: Effects of measurement environment and organic linker properties. , 2010, , .		3
43	Procedure 13 The determination of metal ions using peptide-modified electrodes. Comprehensive Analytical Chemistry, 2007, 49, e83-e92.	0.7	1
44	Detecting and identifying aqueous solutions of hydrocarbons with a gold nanoparticle chemiresistor sensor array. , 2010, , .		1
45	Detecting and discriminating pyrethroids with chemiresistor sensors. Environmental Chemistry, 2019, 16, 553.	0.7	1
46	Strong enhancement of gold nanoparticle chemiresistor response to low-partitioning organic analytes induced by pre-exposure to high partitioning organics. Physical Chemistry Chemical Physics, 2020, 22, 9117-9123.	1.3	1
47	Determination of alkanes in aqueous solution using gold nanoparticle chemiresistors: Dynamic response characteristics. , 2010, , .		0
48	Sensor System for Directly Detecting and Identifying Hydrocarbons in Water. , 2012, , .		0
49	Using Chemiresistor Sensor Arrays to Test Petrol Station Groundwater Samples for Hydrocarbon Pollutants. ECS Meeting Abstracts, 2020, MA2020-01, 2204-2204.	0.0	Ο