João F Mano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3516948/publications.pdf

Version: 2024-02-01

755 papers 41,878 citations

100 h-index 160 g-index

808 all docs 808 docs citations

808 times ranked 37538 citing authors

#	Article	IF	Citations
1	3D-bioprinted cancer-on-a-chip: level-up organotypic in vitro models. Trends in Biotechnology, 2022, 40, 432-447.	9.3	36
2	Microparticles orchestrating cell fate in bottom-up approaches. Current Opinion in Biotechnology, 2022, 73, 276-281.	6.6	8
3	Brewer's yeast polysaccharides — A review of their exquisite structural features and biomedical applications. Carbohydrate Polymers, 2022, 277, 118826.	10.2	23
4	3D Printed Dualâ€Porosity Scaffolds: The Combined Effect of Stiffness and Porosity in the Modulation of Macrophage Polarization. Advanced Healthcare Materials, 2022, 11, e2101415.	7.6	23
5	Nanoscale design in biomineralization for developing new biomaterials. , 2022, , 345-384.		0
6	Self-glucose feeding hydrogels by enzyme empowered degradation for 3D cell culture. Materials Horizons, 2022, 9, 694-707.	12.2	10
7	Designing highly customizable human based platforms for cell culture using proteins from the amniotic membrane. Materials Science and Engineering C, 2022, 134, 112574.	7.3	8
8	Freestanding Magnetic Microtissues for Tissue Engineering Applications. Advanced Healthcare Materials, 2022, 11, e2101532.	7.6	5
9	Hipster microcarriers: exploring geometrical and topographical cues of non-spherical microcarriers in biomedical applications. Materials Horizons, 2022, 9, 908-933.	12.2	15
10	NMR Metabolomics Assessment of Osteogenic Differentiation of Adipose-Tissue-Derived Mesenchymal Stem Cells. Journal of Proteome Research, 2022, 21, 654-670.	3.7	7
11	Core–shell microcapsules: biofabrication and potential applications in tissue engineering and regenerative medicine. Biomaterials Science, 2022, 10, 2122-2153.	5.4	11
12	Emerging modulators for osteogenic differentiation: a combination of chemical and topographical cues for bone microenvironment engineering. Soft Matter, 2022, 18, 3107-3119.	2.7	6
13	Human Proteinâ€Based Porous Scaffolds as Platforms for Xenoâ€Free 3D Cell Culture. Advanced Healthcare Materials, 2022, 11, e2102383.	7.6	11
14	Universal Strategy for Designing Shape Memory Hydrogels. , 2022, 4, 701-706.		13
15	Fabrication of highly stretchable hydrogel based on crosslinking between alendronates functionalized poly-13-glutamate and calcium cations. Materials Today Bio, 2022, 14, 100225.	5.5	1
16	Endo- and Exometabolome Crosstalk in Mesenchymal Stem Cells Undergoing Osteogenic Differentiation. Cells, 2022, 11, 1257.	4.1	6
17	Macrophage-targeted shikonin-loaded nanogels for modulation of inflammasome activation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 42, 102548.	3.3	6
18	Programmable Living Units for Emulating Pancreatic Tumorâ€Stroma Interplay. Advanced Healthcare Materials, 2022, 11, e2102574.	7.6	9

#	Article	IF	CITATIONS
19	Bioengineered Hierarchical Bonelike Compartmentalized Microconstructs Using Nanogrooved Microdiscs. ACS Applied Materials & Samp; Interfaces, 2022, 14, 19116-19128.	8.0	8
20	G9a inhibition by CM-272: Developing a novel anti-tumoral strategy for castration-resistant prostate cancer using 2D and 3D in vitro models. Biomedicine and Pharmacotherapy, 2022, 150, 113031.	5.6	9
21	Advancing Tissue Decellularized Hydrogels for Engineering Human Organoids. Advanced Functional Materials, 2022, 32, .	14.9	21
22	Allâ€Aqueous Freeform Fabrication of Perfusable Selfâ€Standing Soft Compartments. Advanced Materials, 2022, 34, .	21.0	7
23	Natural-based biomaterials for drug delivery wound healing patches. , 2022, , 51-73.		1
24	Bioengineering the human bone marrow microenvironment in liquefied compartments: A promising approach for the recapitulation of osteovascular niches. Acta Biomaterialia, 2022, 149, 167-178.	8.3	5
25	Preparation of Vancomycin-Loaded Aerogels Implementing Inkjet Printing and Superhydrophobic Surfaces. Gels, 2022, 8, 417.	4.5	5
26	Advances in bioengineering pancreatic tumor-stroma physiomimetic Biomodels. Biomaterials, 2022, 287, 121653.	11.4	7
27	In vitro biological response of human osteoblasts in 3D chitosan sponges with controlled degree of deacetylation and molecular weight. Carbohydrate Polymers, 2021, 254, 117434.	10.2	34
28	Stimuliâ€Responsive Nanocomposite Hydrogels for Biomedical Applications. Advanced Functional Materials, 2021, 31, 2005941.	14.9	234
29	Development of novel chitosan / guar gum inks for extrusion-based 3D bioprinting: Process, printability and properties. Bioprinting, 2021, 21, e00122.	5.8	29
30	Strategies for re-vascularization and promotion of angiogenesis in trauma and disease. Biomaterials, 2021, 269, 120628.	11.4	32
31	Recent advances in the design of implantable insulin secreting heterocellular islet organoids. Biomaterials, 2021, 269, 120627.	11.4	24
32	Proteinaceous Hydrogels for Bioengineering Advanced 3D Tumor Models. Advanced Science, 2021, 8, 2003129.	11.2	41
33	Consistent Inclusion of Mesenchymal Stem Cells into In Vitro Tumor Models. Methods in Molecular Biology, 2021, 2269, 3-23.	0.9	0
34	Bioimaging of Mesenchymal Stem Cells Spatial Distribution and Interactions with 3D In Vitro Tumor Spheroids. Methods in Molecular Biology, 2021, 2269, 49-61.	0.9	0
35	Adjustable conduits for guided peripheral nerve regeneration prepared from bi-zonal unidirectional and multidirectional laminar scaffold of type I collagen. Materials Science and Engineering C, 2021, 121, 111838.	7.3	3
36	Stratified 3D Microtumors as Organotypic Testing Platforms for Screening Pancreatic Cancer Therapies. Small Methods, 2021, 5, e2001207.	8.6	15

#	Article	IF	CITATIONS
37	Fabrication of Quasiâ€2D Shapeâ€Tailored Microparticles using Wettability Contrastâ€Based Platforms. Advanced Materials, 2021, 33, e2007695.	21.0	11
38	Chemical modification strategies to prepare advanced protein-based biomaterials. Biomaterials and Biosystems, 2021, 1, 100010.	2.2	7
39	Oneâ€Step Allâ€Aqueous Interfacial Assembly of Robust Membranes for Longâ€Term Encapsulation and Culture of Adherent Stem/Stromal Cells. Advanced Healthcare Materials, 2021, 10, e2100266.	7.6	13
40	Screening of dual chemo-photothermal cellular nanotherapies in organotypic breast cancer 3D spheroids. Journal of Controlled Release, 2021, 331, 85-102.	9.9	19
41	Partial Coated Stem Cells with Bioinspired Silica as New Generation of Cellular Hybrid Materials. Advanced Functional Materials, 2021, 31, 2009619.	14.9	14
42	Oxygen releasing materials: Towards addressing the hypoxia-related issues in tissue engineering. Materials Science and Engineering C, 2021, 122, 111896.	7.3	46
43	Minimalist Tissue Engineering Approaches Using Low Materialâ€Based Bioengineered Systems. Advanced Healthcare Materials, 2021, 10, e2002110.	7.6	16
44	Protein-olive oil-in-water nanoemulsions as encapsulation materials for curcumin acting as anticancer agent towards MDA-MB-231 cells. Scientific Reports, 2021, 11, 9099.	3.3	21
45	Synthesis and characterization of scaffolds produced under mild conditions based on oxidized cashew gums and carboxyethyl chitosan. International Journal of Biological Macromolecules, 2021, 176, 26-36.	7.5	12
46	GelMA/bioactive silica nanocomposite bioinks for stem cell osteogenic differentiation. Biofabrication, 2021, 13, 035012.	7.1	48
47	The Therapeutic Potential of Hematopoietic Stem Cells in Bone Regeneration. Tissue Engineering - Part B: Reviews, 2021, , .	4.8	4
48	Recent Developments in Chitosan-Based Micro/Nanofibers for Sustainable Food Packaging, Smart Textiles, Cosmeceuticals, and Biomedical Applications. Molecules, 2021, 26, 2683.	3.8	36
49	Double network laminarin-boronic/alginate dynamic bioink for 3D bioprinting cell-laden constructs. Biofabrication, 2021, 13, 035045.	7.1	33
50	Metabolomic Applications in Stem Cell Research: a Review. Stem Cell Reviews and Reports, 2021, 17, 2003-2024.	3.8	9
51	Engineering Strategies for Allogeneic Solid Tissue Acceptance. Trends in Molecular Medicine, 2021, 27, 572-587.	6.7	2
52	Bioinstructive Layer-by-Layer-Coated Customizable 3D Printed Perfusable Microchannels Embedded in Photocrosslinkable Hydrogels for Vascular Tissue Engineering. Biomolecules, 2021, 11, 863.	4.0	25
53	Recent Progress on Polysaccharide-Based Hydrogels for Controlled Delivery of Therapeutic Biomolecules. ACS Biomaterials Science and Engineering, 2021, 7, 4102-4127.	5.2	64
54	Natural Origin Biomaterials for 4D Bioprinting Tissueâ€Like Constructs. Advanced Materials Technologies, 2021, 6, 2100168.	5.8	27

#	Article	IF	Citations
55	Design of Proteinâ€Based Liquefied Cellâ€Laden Capsules with Bioinspired Adhesion for Tissue Engineering. Advanced Healthcare Materials, 2021, 10, e2100782.	7.6	6
56	Bioengineering a humanized 3D tri-culture osteosarcoma model to assess tumor invasiveness and therapy response. Acta Biomaterialia, 2021, 134, 204-214.	8.3	22
57	Cellâ€Based Therapy: Partial Coated Stem Cells with Bioinspired Silica as New Generation of Cellular Hybrid Materials (Adv. Funct. Mater. 29/2021). Advanced Functional Materials, 2021, 31, 2170211.	14.9	1
58	Coordination Compounds As Multi-Delivery Systems for Osteoporosis. ACS Applied Materials & Samp; Interfaces, 2021, 13, 35469-35483.	8.0	10
59	Customizable and Regioselective Oneâ€Pot Nâ^'H Functionalization of DNA Nucleobases to Create a Library of Nucleobase Derivatives for Biomedical Applications. European Journal of Organic Chemistry, 2021, 2021, 4423-4433.	2.4	3
60	Organotypic 3D decellularized matrix tumor spheroids for high-throughput drug screening. Biomaterials, 2021, 275, 120983.	11.4	25
61	Physicochemical Interactions in Nanofunctionalized Alginate/GelMA IPN Hydrogels. Nanomaterials, 2021, 11, 2256.	4.1	15
62	3D-Bioprinted Constructs that Breathe. Matter, 2021, 4, 15-17.	10.0	4
63	Platelet lysates-based hydrogels incorporating bioactive mesoporous silica nanoparticles for stem cell osteogenic differentiation. Materials Today Bio, 2021, 9, 100096.	5 . 5	19
64	An Immunomodulatory Miniaturized 3D Screening Platform Using Liquefied Capsules. Advanced Healthcare Materials, 2021, 10, 2001993.	7.6	10
65	Supramolecular dendrimer-containing layer-by-layer nanoassemblies for bioapplications: current status and future prospects. Polymer Chemistry, 2021, 12, 5902-5930.	3.9	9
66	New insights into the biomimetic design and biomedical applications of bioengineered bone microenvironments. APL Bioengineering, 2021, 5, 041507.	6.2	12
67	Capacitive interdigitated system of high osteoinductive/conductive performance for personalized acting-sensing implants. Npj Regenerative Medicine, 2021, 6, 80.	5.2	15
68	Comparison of the Physicochemical Properties of Chitin Extracted from Cicada orni Sloughs Harvested in Three Different Years and Characterization of the Resulting Chitosan. Applied Sciences (Switzerland), 2021, 11, 11278.	2.5	7
69	Engineering mammalian living materials towards clinically relevant therapeutics. EBioMedicine, 2021, 74, 103717.	6.1	8
70	Recent progresses in the adsorption of organic, inorganic, and gas compounds by MCM-41-based mesoporous materials. Microporous and Mesoporous Materials, 2020, 291, 109698.	4.4	132
71	Bioactive silica nanoparticles with calcium and phosphate for single dose osteogenic differentiation. Materials Science and Engineering C, 2020, 107, 110348.	7.3	19
72	Dynamic microfactories co-encapsulating osteoblastic and adipose-derived stromal cells for the biofabrication of bone units. Biofabrication, 2020, 12, 015005.	7.1	33

#	Article	IF	CITATIONS
73	Designing multigradient biomaterials for skin regeneration. Materials Today Advances, 2020, 5, 100051.	5.2	49
74	Biomedical applications of laminarin. Carbohydrate Polymers, 2020, 232, 115774.	10.2	103
75	Advanced Bottomâ€Up Engineering of Living Architectures. Advanced Materials, 2020, 32, e1903975.	21.0	127
76	Multi-layer pre-vascularized magnetic cell sheets for bone regeneration. Biomaterials, 2020, 231, 119664.	11.4	62
77	Oneâ€Step Rapid Fabrication of Cellâ€Only Living Fibers. Advanced Materials, 2020, 32, 1906305.	21.0	20
78	Curcumin Loaded Nanoliposomes Localization by Nanoscale Characterization. International Journal of Molecular Sciences, 2020, 21, 7276.	4.1	17
79	Geometrically Controlled Liquefied Capsules for Modular Tissue Engineering Strategies. Advanced Biology, 2020, 4, e2000127.	3.0	12
80	Complex-shaped magnetic 3D cell-based structures for tissue engineering. Acta Biomaterialia, 2020, 118, 18-31.	8.3	8
81	Bioinspired biomaterials to develop cell-rich spherical microtissues for 3D in vitro tumor modeling. , 2020, , 43-65.		3
82	Complex Morphogenesis by a Model Intrinsically Disordered Protein. Small, 2020, 16, e2005191.	10.0	10
83	Differential Modulation of the Phospholipidome of Proinflammatory Human Macrophages by the Flavonoids Quercetin, Naringin and Naringenin. Molecules, 2020, 25, 3460.	3.8	7
84	In Situ Cross-Linking of Artificial Basement Membranes in 3D Tissues and Their Size-Dependent Molecular Permeability. Biomacromolecules, 2020, 21, 4923-4932.	5.4	4
85	Modeling of Cell-Mediated Self-Assembled Colloidal Scaffolds. ACS Applied Materials & Samp; Interfaces, 2020, 12, 48321-48328.	8.0	10
86	Dynamic Electrophoretic Assembly of Metal–Phenolic Films: Accelerated Formation and Cytocompatible Detachment. Chemistry of Materials, 2020, 32, 7746-7753.	6.7	13
87	Efficient Singleâ€Dose Induction of Osteogenic Differentiation of Stem Cells Using Multiâ€Bioactive Hybrid Nanocarriers. Advanced Biology, 2020, 4, e2000123.	3.0	7
88	Leachableâ€Free Fabrication of Hydrogel Foams Enabling Homogeneous Viability of Encapsulated Cells in Largeâ€Volume Constructs. Advanced Healthcare Materials, 2020, 9, e2000543.	7.6	7
89	Gelatin Methacryloyl (GelMA) Nanocomposite Hydrogels Embedding Bioactive Naringin Liposomes. Polymers, 2020, 12, 2944.	4.5	23
90	Nanomaterials for Biomedical Applications. Biotechnology Journal, 2020, 15, e2000574.	3.5	6

#	Article	IF	Citations
91	Frontispiece: Bone Tissue Disorders: Healing Through Coordination Chemistry. Chemistry - A European Journal, 2020, 26, .	3.3	O
92	Modular Functionalization of Laminarin to Create Value-Added Naturally Derived Macromolecules. Journal of the American Chemical Society, 2020, 142, 19689-19697.	13.7	26
93	Bone Tissue Disorders: Healing Through Coordination Chemistry. Chemistry - A European Journal, 2020, 26, 15416-15437.	3.3	5
94	Injectable Biomaterials for Dental Tissue Regeneration. International Journal of Molecular Sciences, 2020, 21, 3442.	4.1	47
95	Repurposing Old Drugs into New Epigenetic Inhibitors: Promising Candidates for Cancer Treatment?. Pharmaceutics, 2020, 12, 410.	4.5	20
96	Fabrication of Artificial Nanobasement Membranes for Cell Compartmentalization in 3D Tissues. Small, 2020, 16, e1907434.	10.0	16
97	Perinatal tissues and cells in tissue engineering and regenerative medicine. Acta Biomaterialia, 2020, 110, 1-14.	8.3	39
98	Decellularized Extracellular Matrix for Bioengineering Physiomimetic 3D in Vitro Tumor Models. Trends in Biotechnology, 2020, 38, 1397-1414.	9.3	84
99	Instantaneous fibrillation of egg white proteome with ionic liquid and macromolecular crowding. Communications Materials, 2020, 1 , .	6.9	7
100	Self-Assembled Bioactive Colloidal Gels as Injectable Multiparticle Shedding Platforms. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31282-31291.	8.0	15
101	Enzymatically degradable, starch-based layer-by-layer films: application to cytocompatible single-cell nanoencapsulation. Soft Matter, 2020, 16, 6063-6071.	2.7	15
102	Extraction and Physicochemical Characterization of Chitin from Cicada orni Sloughs of the South-Eastern French Mediterranean Basin. Molecules, 2020, 25, 2543.	3.8	18
103	Thin Silicaâ€Based Microsheets with Controlled Geometry. European Journal of Inorganic Chemistry, 2020, 2020, 1574-1578.	2.0	1
104	Role of active nanoliposomes in the surface and bulk mechanical properties of hybrid hydrogels. Materials Today Bio, 2020, 6, 100046.	5.5	19
105	Cell Behavior within Nanogrooved Sandwich Culture Systems. Small, 2020, 16, e2001975.	10.0	15
106	Hydrogel 3D <i>in vitro</i> tumor models for screening cell aggregation mediated drug response. Biomaterials Science, 2020, 8, 1855-1864.	5.4	70
107	Cell Encapsulation Systems Toward Modular Tissue Regeneration: From Immunoisolation to Multifunctional Devices. Advanced Functional Materials, 2020, 30, 1908061.	14.9	39
108	Coffee Melanoidinâ€Based Multipurpose Film Formation: Application to Singleâ€Cell Nanoencapsulation. ChemNanoMat, 2020, 6, 379-385.	2.8	16

#	Article	IF	Citations
109	Responsive laminarin-boronic acid self-healing hydrogels for biomedical applications. Polymer Journal, 2020, 52, 997-1006.	2.7	31
110	Novel Biodegradable Laminarin Microparticles for Biomedical Applications. Bulletin of the Chemical Society of Japan, 2020, 93, 713-719.	3.2	26
111	Freeform 3D printing using a continuous viscoelastic supporting matrix. Biofabrication, 2020, 12, 035017.	7.1	49
112	Mechanochemical Patternable ECMâ€Mimetic Hydrogels for Programmed Cell Orientation. Advanced Healthcare Materials, 2020, 9, e1901860.	7.6	29
113	Human Platelet Lysatesâ€Based Hydrogels: A Novel Personalized 3D Platform for Spheroid Invasion Assessment. Advanced Science, 2020, 7, 1902398.	11.2	31
114	Biomorphs: Complex Morphogenesis by a Model Intrinsically Disordered Protein (Small $51/2020$). Small, 2020, 16 , .	10.0	0
115	Nanogrooved microdiscs for bottom-up modulation of osteogenic differentiation. Nanoscale, 2019, 11, 16214-16221.	5.6	23
116	Supramolecular Presentation of Hyaluronan onto Model Surfaces for Studying the Behavior of Cancer Stem Cells. Advanced Biology, 2019, 3, 1900017.	3.0	4
117	Screening of perfused combinatorial 3D microenvironments for cell culture. Acta Biomaterialia, 2019, 96, 222-236.	8.3	8
118	Bioactıve Glassâ€Polymer Nanocomposites for Bone Tıssue Regeneration Applicatıons: A Revıew. Advanced Engineering Materials, 2019, 21, 1900287.	3.5	33
119	Flavonoid-mediated immunomodulation of human macrophages involves key metabolites and metabolic pathways. Scientific Reports, 2019, 9, 14906.	3.3	36
120	Liquefied Microcapsules as Dualâ€Microcarriers for 3D+3D Bottomâ€Up Tissue Engineering. Advanced Healthcare Materials, 2019, 8, e1901221.	7.6	30
121	Editorial. Materials Today Bio, 2019, 1, 100012.	5.5	0
122	Oxidized Cashew Gum Scaffolds for Tissue Engineering. Macromolecular Materials and Engineering, 2019, 304, 1800574.	3.6	23
123	Temperature-responsive nanomagnetic logic gates for cellular hyperthermia. Materials Horizons, 2019, 6, 524-530.	12.2	9
124	Cell encapsulation in liquified compartments: Protocol optimization and challenges. PLoS ONE, 2019, 14, e0218045.	2.5	22
125	Surface Micro†and Nanoengineering: Applications of Layerâ€byâ€Layer Technology as a Versatile Tool to Control Cellular Behavior. Small, 2019, 15, e1901228.	10.0	42
126	In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening. Acta Biomaterialia, 2019, 94, 392-409.	8.3	72

#	Article	IF	Citations
127	Status and future scope of plant-based green hydrogels in biomedical engineering. Applied Materials Today, 2019, 16, 213-246.	4.3	154
128	Mechanical Properties of Ca-Saturated Hydrogels with Functionalized Alginate. Gels, 2019, 5, 23.	4.5	23
129	Antibacterial free-standing polysaccharide composite films inspired by the sea. International Journal of Biological Macromolecules, 2019, 133, 933-944.	7.5	19
130	Microparticles in Contact with Cells: From Carriers to Multifunctional Tissue Modulators. Trends in Biotechnology, 2019, 37, 1011-1028.	9.3	72
131	Physical immobilization of particles inspired by pollination. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5405-5410.	7.1	6
132	Smart Instructive Polymer Substrates for Tissue Engineering. , 2019, , 411-438.		7
133	Recent advances on open fluidic systems for biomedical applications: A review. Materials Science and Engineering C, 2019, 97, 851-863.	7.3	56
134	3D collagen microfibers stimulate the functionality of preadipocytes and maintain the phenotype of mature adipocytes for long term cultures. Acta Biomaterialia, 2019, 84, 194-207.	8.3	56
135	Threeâ€Dimensional Osteosarcoma Models for Advancing Drug Discovery and Development. Advanced Therapeutics, 2019, 2, 1800108.	3.2	16
136	Sequentially Moldable and Bondable Four-Dimensional Hydrogels Compatible with Cell Encapsulation. Biomacromolecules, 2018, 19, 2742-2749.	5.4	17
137	Cell-Based Microarrays Using Superhydrophobic Platforms Patterned with Wettable Regions. Methods in Molecular Biology, 2018, 1771, 11-26.	0.9	2
138	Strategic Advances in Formation of Cellâ€inâ€Shell Structures: From Syntheses to Applications. Advanced Materials, 2018, 30, e1706063.	21.0	102
139	Adhesive free-standing multilayer films containing sulfated levan for biomedical applications. Acta Biomaterialia, 2018, 69, 183-195.	8.3	55
140	Stimuli-responsive nanocarriers for delivery of bone therapeutics – Barriers and progresses. Journal of Controlled Release, 2018, 273, 51-67.	9.9	84
141	The effects of platelet lysate patches on the activity of tendon-derived cells. Acta Biomaterialia, 2018, 68, 29-40.	8.3	22
142	Nanostructured Biopolymer/Fewâ€Layer Graphene Freestanding Films with Enhanced Mechanical and Electrical Properties. Macromolecular Materials and Engineering, 2018, 303, 1700316.	3.6	6
143	Novel Antibacterial and Bioactive Silicate Glass Nanoparticles for Biomedical Applications. Advanced Engineering Materials, 2018, 20, 1700855.	3.5	7
144	Biomaterials for drug delivery patches. European Journal of Pharmaceutical Sciences, 2018, 118, 49-66.	4.0	98

#	Article	IF	Citations
145	Patterned superhydrophobic surfaces to process and characterize biomaterials and 3D cell culture. Materials Horizons, 2018, 5, 379-393.	12.2	51
146	Coculture of Spheroids/2D Cell Layers Using a Miniaturized Patterned Platform as a Versatile Method to Produce Scaffoldâ€Free Tissue Engineering Building Blocks. Advanced Biology, 2018, 2, 1700069.	3.0	15
147	Gellan gumâ€hydroxyapatite composite spongyâ€like hydrogels for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2018, 106, 479-490.	4.0	50
148	Extracellular vesicles, exosomes and shedding vesicles in regenerative medicine – a new paradigm for tissue repair. Biomaterials Science, 2018, 6, 60-78.	5 . 4	207
149	Iron Gall Ink Revisited: In Situ Oxidation of Fe(II)–Tannin Complex for Fluidicâ€Interface Engineering. Advanced Materials, 2018, 30, e1805091.	21.0	65
150	Photopolymerizable Platelet Lysate Hydrogels for Customizable 3D Cell Culture Platforms. Advanced Healthcare Materials, 2018, 7, e1800849.	7.6	38
151	Bioactive Hydrogel Marbles. Scientific Reports, 2018, 8, 15215.	3.3	12
152	Bioinstructive microparticles for self-assembly of mesenchymal stem Cell-3D tumor spheroids. Biomaterials, 2018, 185, 155-173.	11.4	58
153	Bone physiology as inspiration for tissue regenerative therapies. Biomaterials, 2018, 185, 240-275.	11.4	259
154	Design of spherically structured 3D in vitro tumor models -Advances and prospects. Acta Biomaterialia, 2018, 75, 11-34.	8.3	155
155	Bioinspired multilayer membranes as potential adhesive patches for skin wound healing. Biomaterials Science, 2018, 6, 1962-1975.	5 . 4	61
156	Preparation of Well-Dispersed Chitosan/Alginate Hollow Multilayered Microcapsules for Enhanced Cellular Internalization. Molecules, 2018, 23, 625.	3.8	31
157	Injectable gellan-gum/hydroxyapatite-based bilayered hydrogel composites for osteochondral tissue regeneration. Applied Materials Today, 2018, 12, 309-321.	4.3	38
158	Bioinspired bone therapies using naringin: applications and advances. Drug Discovery Today, 2018, 23, 1293-1304.	6.4	49
159	Blood Plasma Derivatives for Tissue Engineering and Regenerative Medicine Therapies. Tissue Engineering - Part B: Reviews, 2018, 24, 454-462.	4.8	48
160	Design Principles and Multifunctionality in Cell Encapsulation Systems for Tissue Regeneration. Advanced Healthcare Materials, 2018, 7, e1701444.	7.6	17
161	Bioinstructive Naringinâ€Loaded Micelles for Guiding Stem Cell Osteodifferentiation. Advanced Healthcare Materials, 2018, 7, e1800890.	7.6	19
162	Multifunctional laminarin microparticles for cell adhesion and expansion. Carbohydrate Polymers, 2018, 202, 91-98.	10.2	25

#	Article	IF	Citations
163	Tuneable spheroidal hydrogel particles for cell and drug encapsulation. Soft Matter, 2018, 14, 5622-5627.	2.7	21
164	Strontium-Doped Bioactive Glass Nanoparticles in Osteogenic Commitment. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 23311-23320.	8.0	55
165	Solvent-Free Strategy Yields Size and Shape-Uniform Capsules. Journal of the American Chemical Society, 2017, 139, 1057-1060.	13.7	20
166	Tuning cell adhesive properties via layer-by-layer assembly of chitosan and alginate. Acta Biomaterialia, 2017, 51, 279-293.	8.3	62
167	Flexible method for fabricating protein patterns on superhydrophobic platforms controlled by magnetic field. Biomaterials Science, 2017, 5, 408-411.	5.4	12
168	The influence of surface modified poly(<scp>l</scp> -lactic acid) films on the differentiation of human monocytes into macrophages. Biomaterials Science, 2017, 5, 551-560.	5.4	24
169	Nacre-inspired nanocomposites produced using layer-by-layer assembly: Design strategies and biomedical applications. Materials Science and Engineering C, 2017, 76, 1263-1273.	7.3	32
170	Eco-friendly sol-gel derived sodium-based ormolytes for electrochromic devices. Electrochimica Acta, 2017, 232, 484-494.	5.2	11
171	In vivo osteogenic differentiation of stem cells inside compartmentalized capsules loaded with co-cultured endothelial cells. Acta Biomaterialia, 2017, 53, 483-494.	8.3	29
172	Development of a bioactive glass-polymer composite for wound healing applications. Materials Science and Engineering C, 2017, 76, 224-232.	7.3	85
173	Synthesis, mechanical and thermal rheological properties of new gellan gum derivatives. International Journal of Biological Macromolecules, 2017, 98, 646-653.	7.5	40
174	Nanoengineering Hybrid Supramolecular Multilayered Biomaterials Using Polysaccharides and Selfâ€Assembling Peptide Amphiphiles. Advanced Functional Materials, 2017, 27, 1605122.	14.9	53
175	Extraction and characterization of collagen from Antarctic and Sub-Antarctic squid and its potential application in hybrid scaffolds for tissue engineering. Materials Science and Engineering C, 2017, 78, 787-795.	7.3	52
176	Multilayered membranes with tuned well arrays to be used as regenerative patches. Acta Biomaterialia, 2017, 57, 313-323.	8.3	17
177	Biomimetic click assembled multilayer coatings exhibiting responsive properties. Materials Today Chemistry, 2017, 4, 150-163.	3.5	15
178	Injectable Hyaluronic Acid Hydrogels Enriched with Platelet Lysate as a Cryostable Off-the-Shelf System for Cell-Based Therapies. Regenerative Engineering and Translational Medicine, 2017, 3, 53-69.	2.9	15
179	Multiscale characterization of the hierarchical structure of Dynastes hercules elytra. Micron, 2017, 101, 16-24.	2.2	10
180	Biomedical applications of natural-based polymers combined with bioactive glass nanoparticles. Journal of Materials Chemistry B, 2017, 5, 4555-4568.	5.8	60

#	Article	IF	CITATIONS
181	Biomaterials: Nanoengineering Hybrid Supramolecular Multilayered Biomaterials Using Polysaccharides and Selfâ€Assembling Peptide Amphiphiles (Adv. Funct. Mater. 17/2017). Advanced Functional Materials, 2017, 27, .	14.9	2
182	Investigating the effect of fibulinâ€1 on the differentiation of human nasal inferior turbinateâ€derived mesenchymal stem cells into osteoblasts. Journal of Biomedical Materials Research - Part A, 2017, 105, 2291-2298.	4.0	11
183	Bioinspired Ultratough Hydrogel with Fast Recovery, Selfâ€Healing, Injectability and Cytocompatibility. Advanced Materials, 2017, 29, 1700759.	21.0	148
184	Screening of Nanocomposite Scaffolds Arrays Using Superhydrophobicâ€Wettable Micropatterns. Advanced Functional Materials, 2017, 27, 1701219.	14.9	16
185	Biomedical films of graphene nanoribbons and nanoflakes with natural polymers. RSC Advances, 2017, 7, 27578-27594.	3.6	15
186	Hydroalcoholic extracts from the bark of Quercus suber L. (Cork): optimization of extraction conditions, chemical composition and antioxidant potential. Wood Science and Technology, 2017, 51, 855-872.	3.2	25
187	Control of Cell Alignment and Morphology by Redesigning ECMâ€Mimetic Nanotopography on Multilayer Membranes. Advanced Healthcare Materials, 2017, 6, 1601462.	7.6	32
188	Structural monitoring and modeling of the mechanical deformation of three-dimensional printed poly($<$ i> $>$ ε $<$ -caprolactone) scaffolds. Biofabrication, 2017, 9, 025015.	7.1	30
189	Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chemistry, 2017, 19, 1208-1220.	9.0	190
190	Open Fluidics: A Cell Culture Flow System Developed Over Wettability Contrastâ€Based Chips. Advanced Healthcare Materials, 2017, 6, 1700638.	7.6	10
191	Mesenchymal Stem Cells Relevance in Multicellular Bioengineered 3D In Vitro Tumor Models. Biotechnology Journal, 2017, 12, 1700079.	3.5	10
192	Engineering Membranes for Bone Regeneration. Tissue Engineering - Part A, 2017, 23, 1502-1533.	3.1	15
193	The Potential of Liquid Marbles for Biomedical Applications: A Critical Review. Advanced Healthcare Materials, 2017, 6, 1700192.	7.6	78
194	Biomimetic Interfaces in Biomedical Devices. Advanced Healthcare Materials, 2017, 6, 1700761.	7.6	8
195	Cell Alignment: Control of Cell Alignment and Morphology by Redesigning ECMâ€Mimetic Nanotopography on Multilayer Membranes (Adv. Healthcare Mater. 15/2017). Advanced Healthcare Materials, 2017, 6, .	7.6	0
196	Nanostructured interfacial self-assembled peptide–polymer membranes for enhanced mineralization and cell adhesion. Nanoscale, 2017, 9, 13670-13682.	5.6	28
197	Influence of freezing temperature and deacetylation degree on the performance of freeze-dried chitosan scaffolds towards cartilage tissue engineering. European Polymer Journal, 2017, 95, 232-240.	5.4	46
198	Layered PEGDA hydrogel for islet of Langerhans encapsulation and improvement of vascularization. Journal of Materials Science: Materials in Medicine, 2017, 28, 195.	3.6	28

#	Article	IF	CITATIONS
199	The potential of cashew gum functionalization as building blocks for layer-by-layer films. Carbohydrate Polymers, 2017, 174, 849-857.	10.2	19
200	Microengineered Multicomponent Hydrogel Fibers: Combining Polyelectrolyte Complexation and Microfluidics. ACS Biomaterials Science and Engineering, 2017, 3, 1322-1331.	5.2	45
201	Investigation of cell adhesion in chitosan membranes for peripheral nerve regeneration. Materials Science and Engineering C, 2017, 71, 1122-1134.	7.3	42
202	AFOB Special Issue on Stem Cells in Tissue Engineering and Regenerative Medicine. Biotechnology Journal, 2017, 12, 1700683.	3.5	0
203	Multilayered Films Produced by Layer-by-Layer Assembly of Chitosan and Alginate as a Potential Platform for the Formation of Human Adipose-Derived Stem Cell aggregates. Polymers, 2017, 9, 440.	4.5	19
204	Advanced Control over Cell-Material Interfaces. Polymers, 2017, 9, 704.	4.5	2
205	Cell-Adhesive Bioinspired and Catechol-Based Multilayer Freestanding Membranes for Bone Tissue Engineering. Biomimetics, 2017, 2, 19.	3.3	31
206	From Honeycomb- to Microsphere-Patterned Surfaces of Poly(Lactic Acid) and a Starch-Poly(Lactic) Tj ETQq0 0 C 2017, 15, 31-42.	rgBT /Ove 1.6	erlock 10 Tf 5 8
207	Biomimetic Materials: Smart Polymer Surfaces for Tissue Engineering. , 2017, , 214-228.		0
208	Marine Origin Polysaccharides in Drug Delivery Systems. Marine Drugs, 2016, 14, 34.	4.6	205
209	Microfluidic production of hyaluronic acid derivative microfibers to control drug release. Materials Letters, 2016, 182, 309-313.	2.6	19
210	Moldable Superhydrophobic Surfaces. Advanced Materials Interfaces, 2016, 3, 1600074.	3.7	6
211	Highâ€Throughput Topographic, Mechanical, and Biological Screening of Multilayer Films Containing Musselâ€Inspired Biopolymers. Advanced Functional Materials, 2016, 26, 2745-2755.	14.9	49
212	Cell Surface Engineering to Control Cellular Interactions. ChemNanoMat, 2016, 2, 376-384.	2.8	65
213	Coating Strategies Using Layerâ€byâ€layer Deposition for Cell Encapsulation. Chemistry - an Asian Journal, 2016, 11, 1753-1764.	3.3	90
214	Design Advances in Particulate Systems for Biomedical Applications. Advanced Healthcare Materials, 2016, 5, 1687-1723.	7.6	19
215	Fabrication of Hydrogel Particles of Defined Shapes Using Superhydrophobicâ€Hydrophilic Micropatterns. Advanced Materials, 2016, 28, 7613-7619.	21.0	83
216	High performance free-standing films by layer-by-layer assembly of graphene flakes and ribbons with natural polymers. Journal of Materials Chemistry B, 2016, 4, 7718-7730.	5.8	13

#	Article	IF	Citations
217	Autonomous osteogenic differentiation of hASCs encapsulated in methacrylated gellan-gum hydrogels. Acta Biomaterialia, 2016, 41, 119-132.	8.3	47
218	Engineering Enriched Microenvironments with Gradients of Platelet Lysate in Hydrogel Fibers. Biomacromolecules, 2016, 17, 1985-1997.	5.4	18
219	Chitosan/Chondroitin Sulfate Membranes Produced by Polyelectrolyte Complexation for Cartilage Engineering. Biomacromolecules, 2016, 17, 2178-2188.	5 . 4	62
220	Hydrophobic Hydrogels: Toward Construction of Floating (Bio)microdevices. Chemistry of Materials, 2016, 28, 3641-3648.	6.7	49
221	Effect of Polyelectrolyte Multilayers Assembled on Ordered Nanostructures on Adhesion of Human Fibroblasts. ACS Applied Materials & Interfaces, 2016, 8, 25142-25151.	8.0	12
222	Biomimetic polysaccharide/bioactive glass nanoparticles multilayer membranes for guided tissue regeneration. RSC Advances, 2016, 6, 75988-75999.	3.6	28
223	Membranes combining chitosan and natural-origin nanoliposomes for tissue engineering. RSC Advances, 2016, 6, 83626-83637.	3.6	7
224	<i>In vitro</i> bioactivity studies of ceramic structures isolated from marine sponges. Biomedical Materials (Bristol), 2016, 11, 045004.	3.3	16
225	3D Cell Culture: Fabrication of Hydrogel Particles of Defined Shapes Using Superhydrophobic-Hydrophilic Micropatterns (Adv. Mater. 35/2016). Advanced Materials, 2016, 28, 7552-7552.	21.0	1
226	Antibacterial bioadhesive layer-by-layer coatings for orthopedic applications. Journal of Materials Chemistry B, 2016, 4, 5385-5393.	5.8	46
227	Biomimetic Extracellular Environment Based on Natural Origin Polyelectrolyte Multilayers. Small, 2016, 12, 4308-4342.	10.0	100
228	Bioplotting of a bioactive alginate dialdehyde-gelatin composite hydrogel containing bioactive glass nanoparticles. Biofabrication, 2016, 8, 035005.	7.1	86
229	Semipermeable Capsules Wrapping a Multifunctional and Self-regulated Co-culture Microenvironment for Osteogenic Differentiation. Scientific Reports, 2016, 6, 21883.	3.3	62
230	Multilayered Hollow Tubes as Blood Vessel Substitutes. ACS Biomaterials Science and Engineering, 2016, 2, 2304-2314.	5.2	19
231	Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications. Science and Technology of Advanced Materials, 2016, 17, 626-643.	6.1	66
232	A Closed Chondromimetic Environment within Magneticâ€Responsive Liquified Capsules Encapsulating Stem Cells and Collagen II/TGFâ€Î²3 Microparticles. Advanced Healthcare Materials, 2016, 5, 1346-1355.	7.6	28
233	Elastic chitosan/chondroitin sulfate multilayer membranes. Biomedical Materials (Bristol), 2016, 11, 035008.	3.3	19
234	BSA/HSA ratio modulates the properties of Ca2+-induced cold gelation scaffolds. International Journal of Biological Macromolecules, 2016, 89, 535-544.	7. 5	9

#	Article	IF	Citations
235	Fucoidan Hydrogels Photo-Cross-Linked with Visible Radiation As Matrices for Cell Culture. ACS Biomaterials Science and Engineering, 2016, 2, 1151-1161.	5.2	41
236	Light responsive multilayer surfaces with controlled spatial extinction capability. Journal of Materials Chemistry B, 2016, 4, 1398-1404.	5.8	9
237	Adhesive Bioactive Coatings Inspired by Sea Life. Langmuir, 2016, 32, 560-568.	3.5	34
238	Photo-Cross-Linked Laminarin-Based Hydrogels for Biomedical Applications. Biomacromolecules, 2016, 17, 1602-1609.	5.4	63
239	Enzymatic Degradation of Polysaccharide-Based Layer-by-Layer Structures. Biomacromolecules, 2016, 17, 1347-1357.	5.4	60
240	Platelet lysate-based pro-angiogenic nanocoatings. Acta Biomaterialia, 2016, 32, 129-137.	8.3	27
241	Fabrication and characterization of Eri silk fibers-based sponges for biomedical application. Acta Biomaterialia, 2016, 32, 178-189.	8.3	52
242	Polysaccharide-based freestanding multilayered membranes exhibiting reversible switchable properties. Soft Matter, 2016, 12, 1200-1209.	2.7	18
243	Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 98, 57-66.	4.3	164
244	Synthesis and characterization of bioactive biodegradable chitosan composite spheres with shape memory capability. Journal of Non-Crystalline Solids, 2016, 432, 158-166.	3.1	31
245	Introducing biomimetic approaches to materials development and product design for engineering students. Bioinspired, Biomimetic and Nanobiomaterials, 2015, 4, 207-212.	0.9	5
246	Novel antibacterial bioactive glass nanocomposite functionalized with tetracycline hydrochloride. Biomedical Glasses, 2015, 1, .	2.4	8
247	Porous Polylactic Acid-Silica Hybrids: Preparation, Characterization, and Study of Mesenchymal Stem Cell Osteogenic Differentiation. Macromolecular Bioscience, 2015, 15, 262-274.	4.1	7
248	Towards the design of 3D multiscale instructive tissue engineering constructs: Current approaches and trends. Biotechnology Advances, 2015, 33, 842-855.	11.7	49
249	Cork–polymer biocomposites: Mechanical, structural and thermal properties. Materials and Design, 2015, 82, 282-289.	7.0	50
250	Micro-/nano-structured superhydrophobic surfaces in the biomedical field: part I: basic concepts and biomimetic approaches. Nanomedicine, 2015, 10, 103-119.	3.3	63
251	Layer-by-layer assembled cell instructive nanocoatings containing platelet lysate. Biomaterials, 2015, 48, 56-65.	11.4	48
252	Myoconductive and osteoinductive free-standing polysaccharide membranes. Acta Biomaterialia, 2015, 15, 139-149.	8.3	57

#	Article	IF	Citations
253	Chondrogenic potential of injectable <i>κ</i> -carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 550-563.	2.7	97
254	A novel hanging spherical drop system for the generation of cellular spheroids and high throughput combinatorial drug screening. Biomaterials Science, 2015, 3, 581-585.	5.4	70
255	Micro/nano-structured superhydrophobic surfaces in the biomedical field: part II: applications overview. Nanomedicine, 2015, 10, 271-297.	3.3	81
256	Chitosan/bioactive glass nanoparticles scaffolds with shape memory properties. Carbohydrate Polymers, 2015, 123, 39-45.	10.2	72
257	Magnetically Labeled Cells with Surfaceâ€Modified Fe ₃ O ₄ Spherical and Rodâ€Shaped Magnetic Nanoparticles for Tissue Engineering Applications. Advanced Healthcare Materials, 2015, 4, 883-891.	7.6	35
258	Assembly of cell-laden hydrogel fiber into non-liquefied and liquefied 3D spiral constructs by perfusion-based layer-by-layer technique. Biofabrication, 2015, 7, 011001.	7.1	27
259	Unraveling the Effect of the Hydration Level on the Molecular Mobility of Nanolayered Polymeric Systems. Macromolecular Rapid Communications, 2015, 36, 405-412.	3.9	18
260	Electrochromic devices incorporating biohybrid electrolytes doped with a lithium salt, an ionic liquid or a mixture of both. Electrochimica Acta, 2015, 161, 226-235.	5.2	29
261	Superhydrophobic Surfaces as a Tool for the Fabrication of Hierarchical Spherical Polymeric Carriers. Small, 2015, 11, 3648-3652.	10.0	24
262	Cork processing with supercritical carbon dioxide: Impregnation and sorption studies. Journal of Supercritical Fluids, 2015, 104, 251-258.	3.2	10
263	Extremely strong and tough hydrogels as prospective candidates for tissue repair – A review. European Polymer Journal, 2015, 72, 344-364.	5.4	129
264	Cell engineering by the internalization of bioinstructive micelles for enhanced bone regeneration. Nanomedicine, 2015, 10, 1707-1721.	3.3	17
265	Development of Injectable Hyaluronic Acid/Cellulose Nanocrystals Bionanocomposite Hydrogels for Tissue Engineering Applications. Bioconjugate Chemistry, 2015, 26, 1571-1581.	3.6	172
266	Drug nano-reservoirs synthesized using layer-by-layer technologies. Biotechnology Advances, 2015, 33, 1310-1326.	11.7	67
267	Incorporation of antimicrobial peptides on functionalized cotton gauzes for medical applications. Carbohydrate Polymers, 2015, 127, 451-461.	10.2	80
268	Natural assembly of platelet lysate-loaded nanocarriers into enriched 3D hydrogels for cartilage regeneration. Acta Biomaterialia, 2015, 19, 56-65.	8.3	42
269	Cork extractives exhibit thermo-oxidative protection properties in polypropylene–cork composites and as direct additives for polypropylene. Polymer Degradation and Stability, 2015, 116, 45-52.	5.8	18
270	Combinatorial Effect of Silicon and Calcium Release from Starch-Based Scaffolds on Osteogenic Differentiation of Human Adipose Stem Cells. ACS Biomaterials Science and Engineering, 2015, 1, 760-770.	5. 2	13

#	Article	IF	Citations
271	Chitosan–alginate multilayered films with gradients of physicochemical cues. Journal of Materials Chemistry B, 2015, 3, 4555-4568.	5.8	42
272	Bioresorbable ureteral stents from natural origin polymers. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 608-617.	3.4	46
273	pH Responsiveness of Multilayered Films and Membranes Made of Polysaccharides. Langmuir, 2015, 31, 11318-11328.	3.5	58
274	Compact Saloplastic Membranes of Natural Polysaccharides for Soft Tissue Engineering. Chemistry of Materials, 2015, 27, 7490-7502.	6.7	53
275	Nanostructured Capsules for Cartilage Tissue Engineering. Methods in Molecular Biology, 2015, 1340, 181-189.	0.9	5
276	Layer-by-Layer Assembly for Biofunctionalization of Cellulosic Fibers with Emergent Antimicrobial Agents. Advances in Polymer Science, 2015, , 225-240.	0.8	8
277	Nickel(II) complexes of bidentate N–N′ ligands containing mixed pyrazole, pyrimidine and pyridine aromatic rings as catalysts for ethylene polymerisation. Journal of Organometallic Chemistry, 2015, 799-800, 90-98.	1.8	12
278	Highly robust hydrogels via a fast, simple and cytocompatible dual crosslinking-based process. Chemical Communications, 2015, 51, 15673-15676.	4.1	30
279	Magnetically Multilayer Polysaccharide Membranes for Biomedical Applications. ACS Biomaterials Science and Engineering, 2015, 1, 1016-1025.	5.2	25
280	Multiphasic, Multistructured and Hierarchical Strategies for Cartilage Regeneration. Advances in Experimental Medicine and Biology, 2015, 881, 143-160.	1.6	17
281	Cell selective chitosan microparticles as injectable cell carriers for tissue regeneration. Biomaterials, 2015, 43, 23-31.	11.4	67
282	Water and Carbon Dioxide: Green Solvents for the Extraction of Collagen/Gelatin from Marine Sponges. ACS Sustainable Chemistry and Engineering, 2015, 3, 254-260.	6.7	50
283	Injectable PEGylated fibrinogen cell-laden microparticles made with a continuous solvent- and oil-free preparation method. Acta Biomaterialia, 2015, 13, 78-87.	8.3	13
284	Designing biomaterials for tissue engineering based on the deconstruction of the native cellular environment. Materials Letters, 2015, 141, 198-202.	2.6	29
285	Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: In vitro and in vivo assessment of biological performance. Acta Biomaterialia, 2015, 12, 227-241.	8.3	140
286	Assembling Human Platelet Lysate into Multiscale 3D Scaffolds for Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2015, 1, 2-6.	5. 2	29
287	Liquid Marbles for Highâ€Throughput Biological Screening of Anchorageâ€Dependent Cells. Advanced Healthcare Materials, 2015, 4, 264-270.	7.6	37
288	Compartmentalized bioencapsulated liquefied 3D macro-construct by perfusion-based layer-by-layer technique. RSC Advances, 2015, 5, 2511-2516.	3.6	13

#	Article	IF	Citations
289	Fast and Mild Strategy, Using Superhydrophobic Surfaces, to Produce Collagen/Platelet Lysate Gel Beads for Skin Regeneration. Stem Cell Reviews and Reports, 2015, 11, 161-179.	5.6	28
290	Polysaccharide-Based Nanobiomaterials as Controlled Release Systems for Tissue Engineering Applications. Current Pharmaceutical Design, 2015, 21, 4837-4850.	1.9	21
291	Temperature-responsive bioactive hydrogels based on a multifunctional recombinant elastin-like polymer. Biomaterials and Biomechanics in Bioengineering, 2015, 2, 47-59.	0.1	1
292	Platelet lysate membranes as new autologous templates for tissue engineering applications. Inflammation and Regeneration, 2014, 34, 033-044.	3.7	28
293	Investigation of calcium carbonate precipitated in the presence of alkanols. Crystal Research and Technology, 2014, 49, 418-430.	1.3	1
294	Homogeneous poly(L-lactic acid)/chitosan blended films. Polymers for Advanced Technologies, 2014, 25, 1492-1500.	3.2	4
295	Microfluidic Production of Perfluorocarbon-Alginate Core–Shell Microparticles for Ultrasound Therapeutic Applications. Langmuir, 2014, 30, 12391-12399.	3.5	37
296	Chitosan Membranes Exhibiting Shape Memory Capability by the Action of Controlled Hydration. Polymers, 2014, 6, 1178-1186.	4.5	19
297	Nanostructured Hollow Tubes Based on Chitosan and Alginate Multilayers. Advanced Healthcare Materials, 2014, 3, 433-440.	7.6	48
298	Inclusion complexes of \hat{l}_{\pm} -cyclodextrins with poly(d,l-lactic acid): structural, characterization, and glass transition dynamics. Colloid and Polymer Science, 2014, 292, 863-871.	2.1	9
299	Chitosan/chondroitin sulfate multilayers as supports for calcium phosphate biomineralization. Materials Letters, 2014, 121, 62-65.	2.6	29
300	Enhanced Cell Affinity of Chitosan Membranes Mediated by Superficial Cross-Linking: A Straightforward Method Attainable by Standard Laboratory Procedures. Biomacromolecules, 2014, 15, 291-301.	5.4	18
301	Polyelectrolyte multilayered assemblies in biomedical technologies. Chemical Society Reviews, 2014, 43, 3453.	38.1	262
302	<i>In Vivo</i> High-Content Evaluation of Three-Dimensional Scaffolds Biocompatibility. Tissue Engineering - Part C: Methods, 2014, 20, 851-864.	2.1	26
303	Electrically Conductive Chitosan/Carbon Scaffolds for Cardiac Tissue Engineering. Biomacromolecules, 2014, 15, 635-643.	5.4	306
304	Superhydrophobic Chips for Cell Spheroids High-Throughput Generation and Drug Screening. ACS Applied Materials & Drug Screenin	8.0	91
305	Sequential ionic and thermogelation of chitosan spherical hydrogels prepared using superhydrophobic surfaces to immobilize cells and drugs. Journal of Bioactive and Compatible Polymers, 2014, 29, 50-65.	2.1	18
306	Poly(É>-caprolactone) Electrospun Scaffolds Filled with Nanoparticles. Production and Optimization According to Taguchi's Methodology. Journal of Macromolecular Science - Physics, 2014, 53, 781-799.	1.0	18

#	Article	IF	Citations
307	Functionalized Microparticles Producing Scaffolds in Combination with Cells. Advanced Functional Materials, 2014, 24, 1391-1400.	14.9	39
308	Fractality and metastability of a complex amide cross-linked dipodal alkyl/siloxane hybrid. RSC Advances, 2014, 4, 59664-59675.	3.6	18
309	High-throughput screening for integrative biomaterials design: exploring advances and new trends. Trends in Biotechnology, 2014, 32, 627-636.	9.3	49
310	Layerâ€by‣ayer Assembly of Lightâ€Responsive Polymeric Multilayer Systems. Advanced Functional Materials, 2014, 24, 5624-5648.	14.9	106
311	Natural polymers for the microencapsulation of cells. Journal of the Royal Society Interface, 2014, 11, 20140817.	3.4	480
312	Free and copolymerized \hat{I}^3 -cyclodextrins regulate the performance of dexamethasone-loaded dextran microspheres for bone regeneration. Journal of Materials Chemistry B, 2014, 2, 4943-4956.	5.8	30
313	A combinatorial study of nanocomposite hydrogels: on-chip mechanical/viscoelastic and pre-osteoblast interaction characterization. Journal of Materials Chemistry B, 2014, 2, 5627.	5.8	20
314	Chitosan scaffolds with a shape memory effect induced by hydration. Journal of Materials Chemistry B, 2014, 2, 3315-3323.	5.8	38
315	Tailored Freestanding Multilayered Membranes Based on Chitosan and Alginate. Biomacromolecules, 2014, 15, 3817-3826.	5.4	88
316	Photopatterned Antibodies for Selective Cell Attachment. Langmuir, 2014, 30, 10066-10071.	3.5	27
317	Surface Modification of Silica-Based Marine Sponge Bioceramics Induce Hydroxyapatite Formation. Crystal Growth and Design, 2014, 14, 4545-4552.	3.0	12
318	Biocompatible Polymeric Microparticles Produced by a Simple Biomimetic Approach. Langmuir, 2014, 30, 4535-4539.	3.5	30
319	Confinement Effects on the Dynamic Behavior of Poly(<scp>d</scp> , <scp>l</scp> -lactic Acid) upon Incorporation in α-Cyclodextrin. Journal of Physical Chemistry B, 2014, 118, 6972-6981.	2.6	8
320	Bioinspired superamphiphobic surfaces as a tool for polymer- and solvent-independent preparation of drug-loaded spherical particles. Acta Biomaterialia, 2014, 10, 4314-4322.	8.3	25
321	Nanostructured Polymeric Coatings Based on Chitosan and Dopamineâ€Modified Hyaluronic Acid for Biomedical Applications. Small, 2014, 10, 2459-2469.	10.0	163
322	Functionalized cork-polymer composites (CPC) by reactive extrusion using suberin and lignin from cork as coupling agents. Composites Part B: Engineering, 2014, 67, 371-380.	12.0	53
323	Molecular Interactions Driving the Layer-by-Layer Assembly of Multilayers. Chemical Reviews, 2014, 114, 8883-8942.	47.7	697
324	Polycaprolactone membranes reinforced by toughened sol–gel produced silica networks. Journal of Sol-Gel Science and Technology, 2014, 71, 136-146.	2.4	1

#	Article	IF	Citations
325	Smart instructive polymer substrates for tissue engineering. , 2014, , 301-326.		4
326	Magnetic composite biomaterials for tissue engineering. Biomaterials Science, 2014, 2, 812-818.	5.4	67
327	Biomechanical and cellular segmental characterization of human meniscus: building the basis for Tissue Engineering therapies. Osteoarthritis and Cartilage, 2014, 22, 1271-1281.	1.3	80
328	Engineering Biomolecular Microenvironments for Cell Instructive Biomaterials. Advanced Healthcare Materials, 2014, 3, 797-810.	7.6	71
329	Cellular uptake of multilayered capsules produced with natural and genetically engineered biomimetic macromolecules. Acta Biomaterialia, 2014, 10, 2653-2662.	8.3	29
330	Biomimetic Miniaturized Platform Able to Sustain Arrays of Liquid Droplets for High‶hroughput Combinatorial Tests. Advanced Functional Materials, 2014, 24, 5096-5103.	14.9	58
331	Polypropylene-based cork–polymer composites: Processing parameters and properties. Composites Part B: Engineering, 2014, 66, 210-223.	12.0	46
332	Bone marrow stromal cells on a three-dimensional bioactive fiber mesh undergo osteogenic differentiation in the absence of osteogenic media supplements: The effect of silanol groups. Acta Biomaterialia, 2014, 10, 4175-4185.	8.3	16
333	Chitosan–silica hybrid porous membranes. Materials Science and Engineering C, 2014, 42, 553-561.	7. 3	59
334	Bio-inspired Aloe vera sponges for biomedical applications. Carbohydrate Polymers, 2014, 112, 264-270.	10.2	33
335	Cell interactions with superhydrophilic and superhydrophobic surfaces. Journal of Adhesion Science and Technology, 2014, 28, 843-863.	2.6	123
336	BIOMIMETIC SUPERHYDROPHOBIC SURFACES. World Scientific Series in Nanoscience and Nanotechnology, 2014, , 153-180.	0.1	1
337	New biomaterial based on cotton with incorporated Biomolecules. Journal of Applied Polymer Science, 2014, 131, .	2.6	7
338	Bioactive Composites Reinforced with Inorganic Glasses and Glass–Ceramics for Tissue Engineering Applications. Springer Series in Biomaterials Science and Engineering, 2014, , 331-353.	1.0	1
339	Protocol of Osteogenesis from BMSC Cultured with Dexamethasone-Loaded Dendrimer Nanoparticles onto Ceramic and Polymeric Scaffolds: In Vivo Studies. Manuals in Biomedical Research, 2014, , 67-74.	0.0	1
340	Synthesis and characterization of sensitive hydrogels based on semiâ€interpenetrated networks of poly[2â€ethylâ€(2â€pyrrolidone) methacrylate] and hyaluronic acid. Journal of Biomedical Materials Research - Part A, 2013, 101A, 157-166.	4.0	12
341	Novel cork–polymer composites reinforced with short natural coconut fibres: Effect of fibre loading and coupling agent addition. Composites Science and Technology, 2013, 78, 56-62.	7.8	86
342	In vitro evaluation of the cytotoxicity and cellular uptake of CMCht/PAMAM dendrimer nanoparticles by glioblastoma cell models. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	8

#	Article	IF	Citations
343	Combining biomimetic principles from the lotus leaf and mussel adhesive: polystyrene films with superhydrophobic and adhesive layers. RSC Advances, 2013, 3, 9352.	3.6	32
344	Bionanocomposites from lignocellulosic resources: Properties, applications and future trends for their use in the biomedical field. Progress in Polymer Science, 2013, 38, 1415-1441.	24.7	224
345	Pectin-coated chitosan microgels crosslinked on superhydrophobic surfaces for 5-fluorouracil encapsulation. Carbohydrate Polymers, 2013, 98, 331-340.	10.2	51
346	Silk hydrogels from non-mulberry and mulberry silkworm cocoons processed with ionic liquids. Acta Biomaterialia, 2013, 9, 8972-8982.	8.3	79
347	Synthesis and characterization of stable dicarboxylic pegylated magnetite nanoparticles. Materials Letters, 2013, 100, 266-270.	2.6	19
348	Polymer Particles: Biomimetic Methodology to Produce Polymeric Multilayered Particles for Biotechnological and Biomedical Applications (Small 15/2013). Small, 2013, 9, 2486-2486.	10.0	2
349	Biomimetic Methodology to Produce Polymeric Multilayered Particles for Biotechnological and Biomedical Applications. Small, 2013, 9, 2487-2492.	10.0	46
350	Biomineralization in chitosan/Bioglass® composite membranes under different dynamic mechanical conditions. Materials Science and Engineering C, 2013, 33, 4480-4483.	7.3	10
351	Gelatin microparticles aggregates as three-dimensional scaffolding system in cartilage engineering. Journal of Materials Science: Materials in Medicine, 2013, 24, 503-513.	3.6	35
352	Effect of crosslinking in chitosan/aloe vera-based membranes for biomedical applications. Carbohydrate Polymers, 2013, 98, 581-588.	10.2	98
353	Nanocoatings containing sulfated polysaccharides prepared by layer-by-layer assembly as models to study cellâ \in material interactions. Journal of Materials Chemistry B, 2013, 1, 4406.	5.8	33
354	Patterned superhydrophobic paper for microfluidic devices obtained by writing and printing. Cellulose, 2013, 20, 2185-2190.	4.9	49
355	Design and functionalization of chitin-based microsphere scaffolds. Green Chemistry, 2013, 15, 3252.	9.0	45
356	Layerâ€byâ€layer deposition of antimicrobial polymers on cellulosic fibers: a new strategy to develop bioactive textiles. Polymers for Advanced Technologies, 2013, 24, 1005-1010.	3.2	71
357	In Vivo Biological Responses to Silk Proteins Functionalized with Bone Sialoprotein. Macromolecular Bioscience, 2013, 13, 444-454.	4.1	26
358	Porous Hydrogels From Shark Skin Collagen Crosslinked Under Dense Carbon Dioxide Atmosphere. Macromolecular Bioscience, 2013, 13, 1621-1631.	4.1	37
359	Revealing the potential of squid chitosan-based structures for biomedical applications. Biomedical Materials (Bristol), 2013, 8, 045002.	3.3	38
360	Combinatorial Onâ€Chip Study of Miniaturized 3D Porous Scaffolds Using a Patterned Superhydrophobic Platform. Small, 2013, 9, 768-778.	10.0	41

#	Article	IF	Citations
361	Hybrid biodegradable membranes of silane-treated chitosan/soy protein for biomedical applications. Journal of Bioactive and Compatible Polymers, 2013, 28, 385-397.	2.1	9
362	Cryopreservation of cell laden natural origin hydrogels for cartilage regeneration strategies. Soft Matter, 2013, 9, 875-885.	2.7	33
363	Bioinspired methodology for preparing magnetic responsive chitosan beads to be integrated in a tubular bioreactor for biomedical applications. Biomedical Materials (Bristol), 2013, 8, 045008.	3.3	15
364	Development of new poly(ϵ-caprolactone)/chitosan films. Polymer International, 2013, 62, 1425-1432.	3.1	3
365	Layer-by-layer self-assembly techniques for nanostructured devices in tissue engineering. , 2013, , 88-118.		5
366	Liquified chitosan–alginate multilayer capsules incorporating poly(<scp>l</scp> -lactic acid) microparticles as cell carriers. Soft Matter, 2013, 9, 2125-2130.	2.7	57
367	Novel Methodology Based on Biomimetic Superhydrophobic Substrates to Immobilize Cells and Proteins in Hydrogel Spheres for Applications in Bone Regeneration. Tissue Engineering - Part A, 2013, 19, 1175-1187.	3.1	38
368	Nanoengineering of bioactive glasses: hollow and dense nanospheres. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	33
369	Silk-Fibroin/Methacrylated Gellan Gum Hydrogel As An Novel Scaffold For Application In Meniscus Cell-Based Tissue Engineering. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2013, 29, e53-e55.	2.7	8
370	Interactions between cells or proteins and surfaces exhibiting extreme wettabilities. Soft Matter, 2013, 9, 2985.	2.7	143
371	Microglia Response and In Vivo Therapeutic Potential of Methylprednisolone‣oaded Dendrimer Nanoparticles in Spinal Cord Injury. Small, 2013, 9, 738-749.	10.0	91
372	Chitosan membranes containing micro or nano-size bioactive glass particles: evolution of biomineralization followed by in situ dynamic mechanical analysis. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 20, 173-183.	3.1	98
373	<i>In Vivo</i> Performance of Chitosan/Soy-Based Membranes as Wound-Dressing Devices for Acute Skin Wounds. Tissue Engineering - Part A, 2013, 19, 860-869.	3.1	42
374	Controlled Release Strategies for Bone, Cartilage, and Osteochondral Engineeringâ€"Part I: Recapitulation of Native Tissue Healing and Variables for the Design of Delivery Systems. Tissue Engineering - Part B: Reviews, 2013, 19, 308-326.	4.8	131
375	Nanostructured and thermoresponsive recombinant biopolymer-based microcapsules for the delivery of active molecules. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 895-902.	3.3	37
376	Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications. Nanomedicine, 2013, 8, 359-378.	3.3	60
377	Adhesive nanostructured multilayer films using a bacterial exopolysaccharide for biomedical applications. Journal of Materials Chemistry B, 2013, 1, 2367.	5.8	69
378	Free-Standing Polyelectrolyte Membranes Made of Chitosan and Alginate. Biomacromolecules, 2013, 14, 1653-1660.	5.4	131

#	Article	IF	Citations
379	Asymmetric PDLLA membranes containing Bioglass $\hat{A}^{@}$ for guided tissue regeneration: Characterization and in vitro biological behavior. Dental Materials, 2013, 29, 427-436.	3.5	51
380	Superhydrophobic Paper in the Development of Disposable Labware and Lab-on-Paper Devices. ACS Applied Materials & Development of Disposable Labware and Lab-on-Paper Devices. ACS Applied Materials & Development of Disposable Labware and Lab-on-Paper Devices. ACS Applied Materials & Development of Disposable Labware and Lab-on-Paper Devices. ACS Applied Materials & Development of Disposable Labware and Lab-on-Paper Devices. ACS Applied Materials & Development of Disposable Labware and Lab-on-Paper Devices. ACS Applied Materials & Development of Disposable Labware and Lab-on-Paper Devices. ACS Applied Materials & Development of Disposable Labware and Lab-on-Paper Devices. ACS Applied Materials & Development of Disposable Labware and Lab-on-Paper Devices.	8.0	47
381	Hybrid cork–polymer composites containing sisal fibre: Morphology, effect of the fibre treatment on the mechanical properties and tensile failure prediction. Composite Structures, 2013, 105, 153-162.	5.8	104
382	Layer-by-Layer Film Growth Using Polysaccharides and Recombinant Polypeptides: A Combinatorial Approach. Journal of Physical Chemistry B, 2013, 117, 6839-6848.	2.6	31
383	Rheological and mechanical properties of acellular and cellâ€laden methacrylated gellan gum hydrogels. Journal of Biomedical Materials Research - Part A, 2013, 101, 3438-3446.	4.0	84
384	Multifunctional Compartmentalized Capsules with a Hierarchical Organization from the Nano to the Macro Scales. Biomacromolecules, 2013, 14, 2403-2410.	5.4	55
385	Multilayered Hierarchical Capsules Providing Cell Adhesion Sites. Biomacromolecules, 2013, 14, 743-751.	5.4	75
386	Superhydrophobic Surfaces Engineered Using Diatomaceous Earth. ACS Applied Materials & Samp; Interfaces, 2013, 5, 4202-4208.	8.0	63
387	Controlled Release Strategies for Bone, Cartilage, and Osteochondral Engineering—Part II: Challenges on the Evolution from Single to Multiple Bioactive Factor Delivery. Tissue Engineering - Part B: Reviews, 2013, 19, 327-352.	4.8	108
388	Hierarchical Fibrillar Scaffolds Obtained by Nonâ€conventional Layerâ€Byâ€Layer Electrostatic Selfâ€Assembly. Advanced Healthcare Materials, 2013, 2, 422-427.	7.6	27
389	New biotextiles for tissue engineering: Development, characterization and in vitro cellular viability. Acta Biomaterialia, 2013, 9, 8167-8181.	8.3	65
390	An investigation of the potential application of chitosan/aloe-based membranes for regenerative medicine. Acta Biomaterialia, 2013, 9, 6790-6797.	8.3	118
391	Non-monotonic cell differentiation pattern on extreme wettability gradients. Biomaterials Science, 2013, 1, 202-212.	5.4	25
392	Modification of paper using polyhydroxybutyrate to obtain biomimetic superhydrophobic substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 416, 51-55.	4.7	59
393	Unleashing the potential of supercritical fluids for polymer processing in tissue engineering and regenerative medicine. Journal of Supercritical Fluids, 2013, 79, 177-185.	3.2	48
394	Correction to "Multilayered Hierarchical Capsules Providing Cell Adhesion Sites― Biomacromolecules, 2013, 14, 1250-1250.	5.4	2
395	On-Chip Assessment of the Protein-Release Profile from 3D Hydrogel Arrays. Analytical Chemistry, 2013, 85, 2391-2396.	6.5	21
396	Different hyaluronic acid morphology modulates primary articular chondrocyte behavior in hyaluronic acid oated polycaprolactone scaffolds. Journal of Biomedical Materials Research - Part A, 2013, 101A, 518-527.	4.0	30

#	Article	IF	Citations
397	Magnetic Force-Based Tissue Engineering and Regenerative Medicine. Journal of Biomedical Nanotechnology, 2013, 9, 1129-1136.	1.1	43
398	Alternative methodology for chitin–hydroxyapatite composites using ionic liquids and supercritical fluid technology. Journal of Bioactive and Compatible Polymers, 2013, 28, 481-491.	2.1	28
399	Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering. PLoS ONE, 2013, 8, e55451.	2.5	105
400	Superhydrophobic to Superhydrophylic Biomimetic Poly(3-Hydroxybutyrate) Surfaces Made by Phase Inversion. Materials Science Forum, 2012, 730-732, 44-49.	0.3	2
401	Natural Fibres as Reinforcement Strategy on Cork-Polymer Composites. Materials Science Forum, 2012, 730-732, 373-378.	0.3	2
402	Materials of marine origin: a review on polymers and ceramics of biomedical interest. International Materials Reviews, 2012, 57, 276-306.	19.3	173
403	Nanostructured Thin Coatings from Chitosan and an Elastin-Like Recombinamer with Acute Stimuli-Responsive Behavior. Materials Science Forum, 2012, 730-732, 32-37.	0.3	1
404	Materials for Healthcare Applications Symposium, EUROMAT 2011 (Montpellier, France, 12–15 September) Tj	ЕТ9900	O rgBT /Overlo
405	Multilayers as 3D nanostructured porous constructs. Bioinspired, Biomimetic and Nanobiomaterials, 2012, 1, 245-251.	0.9	4
406	Membranes of poly($<$ scp>-dl $<$ /scp>-lactic acid)/Bioglass $<$ sup> \hat{A}^{\otimes} with asymmetric bioactivity for biomedical applications. Journal of Bioactive and Compatible Polymers, 2012, 27, 429-440.	2.1	12
407	Layer-by-Layer Deposition of Antibacterial Polyelectrolytes on Cotton Fibres. Journal of Polymers and the Environment, 2012, 20, 1084-1094.	5.0	38
408	Wettability Influences Cell Behavior on Superhydrophobic Surfaces with Different Topographies. Biointerphases, 2012, 7, 46.	1.6	103
409	Selective Cell Recruitment and Spatially Controlled Cell Attachment on Instructive Chitosan Surfaces Functionalized with Antibodies. Biointerphases, 2012, 7, 65.	1.6	18
410	The use of ionic liquids in the processing of chitosan/silk hydrogels for biomedical applications. Green Chemistry, 2012, 14, 1463.	9.0	93
411	Micropatterning of Bioactive Glass Nanoparticles on Chitosan Membranes for Spatial Controlled Biomineralization. Langmuir, 2012, 28, 6970-6977.	3.5	43
412	Cell behaviour in new poly(l-lactic acid) films with crystallinity gradients. Materials Letters, 2012, 87, 105-108.	2.6	10
413	Enzymatic degradation behavior and cytocompatibility of silk fibroin–starch–chitosan conjugate membranes. Materials Science and Engineering C, 2012, 32, 1314-1322.	7.3	22
414	Chitosan/bioactive glass nanoparticles composites for biomedical applications. Biomedical Materials (Bristol), 2012, 7, 054104.	3.3	60

#	Article	IF	CITATIONS
415	Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration. Acta Biomaterialia, 2012, 8, 4173-4180.	8.3	209
416	A nanotectonics approach to produce hierarchically organized bioactive glass nanoparticles-based macrospheres. Nanoscale, 2012, 4, 6293.	5.6	12
417	From nano- to macro-scale: nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering. Nanomedicine, 2012, 7, 1045-1066.	3.3	57
418	The role of organic solvent on the preparation of chitosan scaffolds by supercritical assisted phase inversion. Journal of Supercritical Fluids, 2012, 72, 326-332.	3.2	28
419	Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter, 2012, 2, 278-289.	2.6	151
420	Secondary Structure of rhBMP-2 in a Protective Biopolymeric Carrier Material. Biomacromolecules, 2012, 13, 3620-3626.	5.4	34
421	lonic liquids as foaming agents of semi-crystalline natural-based polymers. Green Chemistry, 2012, 14, 1949.	9.0	21
422	Combinatorial cell–3D biomaterials cytocompatibility screening for tissue engineering using bioinspired superhydrophobic substrates. Integrative Biology (United Kingdom), 2012, 4, 318.	1.3	50
423	Chitosan-chondroitin sulphate nanoparticles for controlled delivery of platelet lysates in bone regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, s47-s59.	2.7	88
424	Biological responses to spider silk-antibiotic fusion protein. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 356-368.	2.7	19
425	Multifunctionalized CMCht/PAMAM Dendrimer Nanoparticles Modulate the Cellular Uptake by Astrocytes and Oligodendrocytes in Primary Cultures of Glial Cells. Macromolecular Bioscience, 2012, 12, 591-597.	4.1	29
426	Bioactivity and Viscoelastic Characterization of Chitosan/Bioglass® Composite Membranes. Macromolecular Bioscience, 2012, 12, 1106-1113.	4.1	30
427	Dextrin―and Conductingâ€Polymerâ€Containing Biocomposites: Properties and Behavior as Cellular Matrix. Macromolecular Materials and Engineering, 2012, 297, 359-368.	3.6	13
428	Production methodologies of polymeric and hydrogel particles for drug delivery applications. Expert Opinion on Drug Delivery, 2012, 9, 231-248.	5.0	98
429	Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomaterialia, 2012, 8, 289-301.	8.3	276
430	Dual stimuli responsive poly(N-isopropylacrylamide) coated chitosan scaffolds for controlled release prepared from a non residue technology. Journal of Supercritical Fluids, 2012, 66, 398-404.	3.2	29
431	PDLLA enriched with ulvan particles as a novel 3D porous scaffold targeted for bone engineering. Journal of Supercritical Fluids, 2012, 65, 32-38.	3.2	66
432	Natural and genetically engineered proteins for tissue engineering. Progress in Polymer Science, 2012, 37, 1-17.	24.7	227

#	Article	IF	Citations
433	Enhancement of osteogenic differentiation of human adipose derived stem cells by the controlled release of platelet lysates from hybrid scaffolds produced by supercritical fluid foaming. Journal of Controlled Release, 2012, 162, 19-27.	9.9	78
434	Characterization of chitosan and polycaprolactone membranes designed for wound repair application. Journal of Materials Science, 2012, 47, 659-667.	3.7	22
435	Preparation and Characterization of New Biodegradable Films Made from Poly(L-Lactic Acid) and Chitosan Blends Using a Common Solvent. Journal of Macromolecular Science - Physics, 2011, 50, 1121-1129.	1.0	4
436	Development of an injectable system based on elastin-like recombinamer particles for tissue engineering applications. Soft Matter, 2011, 7, 6426.	2.7	31
437	Spider silk-bone sialoprotein fusion proteins for bone tissue engineering. Soft Matter, 2011, 7, 4964.	2.7	41
438	High-throughput evaluation of interactions between biomaterials, proteins and cells using patterned superhydrophobic substrates. Soft Matter, 2011, 7, 4147.	2.7	99
439	Dual Responsive Nanostructured Surfaces for Biomedical Applications. Langmuir, 2011, 27, 8415-8423.	3.5	44
440	AFM Study of Morphology and Mechanical Properties of a Chimeric Spider Silk and Bone Sialoprotein Protein for Bone Regeneration. Biomacromolecules, 2011, 12, 1675-1685.	5.4	33
441	Chitosan Scaffolds Containing Hyaluronic Acid for Cartilage Tissue Engineering. Tissue Engineering - Part C: Methods, 2011, 17, 717-730.	2.1	149
442	Preparation and characterization of bioactive glass nanoparticles prepared by sol–gel for biomedical applications. Nanotechnology, 2011, 22, 494014.	2.6	124
443	Natural Origin Materials for Bone Tissue Engineering – Properties, Processing, and Performance. , 2011, , 557-586.		7
444	Chemical modification of bioinspired superhydrophobic polystyrene surfaces to control cell attachment/proliferation. Soft Matter, 2011, 7, 8932.	2.7	100
445	Role of superhydrophobicity in the biological activity of fibronectin at the cell–material interface. Soft Matter, 2011, 7, 10803.	2.7	58
446	Development of Gellan Gum-Based Microparticles/Hydrogel Matrices for Application in the Intervertebral Disc Regeneration. Tissue Engineering - Part C: Methods, 2011, 17, 961-972.	2.1	87
447	In vivo biodistribution of carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles in rats. Journal of Bioactive and Compatible Polymers, 2011, 26, 619-627.	2.1	19
448	Cell Adhesion and Proliferation onto Chitosan-based Membranes Treated by Plasma Surface Modification. Journal of Biomaterials Applications, 2011, 26, 101-116.	2.4	72
449	Isolation of Friedelin from Black Condensate of Cork. Natural Product Communications, 2011, 6, 1934578X1100601.	0.5	6
450	In vivo study of dendronlike nanoparticles for stem cells "tune-up― from nano to tissues. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 914-924.	3.3	34

#	Article	IF	Citations
451	Wettable arrays onto superhydrophobic surfaces for bioactivity testing of inorganic nanoparticles. Materials Letters, 2011, 65, 296-299.	2.6	28
452	Properties of new cork–polymer composites: Advantages and drawbacks as compared with commercially available fibreboard materials. Composite Structures, 2011, 93, 3120-3120.	5.8	54
453	Synthesis of Temperature-Responsive Dextran-MA/PNIPAAm Particles for Controlled Drug Delivery Using Superhydrophobic Surfaces. Pharmaceutical Research, 2011, 28, 1294-1305.	3.5	96
454	Superhydrophobic poly(L-lactic acid) surface as potential bacterial colonization substrate. AMB Express, 2011, 1, 34.	3.0	49
455	Surfaceâ€Tensionâ€Driven Gradient Generation in a Fluid Stripe for Benchâ€Top and Microwell Applications. Small, 2011, 7, 892-901.	10.0	41
456	Layerâ€byâ€Layer Assembly of Chitosan and Recombinant Biopolymers into Biomimetic Coatings with Multiple Stimuliâ€Responsive Properties. Small, 2011, 7, 2640-2649.	10.0	97
457	Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, e97-e107.	2.7	201
458	Liquefied Capsules Coated with Multilayered Polyelectrolyte Films for Cell Immobilization. Advanced Engineering Materials, 2011, 13, B218.	3.5	29
459	Thermoresponsive poly(<i>N</i> â€isopropylacrylamide)â€ <i>g</i> âfmethylcellulose hydrogel as a threeâ€dimensional extracellular matrix for cartilageâ€engineered applications. Journal of Biomedical Materials Research - Part A, 2011, 98A, 596-603.	4.0	54
460	Polymerâ€based microparticles in tissue engineering and regenerative medicine. Biotechnology Progress, 2011, 27, 897-912.	2.6	140
461	Thermosensitive polymeric matrices for three-dimensional cell culture strategies. Acta Biomaterialia, 2011, 7, 526-529.	8.3	18
462	Green processing of porous chitin structures for biomedical applications combining ionic liquids and supercritical fluid technology. Acta Biomaterialia, 2011, 7, 1166-1172.	8.3	114
463	Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomaterialia, 2011, 7, 1009-1018.	8.3	487
464	Chitosan/Poly(É>-caprolactone) blend scaffolds for cartilage repair. Biomaterials, 2011, 32, 1068-1079.	11.4	204
465	Antimicrobial functionalized genetically engineered spider silk. Biomaterials, 2011, 32, 4255-4266.	11.4	92
466	Nanostructured Natural-Based Polyelectrolyte Multilayers to Agglomerate Chitosan Particles into Scaffolds for Tissue Engineering. Tissue Engineering - Part A, 2011, 17, 2663-2674.	3.1	36
467	Three-Dimensional Scaffolds as a Model System for Neural and Endothelial â€~In Vitro' Culture. Journal of Biomaterials Applications, 2011, 26, 293-310.	2.4	6
468	Development of new chitosan/carrageenan nanoparticles for drug delivery applications. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1265-1272.	4.0	150

#	Article	IF	CITATIONS
469	Gellan gum: A new biomaterial for cartilage tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2010, 93A, 852-863.	4.0	185
470	Extraction and physico-chemical characterization of a versatile biodegradable polysaccharide obtained from green algae. Carbohydrate Research, 2010, 345, 2194-2200.	2.3	106
471	Polymer/bioactive glass nanocomposites for biomedical applications: A review. Composites Science and Technology, 2010, 70, 1764-1776.	7.8	451
472	Cork based composites using polyolefin's as matrix: Morphology and mechanical performance. Composites Science and Technology, 2010, 70, 2310-2318.	7.8	59
473	The effects of Anodonta cygnea biological fluids on biomineralization of chitosan membranes. Journal of Membrane Science, 2010, 364, 82-89.	8.2	6
474	Supercritical phase inversion of starch-poly ($\hat{l}\mu$ -caprolactone) for tissue engineering applications. Journal of Materials Science: Materials in Medicine, 2010, 21, 533-540.	3.6	11
475	Processing and characterization of chitosan microspheres to be used as templates for layer-by-layer assembly. Journal of Materials Science: Materials in Medicine, 2010, 21, 1855-1865.	3.6	16
476	Novel poly(<scp>L</scp> â€lactic acid)/hyaluronic acid macroporous hybrid scaffolds: Characterization and assessment of cytotoxicity. Journal of Biomedical Materials Research - Part A, 2010, 94A, 856-869.	4.0	35
477	Genipinâ€crossâ€linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2010, 95A, 465-475.	4.0	291
478	Monoâ€dispersed bioactive glass nanospheres: Preparation and effects on biomechanics of mammalian cells. Journal of Biomedical Materials Research - Part A, 2010, 95A, 747-754.	4.0	57
479	Differentiation of mesenchymal stem cells in chitosan scaffolds with double micro and macroporosity. Journal of Biomedical Materials Research - Part A, 2010, 95A, 1182-1193.	4.0	41
480	Biomimetic Caâ€P coatings incorporating bisphosphonates produced on starchâ€based degradable biomaterials. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 92B, 55-67.	3.4	30
481	Development of Biomimetic Chitosanâ€Based Hydrogels Using an Elastinâ€Like Polymer. Advanced Engineering Materials, 2010, 12, B37.	3.5	26
482	Thermomechanical processing environment and morphology development of a thermotropic polymer liquid crystal. Journal of Applied Polymer Science, 2010, 115, 2991-3004.	2.6	3
483	Carboxymethylchitosan/Poly(amidoamine) Dendrimer Nanoparticles in Central Nervous Systemsâ€Regenerative Medicine: Effects on Neuron/Glial Cell Viability and Internalization Efficiency. Macromolecular Bioscience, 2010, 10, 1130-1140.	4.1	25
484	Crosslink Effect and Albumin Adsorption onto Chitosan/Alginate Multilayered Systems: An in situ QCMâ€D Study. Macromolecular Bioscience, 2010, 10, 1444-1455.	4.1	69
485	Dendrimers and derivatives as a potential therapeutic tool in regenerative medicine strategies—A review. Progress in Polymer Science, 2010, 35, 1163-1194.	24.7	171
486	Enzymatic degradation of 3D scaffolds of starch-poly-(É)-caprolactone) prepared by supercritical fluid technology. Polymer Degradation and Stability, 2010, 95, 2110-2117.	5.8	29

#	Article	IF	Citations
487	Functionalized superhydrophobic biomimetic chitosan-based films. Carbohydrate Polymers, 2010, 81, 140-144.	10.2	64
488	Novel 3D scaffolds of chitosan–PLLA blends for tissue engineering applications: Preparation and characterization. Journal of Supercritical Fluids, 2010, 54, 282-289.	3.2	72
489	Hybrid 3D structure of poly(d,l-lactic acid) loaded with chitosan/chondroitin sulfate nanoparticles to be used as carriers for biomacromolecules in tissue engineering. Journal of Supercritical Fluids, 2010, 54, 320-327.	3.2	64
490	New poly($\hat{l}\mu$ -caprolactone)/chitosan blend fibers for tissue engineering applications. Acta Biomaterialia, 2010, 6, 418-428.	8.3	100
491	Analysing protein competition on self-assembled mono-layers studied with quartz crystal microbalance. Acta Biomaterialia, 2010, 6, 3499-3505.	8.3	18
492	Mineralized structures in nature: Examples and inspirations for the design of new composite materials and biomaterials. Composites Science and Technology, 2010, 70, 1777-1788.	7.8	123
493	Nanostructured self-assembled films containing chitosan fabricated at neutral pH. Carbohydrate Polymers, 2010, 80, 570-573.	10.2	52
494	Controlling Cell Behavior Through the Design of Polymer Surfaces. Small, 2010, 6, 2208-2220.	10.0	289
495	Layerâ€Byâ€Layer Technique for Producing Porous Nanostructured 3D Constructs Using Moldable Freeform Assembly of Spherical Templates. Small, 2010, 6, 2644-2648.	10.0	52
496	Layer-by-layer assembly: Layer-By-Layer Technique for Producing Porous Nanostructured 3D Constructs Using Moldable Freeform Assembly of Spherical Templates (Small 23/2010). Small, 2010, 6, 2643-2643.	10.0	2
497	Immobilization of fibronectin in chitosan substrates improves cell adhesion and proliferation. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 316-323.	2.7	69
498	Two-Dimensional Open Microfluidic Devices by Tuning the Wettability on Patterned Superhydrophobic Polymeric Surface. Applied Physics Express, 2010, 3, 085205.	2.4	103
499	Biomimetic and Smart Polymeric Surfaces for Biomedical and Biotechnological Applications. Materials Science Forum, 2010, 636-637, 3-8.	0.3	1
500	Surface properties of extracts from cork black condensate. Holzforschung, 2010, 64, .	1.9	8
501	Chitosan Improves the Biological Performance of Soy-Based Biomaterials. Tissue Engineering - Part A, 2010, 16, 2883-2890.	3.1	13
502	Designing biomaterials based on biomineralization of bone. Journal of Materials Chemistry, 2010, 20, 2911.	6.7	144
503	Potential applications of natural origin polymer-based systems in soft tissue regeneration. Critical Reviews in Biotechnology, 2010, 30, 200-221.	9.0	102
504	Development and Characterization of a Novel Hybrid Tissue Engineering–Based Scaffold for Spinal Cord Injury Repair. Tissue Engineering - Part A, 2010, 16, 45-54.	3.1	103

#	Article	IF	Citations
505	Stimuli-responsive chitosan-starch injectable hydrogels combined with encapsulated adipose-derived stromal cells for articular cartilage regeneration. Soft Matter, 2010, 6, 5184.	2.7	100
506	Gellan Gum Injectable Hydrogels for Cartilage Tissue Engineering Applications: <i>In Vitro</i> studies and Preliminary <i>In Vivo</i> Evaluation. Tissue Engineering - Part A, 2010, 16, 343-353.	3.1	142
507	Development of a Novel Cell Encapsulation System Based on Natural Origin Polymers for Tissue Engineering Applications. Journal of Bioactive and Compatible Polymers, 2010, 25, 341-359.	2.1	16
508	Bioinspired methodology to fabricate hydrogel spheres for multi-applications using superhydrophobic substrates. Soft Matter, 2010, 6, 5868.	2.7	88
509	Ex vivo culturing of stromal cells with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles promotes ectopic bone formation. Bone, 2010, 46, 1424-1435.	2.9	63
510	New Thermo-responsive Hydrogels Based on Poly (N-isopropylacrylamide)/ Hyaluronic Acid Semi-interpenetrated Polymer Networks: Swelling Properties and Drug Release Studies. Journal of Bioactive and Compatible Polymers, 2010, 25, 169-184.	2.1	53
511	Supercritical fluids in biomedical and tissue engineering applications: a review. International Materials Reviews, 2009, 54, 214-222.	19.3	99
512	Nanostructured Multilayer Coatings Combining Chitosan with Bioactive Glass Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 1741-1748.	0.9	60
513	Novel Riceâ€shaped Bioactive Ceramic Nanoparticles. Advanced Engineering Materials, 2009, 11, B25.	3.5	31
514	Stimuliâ€Responsive Thin Coatings Using Elastin‣ike Polymers for Biomedical Applications. Advanced Functional Materials, 2009, 19, 3210-3218.	14.9	83
515	Bioinspired Degradable Substrates with Extreme Wettability Properties. Advanced Materials, 2009, 21, 1830-1834.	21.0	174
516	Superhydrophobic Coatings: Bioinspired Degradable Substrates with Extreme Wettability Properties (Adv. Mater. 18/2009). Advanced Materials, 2009, 21, NA-NA.	21.0	1
517	Novel hydroxyapatite/carboxymethylchitosan composite scaffolds prepared through an innovative "autocatalytic―electroless coprecipitation route. Journal of Biomedical Materials Research - Part A, 2009, 88A, 470-480.	4.0	45
518	Preparation and <i>in vitro</i> characterization of novel bioactive glass ceramic nanoparticles. Journal of Biomedical Materials Research - Part A, 2009, 88A, 304-313.	4.0	144
519	Bioinspired superhydrophobic poly(<scp>L</scp> â€lactic acid) surfaces control bone marrow derived cells adhesion and proliferation. Journal of Biomedical Materials Research - Part A, 2009, 91A, 480-488.	4.0	94
520	Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: Physicochemical characterization and assessment of rat bone marrow stromal cell viability. Journal of Biomedical Materials Research - Part A, 2009, 91A, 175-186.	4.0	73
521	Meltâ€based compressionâ€molded scaffolds from chitosan–polyester blends and composites: Morphology and mechanical properties. Journal of Biomedical Materials Research - Part A, 2009, 91A, 489-504.	4.0	89
522	Microcomputed tomography and microfinite element modeling for evaluating polymer scaffolds architecture and their mechanical properties. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 191-202.	3.4	33

#	Article	IF	Citations
523	Proliferation and differentiation of goat bone marrow stromal cells in 3D scaffolds with tunable hydrophilicity. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 277-286.	3.4	53
524	Self Assembling and Crosslinking of Polyelectrolyte Multilayer Films of Chitosan and Alginate Studied by QCM and IR Spectroscopy. Macromolecular Bioscience, 2009, 9, 776-785.	4.1	117
525	Multi-Layered Films Containing a Biomimetic Stimuli-Responsive Recombinant Protein. Nanoscale Research Letters, 2009, 4, 1247-1253.	5.7	31
526	Preparation of starch-based scaffolds for tissue engineering by supercritical immersion precipitation. Journal of Supercritical Fluids, 2009, 49, 279-285.	3.2	76
527	Processing of novel bioactive polymeric matrixes for tissue engineering using supercritical fluid technology. Materials Science and Engineering C, 2009, 29, 2110-2115.	7.3	37
528	Physical interactions in macroporous scaffolds based on poly(É>-caprolactone)/chitosan semi-interpenetrating polymer networks. Polymer, 2009, 50, 2058-2064.	3.8	38
529	Study of the glass transition on viscous-forming and powder materials using dynamic mechanical analysis. Polymer Testing, 2009, 28, 89-95.	4.8	25
530	Multiple melting behaviour of poly(l-lactide-co-glycolide) investigated by DSC. Polymer Testing, 2009, 28, 452-455.	4.8	9
531	The osteogenic differentiation of rat bone marrow stromal cells cultured with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles. Biomaterials, 2009, 30, 804-813.	11.4	131
532	Preparation of chitosan scaffolds loaded with dexamethasone for tissue engineering applications using supercritical fluid technology. European Polymer Journal, 2009, 45, 141-148.	5.4	111
533	Effect of solvent-dependent viscoelastic properties of chitosan membranes on the permeation of 2-phenylethanol. Carbohydrate Polymers, 2009, 75, 651-659.	10.2	28
534	Development of bioactive and biodegradable chitosan-based injectable systems containing bioactive glass nanoparticles. Acta Biomaterialia, 2009, 5, 115-123.	8.3	150
535	Dexamethasone-loaded scaffolds prepared by supercritical-assisted phase inversion. Acta Biomaterialia, 2009, 5, 2054-2062.	8.3	82
536	Perspectives on: Supercritical Fluid Technology for 3D Tissue Engineering Scaffold Applications. Journal of Bioactive and Compatible Polymers, 2009, 24, 385-400.	2.1	55
537	Biomimetic design of materials and biomaterials inspired by the structure of nacre. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 1587-1605.	3.4	193
538	Carrageenan-Based Hydrogels for the Controlled Delivery of PDGF-BB in Bone Tissue Engineering Applications. Biomacromolecules, 2009, 10, 1392-1401.	5.4	165
539	Oriented morphology and enhanced mechanical properties of poly(l-lactic acid) from shear controlled orientation in injection molding. Materials Science & Description of Structural Materials: Properties, Microstructure and Processing, 2008, 490, 81-89.	5.6	32
540	Dynamic mechanical behavior of starch-based scaffolds in dry and physiologically simulated conditions: Effect of porosity and pore size. Acta Biomaterialia, 2008, 4, 950-959.	8.3	60

#	Article	IF	CITATIONS
541	Chitosan microparticles as injectable scaffolds for tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2, 378-380.	2.7	65
542	Straightforward Determination of the Degree of <i>N</i> â€Acetylation of Chitosan by Means of Firstâ€Derivative UV Spectrophotometry. Macromolecular Chemistry and Physics, 2008, 209, 1463-1472.	2.2	30
543	Thermal Behaviour and Glass Transition Dynamics of Inclusion Complexes of ⟨i⟩α⟨ i⟩ yclodextrin with Poly(⟨scp⟩D⟨ scp⟩,⟨scp⟩L⟨ scp⟩â€lactic acid). Macromolecular Rapid Communications, 2008, 29, 1341-1345.	3.9	12
544	Viscoelastic Properties of Chitosan with Different Hydration Degrees as Studied by Dynamic Mechanical Analysis. Macromolecular Bioscience, 2008, 8, 69-76.	4.1	96
545	Biomineralized Polysaccharide Beads for Dualâ€Stimuliâ€Responsive Drug Delivery. Macromolecular Bioscience, 2008, 8, 260-267.	4.1	36
546	Plasma Surface Modification of Chitosan Membranes: Characterization and Preliminary Cell Response Studies. Macromolecular Bioscience, 2008, 8, 568-576.	4.1	131
547	Genipinâ€Modified Silkâ€Fibroin Nanometric Nets. Macromolecular Bioscience, 2008, 8, 766-774.	4.1	71
548	Chitosan coated alginate beads containing poly(<i>N</i> â€isopropylacrylamide) for dualâ€stimuliâ€responsive drug release. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 84B, 595-603.	3.4	118
549	Blending polysaccharides with biodegradable polymers. II. Structure and biological response of chitosan/polycaprolactone blends. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 544-554.	3.4	27
550	Poly(<i>N</i> à€isopropylacrylamide) surfaceâ€grafted chitosan membranes as a new substrate for cell sheet engineering and manipulation. Biotechnology and Bioengineering, 2008, 101, 1321-1331.	3.3	49
551	Stereocomplexation and morphology of enantiomeric poly(lactic acid)s with moderateâ€molecularâ€weight. Journal of Applied Polymer Science, 2008, 107, 1621-1627.	2.6	30
552	Surface Engineered Carboxymethylchitosan/Poly(amidoamine) Dendrimer Nanoparticles for Intracellular Targeting. Advanced Functional Materials, 2008, 18, 1840-1853.	14.9	56
553	Stimuliâ€Responsive Polymeric Systems for Biomedical Applications. Advanced Engineering Materials, 2008, 10, 515-527.	3.5	579
554	Bioâ€Inspired Mineral Growth on Porous Spherulitic Textured Poly(Lâ€Iactic acid)/Bioactive Glass Composite Scaffolds. Advanced Engineering Materials, 2008, 10, B18.	3.5	4
555	Cooperative rearranging region size in semi-crystalline poly(l-lactic acid). Polymer, 2008, 49, 3130-3135.	3.8	73
556	Development of porous lamellar poly(l-lactic acid) scaffolds by conventional injection molding process. Acta Biomaterialia, 2008, 4, 887-896.	8.3	48
557	Preparation and in vitro characterization of scaffolds of poly(l-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomaterialia, 2008, 4, 1297-1306.	8.3	148
558	Preparation of membranes with polysulfone/polycaprolactone blends using a high pressure cell specially designed for a CO2-assisted phase inversion. Journal of Supercritical Fluids, 2008, 43, 542-548.	3.2	33

#	Article	IF	CITATIONS
559	Bi-layered constructs based on poly(l-lactic acid) and starch for tissue engineering of osteochondral defects. Materials Science and Engineering C, 2008, 28, 80-86.	7.3	50
560	Bioactive poly(L-lactic acid)-chitosan hybrid scaffolds. Materials Science and Engineering C, 2008, 28, 1356-1365.	7.3	39
561	Natural Polymers in tissue engineering applications. , 2008, , 145-192.		29
562	Novel Genipin-Cross-Linked Chitosan/Silk Fibroin Sponges for Cartilage Engineering Strategies. Biomacromolecules, 2008, 9, 2764-2774.	5.4	240
563	pH-Responsive biomineralization onto chitosan grafted biodegradable substrates. Journal of Materials Chemistry, 2008, 18, 2493.	6.7	49
564	Electric Techniques. Handbook of Thermal Analysis and Calorimetry, 2008, 5, 209-268.	1.6	3
565	Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. International Journal of Biological Macromolecules, 2008, 43, 401-414.	7.5	672
566	Influence of Crystallinity in Molecular Motions of Poly(I-lactic acid) Investigated by Dielectric Relaxation Spectroscopy. Macromolecules, 2008, 41, 6419-6430.	4.8	56
567	Transport of Small Anionic and Neutral Solutes through Chitosan Membranes: Dependence on Cross-Linking and Chelation of Divalent Cations. Biomacromolecules, 2008, 9, 2132-2138.	5.4	16
568	New biomineralization strategies for the use of natural-based polymeric materials in bone-tissue engineering., 2008,, 193-230.		0
569	Chitosan Beads as Templates for Layer-by-Layer Assembly and their Application in the Sustained Release of Bioactive Agents. Journal of Bioactive and Compatible Polymers, 2008, 23, 367-380.	2.1	25
570	Proteins and Their Peptide Motifs in Acellular Apatite Mineralization of Scaffolds for Tissue Engineering - Part B: Reviews, 2008, 14, 433-445.	4.8	46
571	Processing of starch-based blends for biomedical applications. , 2008, , 85-105.		1
572	Towards bioinspired superhydrophobic poly(L-lactic acid) surfaces using phase inversion-based methods. Bioinspiration and Biomimetics, 2008, 3, 034003.	2.9	34
573	Human Chondrocyte Morphology, Its Dedifferentiation, and Fibronectin Conformation on Different PLLA Microtopographies. Tissue Engineering - Part A, 2008, 14, 1751-1762.	3.1	41
574	Tissue engineering using natural polymers. , 2007, , 197-217.		6
575	Structural evolution of the amorphous phase during crystallization of poly(I-lactic acid): A synchrotron wide-angle X-ray scattering study. Journal of Non-Crystalline Solids, 2007, 353, 2567-2572.	3.1	29
576	In vitro evaluation of the behaviour of human polymorphonuclear neutrophils in direct contact with chitosan-based membranes. Journal of Biotechnology, 2007, 132, 218-226.	3.8	45

#	Article	IF	CITATIONS
577	Effect of the labelling ratio on the photophysics of fluorescein isothiocyanate (FITC) conjugated to bovine serum albumin. Photochemical and Photobiological Sciences, 2007, 6, 152-158.	2.9	103
578	Green synthesis of a temperature sensitive hydrogel. Green Chemistry, 2007, 9, 75-79.	9.0	50
579	Synthesis and Characterization of pH-Sensitive Thiol-Containing Chitosan Beads for Controlled Drug Delivery Applications. Drug Delivery, 2007, 14, 9-17.	5 . 7	85
580	A Novel pH and Thermo-sensitive N,O-Carboxymethyl Chitosan-graft-Poly(N-isopropylacrylamide) Hydrogel for Controlled Drug Delivery. E-Polymers, 2007, 7, .	3.0	2
581	Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. Journal of the Royal Society Interface, 2007, 4, 999-1030.	3.4	969
582	Biodegradable poly(L-lactic acid)/poly(butylene succinate-co-adipate) blends: Miscibility, morphology, and thermal behavior. Journal of Applied Polymer Science, 2007, 105, 3204-3210.	2.6	30
583	Banded spherulites in poly(L-lactic acid): Effects of the crystallization temperature and molecular weight. Journal of Applied Polymer Science, 2007, 105, 3500-3504.	2.6	25
584	In vitro monitoring of surface mechanical properties of poly(L-lactic acid) using microhardness. Journal of Applied Polymer Science, 2007, 105, 3860-3864.	2.6	8
585	Thermally Responsive Biomineralization on Biodegradable Substrates. Advanced Functional Materials, 2007, 17, 3312-3318.	14.9	64
586	Preparation and characterization of poly(L-lactic acid)-chitosan hybrid scaffolds with drug release capability. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 81B, 427-434.	3.4	114
587	Morphology and miscibility of chitosan/soy protein blended membranes. Carbohydrate Polymers, 2007, 70, 25-31.	10.2	107
588	Microhardness of starch based biomaterials in simulated physiological conditions. Acta Biomaterialia, 2007, 3, 69-76.	8.3	17
589	Mobile amorphous phase fragility in semi-crystalline polymers: Comparison of PET and PLLA. Polymer, 2007, 48, 1012-1019.	3.8	138
590	Carboxymethyl chitosan-graft-phosphatidylethanolamine: Amphiphilic matrices for controlled drug delivery. Reactive and Functional Polymers, 2007, 67, 43-52.	4.1	98
591	Fluorescence probe techniques to monitor protein adsorption-induced conformation changes on biodegradable polymers. Journal of Colloid and Interface Science, 2007, 312, 193-200.	9.4	42
592	Osteochondral defects: present situation and tissue engineering approaches. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1, 261-273.	2.7	209
593	Effect of processing conditions on morphology and mechanical properties of injection-molded poly(l-lactic acid). Polymer Engineering and Science, 2007, 47, 1141-1147.	3.1	60
594	Dielectric and thermal characterization of low density ethylene/10â€undecenâ€1â€ol copolymers prepared with nickel catalysts. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2802-2812.	2.1	5

#	Article	IF	CITATIONS
595	Creep-recovery behaviour of cork. Materials Letters, 2007, 61, 2473-2477.	2.6	29
596	Calcium-phosphate derived from mineralized algae for bone tissue engineering applications. Materials Letters, 2007, 61, 3495-3499.	2.6	31
597	Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries. Trends in Biotechnology, 2007, 25, 577-583.	9.3	289
598	Synthesis and Characterization of Chitosanâ€graftâ€Poly(3â€(trimethoxysilyl)propyl methacrylate) Initiated by Ceric (IV) Ion. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 489-494.	2.2	10
599	Synthesis and Characterization ofNâ€methylenephenyl Phosphonic Chitosan. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 271-275.	2.2	25
600	Water effect in the thermal and molecular dynamics behavior of poly(L-lactic acid). Journal of Thermal Analysis and Calorimetry, 2007, 88, 425-429.	3.6	20
601	The double porogen approach as a new technique for the fabrication of interconnected poly(L-lactic) Tj ETQq1 1 2007, 18, 185-193.	. 0.784314 3.6	rgBT /Overlo
602	Glass transition of semi-crystalline PLLA with different morphologies as studied by dynamic mechanical analysis. Colloid and Polymer Science, 2007, 285, 575-580.	2.1	44
603	Liquid Crystalline Behaviour of Chitosan in Formic, Acetic, Monochloroacetic Acid Solutions. Materials Science Forum, 2006, 514-516, 1010-1014.	0.3	17
604	Phosphorous Containing Chitosan Beads for Controlled Oral Drug Delivery. Journal of Bioactive and Compatible Polymers, 2006, 21, 327-340.	2.1	72
605	Crystallization of Poly(I-lactic acid) Probed with Dielectric Relaxation Spectroscopy. Macromolecules, 2006, 39, 6513-6520.	4.8	89
606	Thermal characterization of a vinylidene fluoride-trifluorethylene (75–25) (%mol) copolymer film. Journal of Non-Crystalline Solids, 2006, 352, 5376-5381.	3.1	26
607	Ethylene Polymerization over Transition Metal Supported Catalysts. III. Vanadium. E-Polymers, 2006, 6, .	3.0	1
608	Dynamic-mechanical behavior of hydrophobic–hydrophilic interpenetrating copolymer networks. Polymer Engineering and Science, 2006, 46, 930-937.	3.1	6
609	Chitosan derivatives bearing cyclodextrin cavitiesas novel adsorbent matrices. Carbohydrate Polymers, 2006, 63, 153-166.	10.2	177
610	Stress–strain experiments as a mechanical spectroscopic technique to characterise the glass transition dynamics in poly(ethylene terephthalate). Polymer Testing, 2006, 25, 953-960.	4.8	18
611	Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials, 2006, 27, 6123-6137.	11.4	411
612	Effect of structural relaxation at physiological temperature on the mechanical property of poly(L-lactic acid) studied by microhardness measurements. Journal of Applied Polymer Science, 2006, 100, 2628-2633.	2.6	43

#	Article	IF	Citations
613	Dielectric characterization of neutralized and nonneutralized chitosan upon drying. Biopolymers, 2006, 81, 149-159.	2.4	19
614	Drug Release of pH/Temperature-Responsive Calcium Alginate/Poly(N-isopropylacrylamide) Semi-IPN Beads. Macromolecular Bioscience, 2006, 6, 358-363.	4.1	150
615	Stimuli-Responsive Hydrogels Based on Polysaccharides Incorporated with Thermo-Responsive Polymers as Novel Biomaterials. Macromolecular Bioscience, 2006, 6, 991-1008.	4.1	319
616	Influence of Semicrystalline Morphology on the Glass Transition of Poly(L-lactic acid). Macromolecular Chemistry and Physics, 2006, 207, 1262-1271.	2.2	92
617	Enzymatic Degradation Behaviour of Starch Conjugated Phosphorylated Chitosan. Materials Science Forum, 2006, 514-516, 995-999.	0.3	3
618	Innovative Technique for the Preparation of Porous Bilayer Hydroxyapatite/Chitosan Scaffolds for Osteochondral Applications. Key Engineering Materials, 2006, 309-311, 927-930.	0.4	8
619	Study of the Fosfosal Controlled Permeation through Glutaraldehyde Crosslinked Chitosan Membranes. Materials Science Forum, 2006, 514-516, 990-994.	0.3	0
620	Chemistry and Applications of Phosphorylated Chitin and Chitosan. E-Polymers, 2006, 6, .	3.0	31
621	Physicochemical Characterization of Novel Chitosan-Soy Protein/ TEOS Porous Hybrids for Tissue Engineering Applications. Materials Science Forum, 2006, 514-516, 1000-1004.	0.3	24
622	Osteochondral Tissue Engineering Constructs with a Cartilage Part Made of Poly(L-lactic Acid) $/$ Starch Blend and a Bioactive Poly(L-Lactic Acid) Composite Layer for Subchondral Bone. Key Engineering Materials, 2006, 309-311, 1109-1112.	0.4	3
623	Influence of Molecular Weight and Crystallinity of Poly(L-Lactic Acid) on the Adhesion and Proliferation of Human Osteoblast Like Cells. Materials Science Forum, 2006, 514-516, 1020-1024.	0.3	13
624	Nanostructure Evolution during Uni-Axial Deformation of PET – A WAXS and SAXS Study Using Synchrotron Radiation. Materials Science Forum, 2006, 514-516, 1583-1587.	0.3	4
625	Synthesis of N-Carboxymethyl Chitosan Beads for Controlled Drug Delivery Applications. Materials Science Forum, 2006, 514-516, 1015-1019.	0.3	9
626	Effect of Poling on the Mechanical Properties of \hat{l}^2 -Poly(Vinylidene Fluoride). Materials Science Forum, 2006, 514-516, 951-955.	0.3	6
627	Copolymerization of ethylene/unsaturated alcohols using nickel catalysts: effect of the ligand on the activity and comonomer incorporation. Journal of Organometallic Chemistry, 2005, 690, 895-909.	1.8	18
628	Glass transition dynamics and structural relaxation of PLLA studied by DSC: Influence of crystallinity. Polymer, 2005, 46, 8258-8265.	3.8	139
629	Properties of melt processed chitosan and aliphatic polyester blends. Materials Science & Drocessing, 2005, 403, 57-68.	5.6	224
630	Structure/mechanical behavior relationships in crossed-lamellar sea shells. Materials Science and Engineering C, 2005, 25, 113-118.	7.3	64

#	Article	IF	CITATIONS
631	Viscoelastic properties of bone: Mechanical spectroscopy studies on a chicken model. Materials Science and Engineering C, 2005, 25, 145-152.	7.3	44
632	Influence of melting conditions on the thermal behaviour of poly(l-lactic acid). European Polymer Journal, 2005, 41, 2335-2342.	5.4	101
633	Intrinsic compensation phenomenon in thermally stimulated depolarisation studies. Thermochimica Acta, 2005, 430, 135-141.	2.7	3
634	On the kinetics of melting and crystallization of poly(l-lactic acid) by TMDSC. Thermochimica Acta, 2005, 430, 201-210.	2.7	43
635	Graft copolymerized chitosanâ€"present status and applications. Carbohydrate Polymers, 2005, 62, 142-158.	10.2	550
636	Functional nanostructured chitosan–siloxane hybrids. Journal of Materials Chemistry, 2005, 15, 3952.	6.7	123
637	Study of the influence of β-radiation on the properties and mineralization of different starch-based biomaterials. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 74B, 560-569.	3.4	13
638	Study of the Segmental Dynamics in Semi-Crystalline Poly(lactic acid) using Mechanical Spectroscopies. Macromolecular Bioscience, 2005, 5, 337-343.	4.1	12
639	Hydroxypropyl Chitosan Bearing \hat{I}^2 -Cyclodextrin Cavities: Synthesis and Slow Release of its Inclusion Complex with a Model Hydrophobic Drug. Macromolecular Bioscience, 2005, 5, 965-973.	4.1	94
640	Thermal and Thermomechanical Behaviour of Polycaprolactone and Starch/Polycaprolactone Blends for Biomedical Applications. Macromolecular Materials and Engineering, 2005, 290, 792-801.	3.6	107
641	Hydroxyapatite Reinforced Chitosan and Polyester Blends for Biomedical Applications. Macromolecular Materials and Engineering, 2005, 290, 1157-1165.	3.6	63
642	Glass Transition Dynamics of Poly(L-lactic acid) during Isothermal Crystallisation Monitored by Real-Time Dielectric Relaxation Spectroscopy Measurements. Macromolecular Rapid Communications, 2005, 26, 1423-1427.	3.9	52
643	Enthalpy relaxation studies in polymethyl methacrylate networks with different crosslinking degrees. Polymer, 2005, 46, 491-504.	3.8	65
644	Using mechanical spectroscopies to study the glass transition dynamics in unsaturated polyester resins cured with different styrene contents. Colloid and Polymer Science, 2005, 283, 753-761.	2.1	0
645	Physical properties and biocompatibility of chitosan/soy blended membranes. Journal of Materials Science: Materials in Medicine, 2005, 16, 575-579.	3.6	108
646	Role of thermal history on the thermal behavior of poly(L-lactic acid) studied by DSC and optical microscopy. Journal of Thermal Analysis and Calorimetry, 2005, 80, 171-175.	3.6	26
647	Thermal analysis of the multiple melting behavior of poly(butylene succinate-co-adipate). Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3077-3082.	2.1	41
648	Morphological Contributions to Glass Transition in Poly(l-lactic acid). Macromolecules, 2005, 38, 4712-4718.	4.8	137

#	Article	IF	CITATIONS
649	Study of the Molecular Mobility in Polymers with the Thermally Stimulated Recovery Techniqueâ€"A Review. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2005, 45, 99-124.	2.2	5
650	Influence of Low-Temperature Nucleation on the Crystallization Process of Poly(l-lactide). Biomacromolecules, 2005, 6, 3283-3290.	5 . 4	83
651	The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part Il—model development, calibration and verification. Journal of Hydraulic Research/De Recherches Hydrauliques, 2005, 43, 56-70.	1.7	208
652	Molecular dynamics in polymeric systems. E-Polymers, 2004, 4, .	3.0	1
653	Thermal stability of side-chain polymer liquid crystals. E-Polymers, 2004, 4, .	3.0	0
654	Behaviour of the Ferroelectric Phase Transition of P(VDF/TrFE) (75/25) with Increasing Deformation. Ferroelectrics, 2004, 304, 23-26.	0.6	3
655	Optimization of the formulation and mechanical properties of starch based partially degradable bone cements. Journal of Materials Science: Materials in Medicine, 2004, 15, 73-83.	3.6	65
656	Influence of Â-radiation sterilisation in properties of new chitosan/soybean protein isolate membranes for guided bone regeneration. Journal of Materials Science: Materials in Medicine, 2004, 15, 523-528.	3.6	30
657	Starch–chitosan hydrogels prepared by reductive alkylation cross-linking. Journal of Materials Science: Materials in Medicine, 2004, 15, 759-765.	3.6	59
658	Preparation and characterisation in simulated body conditions of glutaraldehyde crosslinked chitosan membranes. Journal of Materials Science: Materials in Medicine, 2004, 15, 1105-1112.	3.6	93
659	Morphology and mechanical properties of injection molded poly(ethylene terephthalate). Polymer Engineering and Science, 2004, 44, 2174-2184.	3.1	42
660	Production and Characterization of Chitosan Fibers and 3â€D Fiber Mesh Scaffolds for Tissue Engineering Applications. Macromolecular Bioscience, 2004, 4, 811-819.	4.1	224
661	Fibers and 3D Mesh Scaffolds from Biodegradable Starch-Based Blends: Production and Characterization. Macromolecular Bioscience, 2004, 4, 776-784.	4.1	50
662	Cold Crystallization of PLLA Studied by Simultaneous SAXS and WAXS. Macromolecular Materials and Engineering, 2004, 289, 910-915.	3.6	121
663	Dynamic mechanical analysis and creep behaviour of \hat{I}^2 -PVDF films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 370, 336-340.	5.6	84
664	Effect of the mechanical stretching on the ferroelectric properties of a (VDF/TrFE) (75/25) copolymer film. Solid State Communications, 2004, 129, 5-8.	1.9	19
665	Characterization of poled and non-poled β-PVDF films using thermal analysis techniques. Thermochimica Acta, 2004, 424, 201-207.	2.7	115
666	Departure from the Vogel behaviour in the glass transitionâ€"thermally stimulated recovery, creep and dynamic mechanical analysis studies. Polymer, 2004, 45, 1007-1017.	3.8	51

#	Article	IF	CITATIONS
667	A simple method for calibrating the temperature in dynamic mechanical analysers and thermal mechanical analysers. Polymer Testing, 2004, 23, 423-430.	4.8	16
668	Viscoelastic monitoring of starch-based biomaterials in simulated physiological conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 370, 321-325.	5 . 6	23
669	Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Composites Science and Technology, 2004, 64, 789-817.	7.8	374
670	Electrical Response of Î ² -PVDF in a Constant Uniaxial Strain Rate Deformation. Ferroelectrics, 2004, 304, 43-46.	0.6	2
671	Data Analysis with the Vogelâ 'Fulcherâ 'Tammannâ 'Hesse Equation. Journal of Physical Chemistry A, 2004, 108, 10824-10833.	2.5	29
672	Molecular Motions in Chitosan Studied by Dielectric Relaxation Spectroscopy. Biomacromolecules, 2004, 5, 2073-2078.	5.4	49
673	Nanostructured Composites Based on Polyethylene–Polyamide Blends. II. Probing the Orientation in Polyethylene–Polyamide Nanocomposites and Their Precursors. Journal of Macromolecular Science - Physics, 2004, 43, 163-176.	1.0	9
674	Viscoelastic Behavior of Poly(methyl methacrylate) Networks with Different Cross-Linking Degrees. Macromolecules, 2004, 37, 3735-3744.	4.8	103
675	Influence of the sample mass on the study of the glass transition and the structural relaxation by differential scanning calorimetry. Journal of Non-Crystalline Solids, 2004, 337, 68-77.	3.1	17
676	Chitosan-Based Particles as Controlled Drug Delivery Systems. Drug Delivery, 2004, 12, 41-57.	5.7	431
677	Glass Transition And Compensation Phenomenon In Thermally Stimulated Studies On Polymers. Materials Research Innovations, 2004, 8, 136-137.	2.3	1
678	Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. Journal of Materials Science: Materials in Medicine, 2003, 14, 127-135.	3.6	306
679	The Effect of Transreactions on the Structure and Dynamic Mechanical Properties of 1:1 Poly(ethylene) Tj ETQq1 1 Macromolecular Materials and Engineering, 2003, 288, 778-788.	l 0.78431	4 rgBT /Ove 18
680	Analysis of the thermal environment inside the furnace of a dynamic mechanical analyser. Polymer Testing, 2003, 22, 471-481.	4.8	11
681	(R=alkyl or aryl) complexes as catalysts for ethylene polymerization. Inorganic Chemistry Communication, 2003, 6, 331-334.	3.9	10
682	Creep of PVDF monofilament sutures: service performance prediction from short-term tests. Polymer, 2003, 44, 4293-4300.	3.8	22
683	Chain Reorientation in \hat{I}^2 -PVDF Films Upon Transverse Mechanical Deformation Studied by SEM and Dielectric Relaxation. Ferroelectrics, 2003, 294, 73-83.	0.6	4
684	Mechanical Spectroscopy Studies on a Side-Chain Liquid Crystalline Polysiloxane. Comparison with Dielectric and DSC Data. Macromolecules, 2003, 36, 2816-2824.	4.8	18

#	Article	IF	Citations
685	Nature-inspired calcium phosphate coatings: present status and novel advances in the science of mimicry. Current Opinion in Solid State and Materials Science, 2003, 7, 309-318.	11.5	92
686	Hydrogels And Hydrophilic Partially Degradable Bone Cements Based On Biodegradable Blends Incorporating Starch., 2003,, 243-260.		10
687	Bioactive Composite Chitosan Membranes to Be Used in Bone Regeneration Applications. Key Engineering Materials, 2003, 240-242, 423-426.	0.4	2
688	Study of the viscoelastic properties of PET by thermally stimulated recovery. Plastics, Rubber and Composites, 2003, 32, 281-290.	2.0	4
689	Cooperative Character of the Relaxation Processes in a Side-Chain Liquid Crystalline Polymer. Journal of Macromolecular Science - Physics, 2003, 42, 1169-1182.	1.0	14
690	Mechanical Characterization and Influence of the High Temperature Shrinkage of Î ² -PVDF Films on its Electromechanical Properties. Ferroelectrics, 2003, 294, 61-71.	0.6	17
691	Cooperative and Local Relaxations in Complex Systems: Polymers and Crystals. Ferroelectrics, 2002, 270, 271-276.	0.6	7
692	The Dynamics of the Glass Transition in a Semicrystalline PET Studied by Mechanical and Dielectric Spectroscopic Methods. Defect and Diffusion Forum, 2002, 206-207, 131-134.	0.4	5
693	Miscibility of a PET/PEN Blend Studied by Dynamic Mechanical Analysis. Defect and Diffusion Forum, 2002, 206-207, 135-138.	0.4	2
694	Mechanical, dynamic-mechanical, and thermal properties of soy protein-based thermoplastics with potential biomedical applications. Journal of Macromolecular Science - Physics, 2002, 41, 33-46.	1.0	37
695	Dynamic Mechanical Analysis in Polymers for Medical Applications. , 2002, , 139-164.		22
696	Dielectric Behavior in an Oriented \hat{l}^2 -PVDF Film and Chain Reorientation Upon Transverse Mechanical Deformation. Ferroelectrics, 2002, 273, 15-20.	0.6	38
697	Phase heterogeneity in poly(methyl acrylate)-polystyrene sequential interpenetrating polymer networks studied by thermally stimulated recovery. Journal of Non-Crystalline Solids, 2002, 307-310, 758-764.	3.1	9
698	Polymerisation of ethylene catalysed by mono-imine-2,6-diacetylpyridine iron/methylaluminoxane (MAO) catalyst system: effect of the ligand on polymer microstructure. Polymer International, 2002, 51, 1301-1303.	3.1	23
699	Influence of experimental variables on thermally stimulated recovery results: analysis of simulations and real data on a polymeric system. Polymer International, 2002, 51, 434-442.	3.1	3
700	Mechanical performance of starch based bioactive composite biomaterials molded with preferred orientation. Polymer Engineering and Science, 2002, 42, 1032-1045.	3.1	50
701	Molecular mobility in polymers studied with thermally stimulated recovery. II. Study of the glass transition of a semicrystalline PET and comparison with DSC and DMA results. Polymer, 2002, 43, 3627-3633.	3.8	39
702	Glass transition and structural relaxation in semi-crystalline poly(ethylene terephthalate): a DSC study. Polymer, 2002, 43, 4111-4122.	3.8	146

#	Article	IF	CITATIONS
703	New partially degradable and bioactive acrylic bone cements based on starch blends and ceramic fillers. Biomaterials, 2002, 23, 1883-1895.	11.4	152
704	Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. Biomaterials, 2002, 23, 1955-1966.	11.4	311
705	The viscoelastic properties of cork. Journal of Materials Science, 2002, 37, 257-263.	3.7	97
706	Molecular mobility in polymers studied with thermally stimulated recovery. Magyar Apróvad Közlemények, 2002, 70, 633-649.	1.4	10
707	Cooperativity in the Crystalline α-Relaxation of Polyethylene. Macromolecules, 2001, 34, 8825-8828.	4.8	34
708	Molecular mobility in a thermoset as seen by TSR and DMA near Tg. Materials Research Innovations, 2001, 4, 170-178.	2.3	13
709	Synthesis, structure, thermal and non-linear optical properties of L-argininium hydrogen selenite. Acta Crystallographica Section B: Structural Science, 2001, 57, 828-832.	1.8	8
710	Structural relaxation in a polyester thermoset as seen by thermally stimulated recovery. Polymer, 2001, 42, 4173-4180.	3.8	18
711	Viscoelastic behaviour and time–temperature correspondence of HDPE with varying levels of process-induced orientation. Polymer, 2001, 42, 6187-6198.	3.8	55
712	Effects of the strain rate and temperature in stress–strain tests: study of the glass transition of a polyamide-6. Polymer Testing, 2001, 20, 937-943.	4.8	19
713	Synthesis of polar vinyl monomer-olefin copolymers by α-diimine nickel catalyst. Polymer International, 2001, 50, 579-587.	3.1	18
714	FTIR AND DSC STUDIES OF MECHANICALLY DEFORMED \hat{l}^2 -PVDF FILMS. Journal of Macromolecular Science - Physics, 2001, 40, 517-527.	1.0	386
715	Temperature Calibration in Dielectric Measurements. Magyar Apróvad Közlemények, 2001, 65, 37-49.	1.4	9
716	Re-crystallization of MNA under a strong dc electric field. Solid State Sciences, 2001, 3, 733-740.	3.2	5
717	Mechanical Behaviour of Polyethylene/Hydroxyapatite Bone-Analogue Composites Moulded with an Induced Anisotropy. Key Engineering Materials, 2001, 218-220, 469-474.	0.4	0
718	Simple versus cooperative relaxations in complex correlated systems. Journal of Applied Physics, 2001, 89, 1844.	2.5	11
719	Effects of moisture and degradation time over the mechanical dynamical performance of starch-based biomaterials. Journal of Applied Polymer Science, 2000, 78, 2345-2357.	2.6	21
720	Chemical modification of starch based biodegradable polymeric blends: effects on water uptake, degradation behaviour and mechanical properties. Polymer Degradation and Stability, 2000, 70, 161-170.	5.8	162

#	Article	IF	CITATIONS
721	Temperature correction of dynamic mechanical and thermomechanical analysers during heating, cooling and isothermal experiments. Thermochimica Acta, 2000, 346, 133-145.	2.7	8
722	Modelling of TSDC results in polymeric materials. Journal Physics D: Applied Physics, 2000, 33, 280-285.	2.8	6
723	Relaxation Studies in PEO/PMMA Blends. Macromolecules, 2000, 33, 1002-1011.	4.8	87
724	Comparing dielectric measurements on poly(ethylene terephthalate) at constant heating rates with isothermal measurements. Polymer, 1999, 40, 2675-2679.	3.8	5
725	The relaxation frequency as observed in thermally stimulated depolarisation current experiments in polymers. Thermochimica Acta, 1999, 332, 161-170.	2.7	27
726	Stress release in oriented HIPS as observed by dynamic mechanical analysis. Thermochimica Acta, 1999, 332, 171-177.	2.7	10
727	Dynamic mechanical properties of hydroxyapatite-reinforced and porous starch-based degradable biomaterials. Journal of Materials Science: Materials in Medicine, 1999, 10, 857-862.	3.6	49
728	Molecular motions in a polycarbonate composite as studied by thermally stimulated recovery and dynamic mechanical analysis. Macromolecular Symposia, 1999, 148, 437-454.	0.7	13
729	Local motions in side-chain liquid crystalline polymers. A thermally stimulated currents study. Thermochimica Acta, 1998, 323, 65-73.	2.7	22
730	Modelling of thermally stimulated depolarization current peaks obtained by global and thermal cleaning experiments. Journal Physics D: Applied Physics, 1998, 31, 2898-2907.	2.8	18
731	<title>Physical significance of the compensation behavior associated with glass transition relaxation as observed by thermally stimulated currents</title> ., 1997, 3181, 59.		0
732	Some comments on the significance of the compensation effect observed in thermally stimulated current experiments. Polymer, 1997, 38, 1081-1089.	3.8	73
733	Dipolar relaxations in the glass transition region and in the liquid crystalline phase of two side-chain liquid crystalline polysiloxanes. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 2067-2075.	2.1	16
734	Dipolar relaxations in a side-chain polyacrylate liquid crystal. A study by thermally stimulated currents. Thermochimica Acta, 1996, 285, 347-359.	2.7	14
735	Multiple and inter-related relaxation mechanisms in the mesophase of side-chain liquid crystalline polysiloxanes: a thermally stimulated currents study. Polymer, 1996, 37, 3161-3164.	3.8	5
736	Dipolar relaxation mechanisms in the vitreous state, in the glass transition region and in the mesophase, of a side chain polysiloxane liquid crystal. Liquid Crystals, 1996, 20, 201-217.	2.2	42
737	The Thermally Stimulated Currents Spectrum of Side-Chain Liquid Crystalline Polymers. A Further Contribution for the Attribution of the Different Discharges at the Molecular Level. Molecular Crystals and Liquid Crystals, 1996, 281, 267-278.	0.3	10
738	Molecular motions in a side-chain liquid-crystalline polymethacrylate. A thermally stimulated currents study of the dipolar relaxations in the vitreous and liquid-crystalline phases and at the glass transition. Macromolecular Chemistry and Physics, 1995, 196, 2289-2301.	2.2	9

#	Article	IF	CITATIONS
739	Dielectric behaviour of a side-chain-bearing liquid-crystalline polysiloxane. Journal of Thermal Analysis, 1995, 44, 1037-1046.	0.6	17
740	The molecular relaxation mechanisms in cork as studied by thermally stimulated discharge currents. Journal of Materials Science, 1995, 30, 2035-2041.	3.7	16
741	Absorbed water in the cork structure. A study by thermally stimulated currents, dielectric relaxation spectroscopy, isothermal depolarization experiments and differential scanning calorimetry. Journal of Materials Science, 1995, 30, 4394-4400.	3.7	17
742	A thermally stimulated discharge currents study of the molecular motions in two polysiloxane side-chain liquid crystalline polymers. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 269-277.	2.1	22
743	Dipolar Motions in Two Side-Chain Liquid-Crystalline Polysiloxanes Studied by the TSDC Technique. Molecular Crystals and Liquid Crystals, 1995, 261, 567-575.	0.3	3
744	Molecular motions in a rigid backbone polymer: poly(n-hexyl isocyanate). A Study by thermally stimulated currents. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 2003.	1.7	8
745	The dipolar relaxation behaviour of a liquid-crystalline side-chain polymer as studied by thermally stimulated discharge currents. Polymer, 1994, 35, 5170-5178.	3.8	31
746	Molecular motions of side-chain liquid crystalline polymers in the liquid crystalline phase studied by the thermally stimulated currents technique. Polymer, 1994, 35, 3561-3564.	3.8	27
747	Î ² -PVDF Membranes Induce Cellular Proliferation and Differentiation in Static and Dynamic Conditions. Materials Science Forum, 0, 587-588, 72-76.	0.3	23
748	Mineralization of Chitosan Membrane Using a Double Diffusion System for Bone Related Applications. Materials Science Forum, 0, 587-588, 77-81.	0.3	8
749	Physical Properties of an Artificial Extracellular Matrix Based on a Crosslinked Elastin-Like Polymer. Materials Science Forum, 0, 587-588, 47-51.	0.3	0
750	Bioactivity and Viscoelastic Characterization in Physiological Simulated Conditions of Chitosan/Bioglass® Composite Membranes. Materials Science Forum, 0, 636-637, 26-30.	0.3	4
751	Preparation of Chitosan Scaffolds for Tissue Engineering Using Supercritical Fluid Technology. Materials Science Forum, 0, 636-637, 22-25.	0.3	15
752	New Composite Membranes Containing Bioactive Glass-Ceramic Nanoparticles and Chitosan for Biomedical Applications. Materials Science Forum, 0, 636-637, 31-35.	0.3	6
753	Biomimetic Materials: Smart Polymer Surfaces for Tissue Engineering. , 0, , 932-946.		0
754	Mechanical Characterization., 0,, 4399-4410.		0
755	Chapter 8. Bioactive Nanoparticles, Nanofibers, and Polymeric Nanocomposites. RSC Smart Materials, 0, , 183-220.	0.1	0