
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3516948/publications.pdf Version: 2024-02-01

ΙΟΑξΟ Ε ΜΑΝΟ

#	Article	IF	CITATIONS
1	Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. Journal of the Royal Society Interface, 2007, 4, 999-1030.	3.4	969
2	Molecular Interactions Driving the Layer-by-Layer Assembly of Multilayers. Chemical Reviews, 2014, 114, 8883-8942.	47.7	697
3	Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. International Journal of Biological Macromolecules, 2008, 43, 401-414.	7.5	672
4	Stimuliâ€Responsive Polymeric Systems for Biomedical Applications. Advanced Engineering Materials, 2008, 10, 515-527.	3.5	579
5	Graft copolymerized chitosan—present status and applications. Carbohydrate Polymers, 2005, 62, 142-158.	10.2	550
6	Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomaterialia, 2011, 7, 1009-1018.	8.3	487
7	Natural polymers for the microencapsulation of cells. Journal of the Royal Society Interface, 2014, 11, 20140817.	3.4	480
8	Polymer/bioactive glass nanocomposites for biomedical applications: A review. Composites Science and Technology, 2010, 70, 1764-1776.	7.8	451
9	Chitosan-Based Particles as Controlled Drug Delivery Systems. Drug Delivery, 2004, 12, 41-57.	5.7	431
10	Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials, 2006, 27, 6123-6137.	11.4	411
11	FTIR AND DSC STUDIES OF MECHANICALLY DEFORMED Î ² -PVDF FILMS. Journal of Macromolecular Science - Physics, 2001, 40, 517-527.	1.0	386
12	Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Composites Science and Technology, 2004, 64, 789-817.	7.8	374
13	Stimuli-Responsive Hydrogels Based on Polysaccharides Incorporated with Thermo-Responsive Polymers as Novel Biomaterials. Macromolecular Bioscience, 2006, 6, 991-1008.	4.1	319
14	Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. Biomaterials, 2002, 23, 1955-1966.	11.4	311
15	Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. Journal of Materials Science: Materials in Medicine, 2003, 14, 127-135.	3.6	306
16	Electrically Conductive Chitosan/Carbon Scaffolds for Cardiac Tissue Engineering. Biomacromolecules, 2014, 15, 635-643.	5.4	306
17	Genipinâ€crossâ€linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2010, 95A, 465-475.	4.0	291
18	Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries. Trends in Biotechnology, 2007, 25, 577-583.	9.3	289

#	Article	IF	CITATIONS
19	Controlling Cell Behavior Through the Design of Polymer Surfaces. Small, 2010, 6, 2208-2220.	10.0	289
20	Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomaterialia, 2012, 8, 289-301.	8.3	276
21	Polyelectrolyte multilayered assemblies in biomedical technologies. Chemical Society Reviews, 2014, 43, 3453.	38.1	262
22	Bone physiology as inspiration for tissue regenerative therapies. Biomaterials, 2018, 185, 240-275.	11.4	259
23	Novel Genipin-Cross-Linked Chitosan/Silk Fibroin Sponges for Cartilage Engineering Strategies. Biomacromolecules, 2008, 9, 2764-2774.	5.4	240
24	Stimuliâ€Responsive Nanocomposite Hydrogels for Biomedical Applications. Advanced Functional Materials, 2021, 31, 2005941.	14.9	234
25	Natural and genetically engineered proteins for tissue engineering. Progress in Polymer Science, 2012, 37, 1-17.	24.7	227
26	Production and Characterization of Chitosan Fibers and 3â€Ð Fiber Mesh Scaffolds for Tissue Engineering Applications. Macromolecular Bioscience, 2004, 4, 811-819.	4.1	224
27	Properties of melt processed chitosan and aliphatic polyester blends. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 403, 57-68.	5.6	224
28	Bionanocomposites from lignocellulosic resources: Properties, applications and future trends for their use in the biomedical field. Progress in Polymer Science, 2013, 38, 1415-1441.	24.7	224
29	Osteochondral defects: present situation and tissue engineering approaches. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1, 261-273.	2.7	209
30	Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration. Acta Biomaterialia, 2012, 8, 4173-4180.	8.3	209
31	The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part II—model development, calibration and verification. Journal of Hydraulic Research/De Recherches Hydrauliques, 2005, 43, 56-70.	1.7	208
32	Extracellular vesicles, exosomes and shedding vesicles in regenerative medicine – a new paradigm for tissue repair. Biomaterials Science, 2018, 6, 60-78.	5.4	207
33	Marine Origin Polysaccharides in Drug Delivery Systems. Marine Drugs, 2016, 14, 34.	4.6	205
34	Chitosan/Poly(É›-caprolactone) blend scaffolds for cartilage repair. Biomaterials, 2011, 32, 1068-1079.	11.4	204
35	Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, e97-e107.	2.7	201
36	Biomimetic design of materials and biomaterials inspired by the structure of nacre. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 1587-1605.	3.4	193

#	Article	lF	CITATIONS
37	Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chemistry, 2017, 19, 1208-1220.	9.0	190
38	Gellan gum: A new biomaterial for cartilage tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2010, 93A, 852-863.	4.0	185
39	Chitosan derivatives bearing cyclodextrin cavitiesas novel adsorbent matrices. Carbohydrate Polymers, 2006, 63, 153-166.	10.2	177
40	Bioinspired Degradable Substrates with Extreme Wettability Properties. Advanced Materials, 2009, 21, 1830-1834.	21.0	174
41	Materials of marine origin: a review on polymers and ceramics of biomedical interest. International Materials Reviews, 2012, 57, 276-306.	19.3	173
42	Development of Injectable Hyaluronic Acid/Cellulose Nanocrystals Bionanocomposite Hydrogels for Tissue Engineering Applications. Bioconjugate Chemistry, 2015, 26, 1571-1581.	3.6	172
43	Dendrimers and derivatives as a potential therapeutic tool in regenerative medicine strategies—A review. Progress in Polymer Science, 2010, 35, 1163-1194.	24.7	171
44	Carrageenan-Based Hydrogels for the Controlled Delivery of PDGF-BB in Bone Tissue Engineering Applications. Biomacromolecules, 2009, 10, 1392-1401.	5.4	165
45	Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 98, 57-66.	4.3	164
46	Nanostructured Polymeric Coatings Based on Chitosan and Dopamineâ€Modified Hyaluronic Acid for Biomedical Applications. Small, 2014, 10, 2459-2469.	10.0	163
47	Chemical modification of starch based biodegradable polymeric blends: effects on water uptake, degradation behaviour and mechanical properties. Polymer Degradation and Stability, 2000, 70, 161-170.	5.8	162
48	Design of spherically structured 3D in vitro tumor models -Advances and prospects. Acta Biomaterialia, 2018, 75, 11-34.	8.3	155
49	Status and future scope of plant-based green hydrogels in biomedical engineering. Applied Materials Today, 2019, 16, 213-246.	4.3	154
50	New partially degradable and bioactive acrylic bone cements based on starch blends and ceramic fillers. Biomaterials, 2002, 23, 1883-1895.	11.4	152
51	Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter, 2012, 2, 278-289.	2.6	151
52	Drug Release of pH/Temperature-Responsive Calcium Alginate/Poly(N-isopropylacrylamide) Semi-IPN Beads. Macromolecular Bioscience, 2006, 6, 358-363.	4.1	150
53	Development of new chitosan/carrageenan nanoparticles for drug delivery applications. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1265-1272.	4.0	150
54	Development of bioactive and biodegradable chitosan-based injectable systems containing bioactive glass nanoparticles. Acta Biomaterialia, 2009, 5, 115-123.	8.3	150

#	Article	IF	CITATIONS
55	Chitosan Scaffolds Containing Hyaluronic Acid for Cartilage Tissue Engineering. Tissue Engineering - Part C: Methods, 2011, 17, 717-730.	2.1	149
56	Preparation and in vitro characterization of scaffolds of poly(l-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomaterialia, 2008, 4, 1297-1306.	8.3	148
57	Bioinspired Ultratough Hydrogel with Fast Recovery, Selfâ€Healing, Injectability and Cytocompatibility. Advanced Materials, 2017, 29, 1700759.	21.0	148
58	Glass transition and structural relaxation in semi-crystalline poly(ethylene terephthalate): a DSC study. Polymer, 2002, 43, 4111-4122.	3.8	146
59	Preparation and <i>in vitro</i> characterization of novel bioactive glass ceramic nanoparticles. Journal of Biomedical Materials Research - Part A, 2009, 88A, 304-313.	4.0	144
60	Designing biomaterials based on biomineralization of bone. Journal of Materials Chemistry, 2010, 20, 2911.	6.7	144
61	Interactions between cells or proteins and surfaces exhibiting extreme wettabilities. Soft Matter, 2013, 9, 2985.	2.7	143
62	Gellan Gum Injectable Hydrogels for Cartilage Tissue Engineering Applications: <i>In Vitro</i> Studies and Preliminary <i>In Vivo</i> Evaluation. Tissue Engineering - Part A, 2010, 16, 343-353.	3.1	142
63	Polymerâ€based microparticles in tissue engineering and regenerative medicine. Biotechnology Progress, 2011, 27, 897-912.	2.6	140
64	Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: In vitro and in vivo assessment of biological performance. Acta Biomaterialia, 2015, 12, 227-241.	8.3	140
65	Glass transition dynamics and structural relaxation of PLLA studied by DSC: Influence of crystallinity. Polymer, 2005, 46, 8258-8265.	3.8	139
66	Mobile amorphous phase fragility in semi-crystalline polymers: Comparison of PET and PLLA. Polymer, 2007, 48, 1012-1019.	3.8	138
67	Morphological Contributions to Glass Transition in Poly(l-lactic acid). Macromolecules, 2005, 38, 4712-4718.	4.8	137
68	Recent progresses in the adsorption of organic, inorganic, and gas compounds by MCM-41-based mesoporous materials. Microporous and Mesoporous Materials, 2020, 291, 109698.	4.4	132
69	Plasma Surface Modification of Chitosan Membranes: Characterization and Preliminary Cell Response Studies. Macromolecular Bioscience, 2008, 8, 568-576.	4.1	131
70	The osteogenic differentiation of rat bone marrow stromal cells cultured with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles. Biomaterials, 2009, 30, 804-813.	11.4	131
71	Controlled Release Strategies for Bone, Cartilage, and Osteochondral Engineering—Part I: Recapitulation of Native Tissue Healing and Variables for the Design of Delivery Systems. Tissue Engineering - Part B: Reviews, 2013, 19, 308-326.	4.8	131
72	Free-Standing Polyelectrolyte Membranes Made of Chitosan and Alginate. Biomacromolecules, 2013, 14, 1653-1660.	5.4	131

#	Article	IF	CITATIONS
73	Extremely strong and tough hydrogels as prospective candidates for tissue repair – A review. European Polymer Journal, 2015, 72, 344-364.	5.4	129
74	Advanced Bottomâ€Up Engineering of Living Architectures. Advanced Materials, 2020, 32, e1903975.	21.0	127
75	Preparation and characterization of bioactive glass nanoparticles prepared by sol–gel for biomedical applications. Nanotechnology, 2011, 22, 494014.	2.6	124
76	Functional nanostructured chitosan–siloxane hybrids. Journal of Materials Chemistry, 2005, 15, 3952.	6.7	123
77	Mineralized structures in nature: Examples and inspirations for the design of new composite materials and biomaterials. Composites Science and Technology, 2010, 70, 1777-1788.	7.8	123
78	Cell interactions with superhydrophilic and superhydrophobic surfaces. Journal of Adhesion Science and Technology, 2014, 28, 843-863.	2.6	123
79	Cold Crystallization of PLLA Studied by Simultaneous SAXS and WAXS. Macromolecular Materials and Engineering, 2004, 289, 910-915.	3.6	121
80	Chitosan coated alginate beads containing poly(<i>N</i> â€isopropylacrylamide) for dualâ€stimuliâ€responsive drug release. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 84B, 595-603.	3.4	118
81	An investigation of the potential application of chitosan/aloe-based membranes for regenerative medicine. Acta Biomaterialia, 2013, 9, 6790-6797.	8.3	118
82	Self Assembling and Crosslinking of Polyelectrolyte Multilayer Films of Chitosan and Alginate Studied by QCM and IR Spectroscopy. Macromolecular Bioscience, 2009, 9, 776-785.	4.1	117
83	Characterization of poled and non-poled β-PVDF films using thermal analysis techniques. Thermochimica Acta, 2004, 424, 201-207.	2.7	115
84	Preparation and characterization of poly(L-lactic acid)-chitosan hybrid scaffolds with drug release capability. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 81B, 427-434.	3.4	114
85	Green processing of porous chitin structures for biomedical applications combining ionic liquids and supercritical fluid technology. Acta Biomaterialia, 2011, 7, 1166-1172.	8.3	114
86	Preparation of chitosan scaffolds loaded with dexamethasone for tissue engineering applications using supercritical fluid technology. European Polymer Journal, 2009, 45, 141-148.	5.4	111
87	Physical properties and biocompatibility of chitosan/soy blended membranes. Journal of Materials Science: Materials in Medicine, 2005, 16, 575-579.	3.6	108
88	Controlled Release Strategies for Bone, Cartilage, and Osteochondral Engineering—Part II: Challenges on the Evolution from Single to Multiple Bioactive Factor Delivery. Tissue Engineering - Part B: Reviews, 2013, 19, 327-352.	4.8	108
89	Thermal and Thermomechanical Behaviour of Polycaprolactone and Starch/Polycaprolactone Blends for Biomedical Applications. Macromolecular Materials and Engineering, 2005, 290, 792-801.	3.6	107
90	Morphology and miscibility of chitosan/soy protein blended membranes. Carbohydrate Polymers, 2007, 70, 25-31.	10.2	107

#	Article	IF	CITATIONS
91	Extraction and physico-chemical characterization of a versatile biodegradable polysaccharide obtained from green algae. Carbohydrate Research, 2010, 345, 2194-2200.	2.3	106
92	Layerâ€byâ€Layer Assembly of Lightâ€Responsive Polymeric Multilayer Systems. Advanced Functional Materials, 2014, 24, 5624-5648.	14.9	106
93	Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering. PLoS ONE, 2013, 8, e55451.	2.5	105
94	Hybrid cork–polymer composites containing sisal fibre: Morphology, effect of the fibre treatment on the mechanical properties and tensile failure prediction. Composite Structures, 2013, 105, 153-162.	5.8	104
95	Viscoelastic Behavior of Poly(methyl methacrylate) Networks with Different Cross-Linking Degrees. Macromolecules, 2004, 37, 3735-3744.	4.8	103
96	Effect of the labelling ratio on the photophysics of fluorescein isothiocyanate (FITC) conjugated to bovine serum albumin. Photochemical and Photobiological Sciences, 2007, 6, 152-158.	2.9	103
97	Two-Dimensional Open Microfluidic Devices by Tuning the Wettability on Patterned Superhydrophobic Polymeric Surface. Applied Physics Express, 2010, 3, 085205.	2.4	103
98	Development and Characterization of a Novel Hybrid Tissue Engineering–Based Scaffold for Spinal Cord Injury Repair. Tissue Engineering - Part A, 2010, 16, 45-54.	3.1	103
99	Wettability Influences Cell Behavior on Superhydrophobic Surfaces with Different Topographies. Biointerphases, 2012, 7, 46.	1.6	103
100	Biomedical applications of laminarin. Carbohydrate Polymers, 2020, 232, 115774.	10.2	103
101	Potential applications of natural origin polymer-based systems in soft tissue regeneration. Critical Reviews in Biotechnology, 2010, 30, 200-221.	9.0	102
102	Strategic Advances in Formation of Cellâ€inâ€Shell Structures: From Syntheses to Applications. Advanced Materials, 2018, 30, e1706063.	21.0	102
103	Influence of melting conditions on the thermal behaviour of poly(l-lactic acid). European Polymer Journal, 2005, 41, 2335-2342.	5.4	101
104	New poly(ε-caprolactone)/chitosan blend fibers for tissue engineering applications. Acta Biomaterialia, 2010, 6, 418-428.	8.3	100
105	Stimuli-responsive chitosan-starch injectable hydrogels combined with encapsulated adipose-derived stromal cells for articular cartilage regeneration. Soft Matter, 2010, 6, 5184.	2.7	100
106	Chemical modification of bioinspired superhydrophobic polystyrene surfaces to control cell attachment/proliferation. Soft Matter, 2011, 7, 8932.	2.7	100
107	Biomimetic Extracellular Environment Based on Natural Origin Polyelectrolyte Multilayers. Small, 2016, 12, 4308-4342.	10.0	100
108	Supercritical fluids in biomedical and tissue engineering applications: a review. International Materials Reviews, 2009, 54, 214-222.	19.3	99

#	Article	IF	CITATIONS
109	High-throughput evaluation of interactions between biomaterials, proteins and cells using patterned superhydrophobic substrates. Soft Matter, 2011, 7, 4147.	2.7	99
110	Carboxymethyl chitosan-graft-phosphatidylethanolamine: Amphiphilic matrices for controlled drug delivery. Reactive and Functional Polymers, 2007, 67, 43-52.	4.1	98
111	Production methodologies of polymeric and hydrogel particles for drug delivery applications. Expert Opinion on Drug Delivery, 2012, 9, 231-248.	5.0	98
112	Effect of crosslinking in chitosan/aloe vera-based membranes for biomedical applications. Carbohydrate Polymers, 2013, 98, 581-588.	10.2	98
113	Chitosan membranes containing micro or nano-size bioactive glass particles: evolution of biomineralization followed by in situ dynamic mechanical analysis. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 20, 173-183.	3.1	98
114	Biomaterials for drug delivery patches. European Journal of Pharmaceutical Sciences, 2018, 118, 49-66.	4.0	98
115	The viscoelastic properties of cork. Journal of Materials Science, 2002, 37, 257-263.	3.7	97
116	Layerâ€by‣ayer Assembly of Chitosan and Recombinant Biopolymers into Biomimetic Coatings with Multiple Stimuliâ€Responsive Properties. Small, 2011, 7, 2640-2649.	10.0	97
117	Chondrogenic potential of injectable <i>κ</i> -carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 550-563.	2.7	97
118	Viscoelastic Properties of Chitosan with Different Hydration Degrees as Studied by Dynamic Mechanical Analysis. Macromolecular Bioscience, 2008, 8, 69-76.	4.1	96
119	Synthesis of Temperature-Responsive Dextran-MA/PNIPAAm Particles for Controlled Drug Delivery Using Superhydrophobic Surfaces. Pharmaceutical Research, 2011, 28, 1294-1305.	3.5	96
120	Hydroxypropyl Chitosan Bearingβ-Cyclodextrin Cavities: Synthesis and Slow Release of its Inclusion Complex with a Model Hydrophobic Drug. Macromolecular Bioscience, 2005, 5, 965-973.	4.1	94
121	Bioinspired superhydrophobic poly(<scp>L</scp> â€lactic acid) surfaces control bone marrow derived cells adhesion and proliferation. Journal of Biomedical Materials Research - Part A, 2009, 91A, 480-488.	4.0	94
122	Preparation and characterisation in simulated body conditions of glutaraldehyde crosslinked chitosan membranes. Journal of Materials Science: Materials in Medicine, 2004, 15, 1105-1112.	3.6	93
123	The use of ionic liquids in the processing of chitosan/silk hydrogels for biomedical applications. Green Chemistry, 2012, 14, 1463.	9.0	93
124	Nature-inspired calcium phosphate coatings: present status and novel advances in the science of mimicry. Current Opinion in Solid State and Materials Science, 2003, 7, 309-318.	11.5	92
125	Influence of Semicrystalline Morphology on the Glass Transition of Poly(L-lactic acid). Macromolecular Chemistry and Physics, 2006, 207, 1262-1271.	2.2	92
126	Antimicrobial functionalized genetically engineered spider silk. Biomaterials, 2011, 32, 4255-4266.	11.4	92

#	Article	IF	CITATIONS
127	Microglia Response and In Vivo Therapeutic Potential of Methylprednisoloneâ€Loaded Dendrimer Nanoparticles in Spinal Cord Injury. Small, 2013, 9, 738-749.	10.0	91
128	Superhydrophobic Chips for Cell Spheroids High-Throughput Generation and Drug Screening. ACS Applied Materials & Interfaces, 2014, 6, 9488-9495.	8.0	91
129	Coating Strategies Using Layerâ€byâ€layer Deposition for Cell Encapsulation. Chemistry - an Asian Journal, 2016, 11, 1753-1764.	3.3	90
130	Crystallization of Poly(l-lactic acid) Probed with Dielectric Relaxation Spectroscopy. Macromolecules, 2006, 39, 6513-6520.	4.8	89
131	Meltâ€based compressionâ€molded scaffolds from chitosan–polyester blends and composites: Morphology and mechanical properties. Journal of Biomedical Materials Research - Part A, 2009, 91A, 489-504.	4.0	89
132	Bioinspired methodology to fabricate hydrogel spheres for multi-applications using superhydrophobic substrates. Soft Matter, 2010, 6, 5868.	2.7	88
133	Chitosan-chondroitin sulphate nanoparticles for controlled delivery of platelet lysates in bone regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, s47-s59.	2.7	88
134	Tailored Freestanding Multilayered Membranes Based on Chitosan and Alginate. Biomacromolecules, 2014, 15, 3817-3826.	5.4	88
135	Relaxation Studies in PEO/PMMA Blends. Macromolecules, 2000, 33, 1002-1011.	4.8	87
136	Development of Gellan Gum-Based Microparticles/Hydrogel Matrices for Application in the Intervertebral Disc Regeneration. Tissue Engineering - Part C: Methods, 2011, 17, 961-972.	2.1	87
137	Novel cork–polymer composites reinforced with short natural coconut fibres: Effect of fibre loading and coupling agent addition. Composites Science and Technology, 2013, 78, 56-62.	7.8	86
138	Bioplotting of a bioactive alginate dialdehyde-gelatin composite hydrogel containing bioactive glass nanoparticles. Biofabrication, 2016, 8, 035005.	7.1	86
139	Synthesis and Characterization of pH-Sensitive Thiol-Containing Chitosan Beads for Controlled Drug Delivery Applications. Drug Delivery, 2007, 14, 9-17.	5.7	85
140	Development of a bioactive glass-polymer composite for wound healing applications. Materials Science and Engineering C, 2017, 76, 224-232.	7.3	85
141	Dynamic mechanical analysis and creep behaviour of β-PVDF films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 370, 336-340.	5.6	84
142	Rheological and mechanical properties of acellular and cellâ€laden methacrylated gellan gum hydrogels. Journal of Biomedical Materials Research - Part A, 2013, 101, 3438-3446.	4.0	84
143	Stimuli-responsive nanocarriers for delivery of bone therapeutics – Barriers and progresses. Journal of Controlled Release, 2018, 273, 51-67.	9.9	84
144	Decellularized Extracellular Matrix for Bioengineering Physiomimetic 3D in Vitro Tumor Models. Trends in Biotechnology, 2020, 38, 1397-1414.	9.3	84

JOãO F MANO

#	Article	IF	CITATIONS
145	Influence of Low-Temperature Nucleation on the Crystallization Process of Poly(l-lactide). Biomacromolecules, 2005, 6, 3283-3290.	5.4	83
146	Stimuliâ€Responsive Thin Coatings Using Elastin‣ike Polymers for Biomedical Applications. Advanced Functional Materials, 2009, 19, 3210-3218.	14.9	83
147	Fabrication of Hydrogel Particles of Defined Shapes Using Superhydrophobicâ€Hydrophilic Micropatterns. Advanced Materials, 2016, 28, 7613-7619.	21.0	83
148	Dexamethasone-loaded scaffolds prepared by supercritical-assisted phase inversion. Acta Biomaterialia, 2009, 5, 2054-2062.	8.3	82
149	Micro/nano-structured superhydrophobic surfaces in the biomedical field: part II: applications overview. Nanomedicine, 2015, 10, 271-297.	3.3	81
150	Biomechanical and cellular segmental characterization of human meniscus: building the basis for Tissue Engineering therapies. Osteoarthritis and Cartilage, 2014, 22, 1271-1281.	1.3	80
151	Incorporation of antimicrobial peptides on functionalized cotton gauzes for medical applications. Carbohydrate Polymers, 2015, 127, 451-461.	10.2	80
152	Silk hydrogels from non-mulberry and mulberry silkworm cocoons processed with ionic liquids. Acta Biomaterialia, 2013, 9, 8972-8982.	8.3	79
153	Enhancement of osteogenic differentiation of human adipose derived stem cells by the controlled release of platelet lysates from hybrid scaffolds produced by supercritical fluid foaming. Journal of Controlled Release, 2012, 162, 19-27.	9.9	78
154	The Potential of Liquid Marbles for Biomedical Applications: A Critical Review. Advanced Healthcare Materials, 2017, 6, 1700192.	7.6	78
155	Preparation of starch-based scaffolds for tissue engineering by supercritical immersion precipitation. Journal of Supercritical Fluids, 2009, 49, 279-285.	3.2	76
156	Multilayered Hierarchical Capsules Providing Cell Adhesion Sites. Biomacromolecules, 2013, 14, 743-751.	5.4	75
157	Some comments on the significance of the compensation effect observed in thermally stimulated current experiments. Polymer, 1997, 38, 1081-1089.	3.8	73
158	Cooperative rearranging region size in semi-crystalline poly(l-lactic acid). Polymer, 2008, 49, 3130-3135.	3.8	73
159	Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: Physicochemical characterization and assessment of rat bone marrow stromal cell viability. Journal of Biomedical Materials Research - Part A, 2009, 91A, 175-186.	4.0	73
160	Phosphorous Containing Chitosan Beads for Controlled Oral Drug Delivery. Journal of Bioactive and Compatible Polymers, 2006, 21, 327-340.	2.1	72
161	Novel 3D scaffolds of chitosan–PLLA blends for tissue engineering applications: Preparation and characterization. Journal of Supercritical Fluids, 2010, 54, 282-289.	3.2	72
162	Cell Adhesion and Proliferation onto Chitosan-based Membranes Treated by Plasma Surface Modification. Journal of Biomaterials Applications, 2011, 26, 101-116.	2.4	72

#	Article	IF	CITATIONS
163	Chitosan/bioactive glass nanoparticles scaffolds with shape memory properties. Carbohydrate Polymers, 2015, 123, 39-45.	10.2	72
164	In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening. Acta Biomaterialia, 2019, 94, 392-409.	8.3	72
165	Microparticles in Contact with Cells: From Carriers to Multifunctional Tissue Modulators. Trends in Biotechnology, 2019, 37, 1011-1028.	9.3	72
166	Genipinâ€Modified Silkâ€Fibroin Nanometric Nets. Macromolecular Bioscience, 2008, 8, 766-774.	4.1	71
167	Layerâ€byâ€layer deposition of antimicrobial polymers on cellulosic fibers: a new strategy to develop bioactive textiles. Polymers for Advanced Technologies, 2013, 24, 1005-1010.	3.2	71
168	Engineering Biomolecular Microenvironments for Cell Instructive Biomaterials. Advanced Healthcare Materials, 2014, 3, 797-810.	7.6	71
169	A novel hanging spherical drop system for the generation of cellular spheroids and high throughput combinatorial drug screening. Biomaterials Science, 2015, 3, 581-585.	5.4	70
170	Hydrogel 3D <i>in vitro</i> tumor models for screening cell aggregation mediated drug response. Biomaterials Science, 2020, 8, 1855-1864.	5.4	70
171	Crosslink Effect and Albumin Adsorption onto Chitosan/Alginate Multilayered Systems: An in situ QCMâ€Ð Study. Macromolecular Bioscience, 2010, 10, 1444-1455.	4.1	69
172	Immobilization of fibronectin in chitosan substrates improves cell adhesion and proliferation. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 316-323.	2.7	69
173	Adhesive nanostructured multilayer films using a bacterial exopolysaccharide for biomedical applications. Journal of Materials Chemistry B, 2013, 1, 2367.	5.8	69
174	Magnetic composite biomaterials for tissue engineering. Biomaterials Science, 2014, 2, 812-818.	5.4	67
175	Drug nano-reservoirs synthesized using layer-by-layer technologies. Biotechnology Advances, 2015, 33, 1310-1326.	11.7	67
176	Cell selective chitosan microparticles as injectable cell carriers for tissue regeneration. Biomaterials, 2015, 43, 23-31.	11.4	67
177	PDLLA enriched with ulvan particles as a novel 3D porous scaffold targeted for bone engineering. Journal of Supercritical Fluids, 2012, 65, 32-38.	3.2	66
178	Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications. Science and Technology of Advanced Materials, 2016, 17, 626-643.	6.1	66
179	Optimization of the formulation and mechanical properties of starch based partially degradable bone cements. Journal of Materials Science: Materials in Medicine, 2004, 15, 73-83.	3.6	65
180	Enthalpy relaxation studies in polymethyl methacrylate networks with different crosslinking degrees. Polymer, 2005, 46, 491-504.	3.8	65

#	Article	IF	CITATIONS
181	Chitosan microparticles as injectable scaffolds for tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2, 378-380.	2.7	65
182	New biotextiles for tissue engineering: Development, characterization and in vitro cellular viability. Acta Biomaterialia, 2013, 9, 8167-8181.	8.3	65
183	Cell Surface Engineering to Control Cellular Interactions. ChemNanoMat, 2016, 2, 376-384.	2.8	65
184	Iron Gall Ink Revisited: In Situ Oxidation of Fe(II)–Tannin Complex for Fluidicâ€interface Engineering. Advanced Materials, 2018, 30, e1805091.	21.0	65
185	Structure/mechanical behavior relationships in crossed-lamellar sea shells. Materials Science and Engineering C, 2005, 25, 113-118.	7.3	64
186	Thermally Responsive Biomineralization on Biodegradable Substrates. Advanced Functional Materials, 2007, 17, 3312-3318.	14.9	64
187	Functionalized superhydrophobic biomimetic chitosan-based films. Carbohydrate Polymers, 2010, 81, 140-144.	10.2	64
188	Hybrid 3D structure of poly(d,l-lactic acid) loaded with chitosan/chondroitin sulfate nanoparticles to be used as carriers for biomacromolecules in tissue engineering. Journal of Supercritical Fluids, 2010, 54, 320-327.	3.2	64
189	Recent Progress on Polysaccharide-Based Hydrogels for Controlled Delivery of Therapeutic Biomolecules. ACS Biomaterials Science and Engineering, 2021, 7, 4102-4127.	5.2	64
190	Hydroxyapatite Reinforced Chitosan and Polyester Blends for Biomedical Applications. Macromolecular Materials and Engineering, 2005, 290, 1157-1165.	3.6	63
191	Ex vivo culturing of stromal cells with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles promotes ectopic bone formation. Bone, 2010, 46, 1424-1435.	2.9	63
192	Superhydrophobic Surfaces Engineered Using Diatomaceous Earth. ACS Applied Materials & Interfaces, 2013, 5, 4202-4208.	8.0	63
193	Micro-/nano-structured superhydrophobic surfaces in the biomedical field: part I: basic concepts and biomimetic approaches. Nanomedicine, 2015, 10, 103-119.	3.3	63
194	Photo-Cross-Linked Laminarin-Based Hydrogels for Biomedical Applications. Biomacromolecules, 2016, 17, 1602-1609.	5.4	63
195	Chitosan/Chondroitin Sulfate Membranes Produced by Polyelectrolyte Complexation for Cartilage Engineering. Biomacromolecules, 2016, 17, 2178-2188.	5.4	62
196	Semipermeable Capsules Wrapping a Multifunctional and Self-regulated Co-culture Microenvironment for Osteogenic Differentiation. Scientific Reports, 2016, 6, 21883.	3.3	62
197	Tuning cell adhesive properties via layer-by-layer assembly of chitosan and alginate. Acta Biomaterialia, 2017, 51, 279-293.	8.3	62
198	Multi-layer pre-vascularized magnetic cell sheets for bone regeneration. Biomaterials, 2020, 231, 119664.	11.4	62

#	Article	IF	CITATIONS
199	Bioinspired multilayer membranes as potential adhesive patches for skin wound healing. Biomaterials Science, 2018, 6, 1962-1975.	5.4	61
200	Effect of processing conditions on morphology and mechanical properties of injection-molded poly(l-lactic acid). Polymer Engineering and Science, 2007, 47, 1141-1147.	3.1	60
201	Dynamic mechanical behavior of starch-based scaffolds in dry and physiologically simulated conditions: Effect of porosity and pore size. Acta Biomaterialia, 2008, 4, 950-959.	8.3	60
202	Nanostructured Multilayer Coatings Combining Chitosan with Bioactive Glass Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 1741-1748.	0.9	60
203	Chitosan/bioactive glass nanoparticles composites for biomedical applications. Biomedical Materials (Bristol), 2012, 7, 054104.	3.3	60
204	Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications. Nanomedicine, 2013, 8, 359-378.	3.3	60
205	Enzymatic Degradation of Polysaccharide-Based Layer-by-Layer Structures. Biomacromolecules, 2016, 17, 1347-1357.	5.4	60
206	Biomedical applications of natural-based polymers combined with bioactive glass nanoparticles. Journal of Materials Chemistry B, 2017, 5, 4555-4568.	5.8	60
207	Starch–chitosan hydrogels prepared by reductive alkylation cross-linking. Journal of Materials Science: Materials in Medicine, 2004, 15, 759-765.	3.6	59
208	Cork based composites using polyolefin's as matrix: Morphology and mechanical performance. Composites Science and Technology, 2010, 70, 2310-2318.	7.8	59
209	Modification of paper using polyhydroxybutyrate to obtain biomimetic superhydrophobic substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 416, 51-55.	4.7	59
210	Chitosan–silica hybrid porous membranes. Materials Science and Engineering C, 2014, 42, 553-561.	7.3	59
211	Role of superhydrophobicity in the biological activity of fibronectin at the cell–material interface. Soft Matter, 2011, 7, 10803.	2.7	58
212	Biomimetic Miniaturized Platform Able to Sustain Arrays of Liquid Droplets for Highâ€Throughput Combinatorial Tests. Advanced Functional Materials, 2014, 24, 5096-5103.	14.9	58
213	pH Responsiveness of Multilayered Films and Membranes Made of Polysaccharides. Langmuir, 2015, 31, 11318-11328.	3.5	58
214	Bioinstructive microparticles for self-assembly of mesenchymal stem Cell-3D tumor spheroids. Biomaterials, 2018, 185, 155-173.	11.4	58
215	Monoâ€dispersed bioactive glass nanospheres: Preparation and effects on biomechanics of mammalian cells. Journal of Biomedical Materials Research - Part A, 2010, 95A, 747-754.	4.0	57
216	From nano- to macro-scale: nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering. Nanomedicine, 2012, 7, 1045-1066.	3.3	57

#	Article	IF	CITATIONS
217	Liquified chitosan–alginate multilayer capsules incorporating poly(<scp>l</scp> -lactic acid) microparticles as cell carriers. Soft Matter, 2013, 9, 2125-2130.	2.7	57
218	Myoconductive and osteoinductive free-standing polysaccharide membranes. Acta Biomaterialia, 2015, 15, 139-149.	8.3	57
219	Surface Engineered Carboxymethylchitosan/Poly(amidoamine) Dendrimer Nanoparticles for Intracellular Targeting. Advanced Functional Materials, 2008, 18, 1840-1853.	14.9	56
220	Influence of Crystallinity in Molecular Motions of Poly(l-lactic acid) Investigated by Dielectric Relaxation Spectroscopy. Macromolecules, 2008, 41, 6419-6430.	4.8	56
221	Recent advances on open fluidic systems for biomedical applications: A review. Materials Science and Engineering C, 2019, 97, 851-863.	7.3	56
222	3D collagen microfibers stimulate the functionality of preadipocytes and maintain the phenotype of mature adipocytes for long term cultures. Acta Biomaterialia, 2019, 84, 194-207.	8.3	56
223	Viscoelastic behaviour and time–temperature correspondence of HDPE with varying levels of process-induced orientation. Polymer, 2001, 42, 6187-6198.	3.8	55
224	Perspectives on: Supercritical Fluid Technology for 3D Tissue Engineering Scaffold Applications. Journal of Bioactive and Compatible Polymers, 2009, 24, 385-400.	2.1	55
225	Multifunctional Compartmentalized Capsules with a Hierarchical Organization from the Nano to the Macro Scales. Biomacromolecules, 2013, 14, 2403-2410.	5.4	55
226	Adhesive free-standing multilayer films containing sulfated levan for biomedical applications. Acta Biomaterialia, 2018, 69, 183-195.	8.3	55
227	Strontium-Doped Bioactive Glass Nanoparticles in Osteogenic Commitment. ACS Applied Materials & Interfaces, 2018, 10, 23311-23320.	8.0	55
228	Properties of new cork–polymer composites: Advantages and drawbacks as compared with commercially available fibreboard materials. Composite Structures, 2011, 93, 3120-3120.	5.8	54
229	Thermoresponsive poly(<i>N</i> â€isopropylacrylamide)â€ <i>g</i> â€methylcellulose hydrogel as a threeâ€dimensional extracellular matrix for cartilageâ€engineered applications. Journal of Biomedical Materials Research - Part A, 2011, 98A, 596-603.	4.0	54
230	The double porogen approach as a new technique for the fabrication of interconnected poly(L-lactic) Tj ETQq0 0 0 2007, 18, 185-193.	rgBT /Ove 3.6	erlock 10 Tf 53
231	Proliferation and differentiation of goat bone marrow stromal cells in 3D scaffolds with tunable hydrophilicity. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 277-286.	3.4	53
232	New Thermo-responsive Hydrogels Based on Poly (N-isopropylacrylamide)/ Hyaluronic Acid Semi-interpenetrated Polymer Networks: Swelling Properties and Drug Release Studies. Journal of Bioactive and Compatible Polymers, 2010, 25, 169-184.	2.1	53
233	Functionalized cork-polymer composites (CPC) by reactive extrusion using suberin and lignin from cork as coupling agents. Composites Part B: Engineering, 2014, 67, 371-380.	12.0	53
234	Compact Saloplastic Membranes of Natural Polysaccharides for Soft Tissue Engineering. Chemistry of Materials, 2015, 27, 7490-7502.	6.7	53

#	Article	IF	CITATIONS
235	Nanoengineering Hybrid Supramolecular Multilayered Biomaterials Using Polysaccharides and Selfâ€Assembling Peptide Amphiphiles. Advanced Functional Materials, 2017, 27, 1605122.	14.9	53
236	Glass Transition Dynamics of Poly(L-lactic acid) during Isothermal Crystallisation Monitored by Real-Time Dielectric Relaxation Spectroscopy Measurements. Macromolecular Rapid Communications, 2005, 26, 1423-1427.	3.9	52
237	Nanostructured self-assembled films containing chitosan fabricated at neutral pH. Carbohydrate Polymers, 2010, 80, 570-573.	10.2	52
238	Layerâ€By‣ayer Technique for Producing Porous Nanostructured 3D Constructs Using Moldable Freeform Assembly of Spherical Templates. Small, 2010, 6, 2644-2648.	10.0	52
239	Fabrication and characterization of Eri silk fibers-based sponges for biomedical application. Acta Biomaterialia, 2016, 32, 178-189.	8.3	52
240	Extraction and characterization of collagen from Antarctic and Sub-Antarctic squid and its potential application in hybrid scaffolds for tissue engineering. Materials Science and Engineering C, 2017, 78, 787-795.	7.3	52
241	Departure from the Vogel behaviour in the glass transition—thermally stimulated recovery, creep and dynamic mechanical analysis studies. Polymer, 2004, 45, 1007-1017.	3.8	51
242	Pectin-coated chitosan microgels crosslinked on superhydrophobic surfaces for 5-fluorouracil encapsulation. Carbohydrate Polymers, 2013, 98, 331-340.	10.2	51
243	Asymmetric PDLLA membranes containing Bioglass® for guided tissue regeneration: Characterization and in vitro biological behavior. Dental Materials, 2013, 29, 427-436.	3.5	51
244	Patterned superhydrophobic surfaces to process and characterize biomaterials and 3D cell culture. Materials Horizons, 2018, 5, 379-393.	12.2	51
245	Mechanical performance of starch based bioactive composite biomaterials molded with preferred orientation. Polymer Engineering and Science, 2002, 42, 1032-1045.	3.1	50
246	Fibers and 3D Mesh Scaffolds from Biodegradable Starch-Based Blends: Production and Characterization. Macromolecular Bioscience, 2004, 4, 776-784.	4.1	50
247	Green synthesis of a temperature sensitive hydrogel. Green Chemistry, 2007, 9, 75-79.	9.0	50
248	Bi-layered constructs based on poly(l-lactic acid) and starch for tissue engineering of osteochondral defects. Materials Science and Engineering C, 2008, 28, 80-86.	7.3	50
249	Combinatorial cell–3D biomaterials cytocompatibility screening for tissue engineering using bioinspired superhydrophobic substrates. Integrative Biology (United Kingdom), 2012, 4, 318.	1.3	50
250	Cork–polymer biocomposites: Mechanical, structural and thermal properties. Materials and Design, 2015, 82, 282-289.	7.0	50
251	Water and Carbon Dioxide: Green Solvents for the Extraction of Collagen/Gelatin from Marine Sponges. ACS Sustainable Chemistry and Engineering, 2015, 3, 254-260.	6.7	50
252	Gellan gumâ€hydroxyapatite composite spongyâ€ŀike hydrogels for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2018, 106, 479-490.	4.0	50

#	Article	IF	CITATIONS
253	Dynamic mechanical properties of hydroxyapatite-reinforced and porous starch-based degradable biomaterials. Journal of Materials Science: Materials in Medicine, 1999, 10, 857-862.	3.6	49
254	Molecular Motions in Chitosan Studied by Dielectric Relaxation Spectroscopy. Biomacromolecules, 2004, 5, 2073-2078.	5.4	49
255	Poly(<i>N</i> â€isopropylacrylamide) surfaceâ€grafted chitosan membranes as a new substrate for cell sheet engineering and manipulation. Biotechnology and Bioengineering, 2008, 101, 1321-1331.	3.3	49
256	pH-Responsive biomineralization onto chitosan grafted biodegradable substrates. Journal of Materials Chemistry, 2008, 18, 2493.	6.7	49
257	Superhydrophobic poly(L-lactic acid) surface as potential bacterial colonization substrate. AMB Express, 2011, 1, 34.	3.0	49
258	Patterned superhydrophobic paper for microfluidic devices obtained by writing and printing. Cellulose, 2013, 20, 2185-2190.	4.9	49
259	High-throughput screening for integrative biomaterials design: exploring advances and new trends. Trends in Biotechnology, 2014, 32, 627-636.	9.3	49
260	Towards the design of 3D multiscale instructive tissue engineering constructs: Current approaches and trends. Biotechnology Advances, 2015, 33, 842-855.	11.7	49
261	Highâ€Throughput Topographic, Mechanical, and Biological Screening of Multilayer Films Containing Musselâ€Inspired Biopolymers. Advanced Functional Materials, 2016, 26, 2745-2755.	14.9	49
262	Hydrophobic Hydrogels: Toward Construction of Floating (Bio)microdevices. Chemistry of Materials, 2016, 28, 3641-3648.	6.7	49
263	Bioinspired bone therapies using naringin: applications and advances. Drug Discovery Today, 2018, 23, 1293-1304.	6.4	49
264	Designing multigradient biomaterials for skin regeneration. Materials Today Advances, 2020, 5, 100051.	5.2	49
265	Freeform 3D printing using a continuous viscoelastic supporting matrix. Biofabrication, 2020, 12, 035017.	7.1	49
266	Development of porous lamellar poly(l-lactic acid) scaffolds by conventional injection molding process. Acta Biomaterialia, 2008, 4, 887-896.	8.3	48
267	Unleashing the potential of supercritical fluids for polymer processing in tissue engineering and regenerative medicine. Journal of Supercritical Fluids, 2013, 79, 177-185.	3.2	48
268	Nanostructured Hollow Tubes Based on Chitosan and Alginate Multilayers. Advanced Healthcare Materials, 2014, 3, 433-440.	7.6	48
269	Layer-by-layer assembled cell instructive nanocoatings containing platelet lysate. Biomaterials, 2015, 48, 56-65.	11.4	48
270	Blood Plasma Derivatives for Tissue Engineering and Regenerative Medicine Therapies. Tissue Engineering - Part B: Reviews, 2018, 24, 454-462.	4.8	48

#	Article	IF	CITATIONS
271	GelMA/bioactive silica nanocomposite bioinks for stem cell osteogenic differentiation. Biofabrication, 2021, 13, 035012.	7.1	48
272	Superhydrophobic Paper in the Development of Disposable Labware and Lab-on-Paper Devices. ACS Applied Materials & Interfaces, 2013, 5, 3731-3737.	8.0	47
273	Autonomous osteogenic differentiation of hASCs encapsulated in methacrylated gellan-gum hydrogels. Acta Biomaterialia, 2016, 41, 119-132.	8.3	47
274	Injectable Biomaterials for Dental Tissue Regeneration. International Journal of Molecular Sciences, 2020, 21, 3442.	4.1	47
275	Proteins and Their Peptide Motifs in Acellular Apatite Mineralization of Scaffolds for Tissue Engineering. Tissue Engineering - Part B: Reviews, 2008, 14, 433-445.	4.8	46
276	Biomimetic Methodology to Produce Polymeric Multilayered Particles for Biotechnological and Biomedical Applications. Small, 2013, 9, 2487-2492.	10.0	46
277	Polypropylene-based cork–polymer composites: Processing parameters and properties. Composites Part B: Engineering, 2014, 66, 210-223.	12.0	46
278	Bioresorbable ureteral stents from natural origin polymers. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 608-617.	3.4	46
279	Antibacterial bioadhesive layer-by-layer coatings for orthopedic applications. Journal of Materials Chemistry B, 2016, 4, 5385-5393.	5.8	46
280	Influence of freezing temperature and deacetylation degree on the performance of freeze-dried chitosan scaffolds towards cartilage tissue engineering. European Polymer Journal, 2017, 95, 232-240.	5.4	46
281	Oxygen releasing materials: Towards addressing the hypoxia-related issues in tissue engineering. Materials Science and Engineering C, 2021, 122, 111896.	7.3	46
282	In vitro evaluation of the behaviour of human polymorphonuclear neutrophils in direct contact with chitosan-based membranes. Journal of Biotechnology, 2007, 132, 218-226.	3.8	45
283	Novel hydroxyapatite/carboxymethylchitosan composite scaffolds prepared through an innovative "autocatalytic―electroless coprecipitation route. Journal of Biomedical Materials Research - Part A, 2009, 88A, 470-480.	4.0	45
284	Design and functionalization of chitin-based microsphere scaffolds. Green Chemistry, 2013, 15, 3252.	9.0	45
285	Microengineered Multicomponent Hydrogel Fibers: Combining Polyelectrolyte Complexation and Microfluidics. ACS Biomaterials Science and Engineering, 2017, 3, 1322-1331.	5.2	45
286	Viscoelastic properties of bone: Mechanical spectroscopy studies on a chicken model. Materials Science and Engineering C, 2005, 25, 145-152.	7.3	44
287	Glass transition of semi-crystalline PLLA with different morphologies as studied by dynamic mechanical analysis. Colloid and Polymer Science, 2007, 285, 575-580.	2.1	44
288	Dual Responsive Nanostructured Surfaces for Biomedical Applications. Langmuir, 2011, 27, 8415-8423.	3.5	44

#	Article	IF	CITATIONS
289	On the kinetics of melting and crystallization of poly(l-lactic acid) by TMDSC. Thermochimica Acta, 2005, 430, 201-210.	2.7	43
290	Effect of structural relaxation at physiological temperature on the mechanical property of poly(L-lactic acid) studied by microhardness measurements. Journal of Applied Polymer Science, 2006, 100, 2628-2633.	2.6	43
291	Micropatterning of Bioactive Glass Nanoparticles on Chitosan Membranes for Spatial Controlled Biomineralization. Langmuir, 2012, 28, 6970-6977.	3.5	43
292	Magnetic Force-Based Tissue Engineering and Regenerative Medicine. Journal of Biomedical Nanotechnology, 2013, 9, 1129-1136.	1.1	43
293	Dipolar relaxation mechanisms in the vitreous state, in the glass transition region and in the mesophase, of a side chain polysiloxane liquid crystal. Liquid Crystals, 1996, 20, 201-217.	2.2	42
294	Morphology and mechanical properties of injection molded poly(ethylene terephthalate). Polymer Engineering and Science, 2004, 44, 2174-2184.	3.1	42
295	Fluorescence probe techniques to monitor protein adsorption-induced conformation changes on biodegradable polymers. Journal of Colloid and Interface Science, 2007, 312, 193-200.	9.4	42
296	<i>In Vivo</i> Performance of Chitosan/Soy-Based Membranes as Wound-Dressing Devices for Acute Skin Wounds. Tissue Engineering - Part A, 2013, 19, 860-869.	3.1	42
297	Natural assembly of platelet lysate-loaded nanocarriers into enriched 3D hydrogels for cartilage regeneration. Acta Biomaterialia, 2015, 19, 56-65.	8.3	42
298	Chitosan–alginate multilayered films with gradients of physicochemical cues. Journal of Materials Chemistry B, 2015, 3, 4555-4568.	5.8	42
299	Investigation of cell adhesion in chitosan membranes for peripheral nerve regeneration. Materials Science and Engineering C, 2017, 71, 1122-1134.	7.3	42
300	Surface Micro―and Nanoengineering: Applications of Layerâ€byâ€Layer Technology as a Versatile Tool to Control Cellular Behavior. Small, 2019, 15, e1901228.	10.0	42
301	Thermal analysis of the multiple melting behavior of poly(butylene succinate-co-adipate). Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3077-3082.	2.1	41
302	Human Chondrocyte Morphology, Its Dedifferentiation, and Fibronectin Conformation on Different PLLA Microtopographies. Tissue Engineering - Part A, 2008, 14, 1751-1762.	3.1	41
303	Differentiation of mesenchymal stem cells in chitosan scaffolds with double micro and macroporosity. Journal of Biomedical Materials Research - Part A, 2010, 95A, 1182-1193.	4.0	41
304	Spider silk-bone sialoprotein fusion proteins for bone tissue engineering. Soft Matter, 2011, 7, 4964.	2.7	41
305	Surfaceâ€Tensionâ€Driven Gradient Generation in a Fluid Stripe for Benchâ€Top and Microwell Applications. Small, 2011, 7, 892-901.	10.0	41
306	Combinatorial Onâ€Chip Study of Miniaturized 3D Porous Scaffolds Using a Patterned Superhydrophobic Platform. Small, 2013, 9, 768-778.	10.0	41

#	Article	IF	CITATIONS
307	Fucoidan Hydrogels Photo-Cross-Linked with Visible Radiation As Matrices for Cell Culture. ACS Biomaterials Science and Engineering, 2016, 2, 1151-1161.	5.2	41
308	Proteinaceous Hydrogels for Bioengineering Advanced 3D Tumor Models. Advanced Science, 2021, 8, 2003129.	11.2	41
309	Synthesis, mechanical and thermal rheological properties of new gellan gum derivatives. International Journal of Biological Macromolecules, 2017, 98, 646-653.	7.5	40
310	Molecular mobility in polymers studied with thermally stimulated recovery. II. Study of the glass transition of a semicrystalline PET and comparison with DSC and DMA results. Polymer, 2002, 43, 3627-3633.	3.8	39
311	Bioactive poly(L-lactic acid)-chitosan hybrid scaffolds. Materials Science and Engineering C, 2008, 28, 1356-1365.	7.3	39
312	Functionalized Microparticles Producing Scaffolds in Combination with Cells. Advanced Functional Materials, 2014, 24, 1391-1400.	14.9	39
313	Perinatal tissues and cells in tissue engineering and regenerative medicine. Acta Biomaterialia, 2020, 110, 1-14.	8.3	39
314	Cell Encapsulation Systems Toward Modular Tissue Regeneration: From Immunoisolation to Multifunctional Devices. Advanced Functional Materials, 2020, 30, 1908061.	14.9	39
315	Dielectric Behavior in an Oriented \hat{l}^2 -PVDF Film and Chain Reorientation Upon Transverse Mechanical Deformation. Ferroelectrics, 2002, 273, 15-20.	0.6	38
316	Physical interactions in macroporous scaffolds based on poly(É›-caprolactone)/chitosan semi-interpenetrating polymer networks. Polymer, 2009, 50, 2058-2064.	3.8	38
317	Layer-by-Layer Deposition of Antibacterial Polyelectrolytes on Cotton Fibres. Journal of Polymers and the Environment, 2012, 20, 1084-1094.	5.0	38
318	Revealing the potential of squid chitosan-based structures for biomedical applications. Biomedical Materials (Bristol), 2013, 8, 045002.	3.3	38
319	Novel Methodology Based on Biomimetic Superhydrophobic Substrates to Immobilize Cells and Proteins in Hydrogel Spheres for Applications in Bone Regeneration. Tissue Engineering - Part A, 2013, 19, 1175-1187.	3.1	38
320	Chitosan scaffolds with a shape memory effect induced by hydration. Journal of Materials Chemistry B, 2014, 2, 3315-3323.	5.8	38
321	Photopolymerizable Platelet Lysate Hydrogels for Customizable 3D Cell Culture Platforms. Advanced Healthcare Materials, 2018, 7, e1800849.	7.6	38
322	Injectable gellan-gum/hydroxyapatite-based bilayered hydrogel composites for osteochondral tissue regeneration. Applied Materials Today, 2018, 12, 309-321.	4.3	38
323	Mechanical, dynamic-mechanical, and thermal properties of soy protein-based thermoplastics with potential biomedical applications. Journal of Macromolecular Science - Physics, 2002, 41, 33-46.	1.0	37
324	Processing of novel bioactive polymeric matrixes for tissue engineering using supercritical fluid technology. Materials Science and Engineering C, 2009, 29, 2110-2115.	7.3	37

JOãO F MANO

#	Article	IF	CITATIONS
325	Porous Hydrogels From Shark Skin Collagen Crosslinked Under Dense Carbon Dioxide Atmosphere. Macromolecular Bioscience, 2013, 13, 1621-1631.	4.1	37
326	Nanostructured and thermoresponsive recombinant biopolymer-based microcapsules for the delivery of active molecules. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 895-902.	3.3	37
327	Microfluidic Production of Perfluorocarbon-Alginate Core–Shell Microparticles for Ultrasound Therapeutic Applications. Langmuir, 2014, 30, 12391-12399.	3.5	37
328	Liquid Marbles for Highâ€Throughput Biological Screening of Anchorageâ€Dependent Cells. Advanced Healthcare Materials, 2015, 4, 264-270.	7.6	37
329	Biomineralized Polysaccharide Beads for Dualâ€ S timuliâ€Responsive Drug Delivery. Macromolecular Bioscience, 2008, 8, 260-267.	4.1	36
330	Nanostructured Natural-Based Polyelectrolyte Multilayers to Agglomerate Chitosan Particles into Scaffolds for Tissue Engineering. Tissue Engineering - Part A, 2011, 17, 2663-2674.	3.1	36
331	Flavonoid-mediated immunomodulation of human macrophages involves key metabolites and metabolic pathways. Scientific Reports, 2019, 9, 14906.	3.3	36
332	Recent Developments in Chitosan-Based Micro/Nanofibers for Sustainable Food Packaging, Smart Textiles, Cosmeceuticals, and Biomedical Applications. Molecules, 2021, 26, 2683.	3.8	36
333	3D-bioprinted cancer-on-a-chip: level-up organotypic in vitro models. Trends in Biotechnology, 2022, 40, 432-447.	9.3	36
334	Novel poly(<scp>L</scp> â€lactic acid)/hyaluronic acid macroporous hybrid scaffolds: Characterization and assessment of cytotoxicity. Journal of Biomedical Materials Research - Part A, 2010, 94A, 856-869.	4.0	35
335	Gelatin microparticles aggregates as three-dimensional scaffolding system in cartilage engineering. Journal of Materials Science: Materials in Medicine, 2013, 24, 503-513.	3.6	35
336	Magnetically Labeled Cells with Surfaceâ€Modified Fe ₃ O ₄ Spherical and Rodâ€Shaped Magnetic Nanoparticles for Tissue Engineering Applications. Advanced Healthcare Materials, 2015, 4, 883-891.	7.6	35
337	Cooperativity in the Crystalline α-Relaxation of Polyethylene. Macromolecules, 2001, 34, 8825-8828.	4.8	34
338	Towards bioinspired superhydrophobic poly(L-lactic acid) surfaces using phase inversion-based methods. Bioinspiration and Biomimetics, 2008, 3, 034003.	2.9	34
339	In vivo study of dendronlike nanoparticles for stem cells "tune-upâ€ŧ from nano to tissues. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 914-924.	3.3	34
340	Secondary Structure of rhBMP-2 in a Protective Biopolymeric Carrier Material. Biomacromolecules, 2012, 13, 3620-3626.	5.4	34
341	Adhesive Bioactive Coatings Inspired by Sea Life. Langmuir, 2016, 32, 560-568.	3.5	34
342	In vitro biological response of human osteoblasts in 3D chitosan sponges with controlled degree of deacetylation and molecular weight. Carbohydrate Polymers, 2021, 254, 117434.	10.2	34

#	Article	IF	CITATIONS
343	Preparation of membranes with polysulfone/polycaprolactone blends using a high pressure cell specially designed for a CO2-assisted phase inversion. Journal of Supercritical Fluids, 2008, 43, 542-548.	3.2	33
344	Microcomputed tomography and microfinite element modeling for evaluating polymer scaffolds architecture and their mechanical properties. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 191-202.	3.4	33
345	AFM Study of Morphology and Mechanical Properties of a Chimeric Spider Silk and Bone Sialoprotein Protein for Bone Regeneration. Biomacromolecules, 2011, 12, 1675-1685.	5.4	33
346	Nanocoatings containing sulfated polysaccharides prepared by layer-by-layer assembly as models to study cell–material interactions. Journal of Materials Chemistry B, 2013, 1, 4406.	5.8	33
347	Cryopreservation of cell laden natural origin hydrogels for cartilage regeneration strategies. Soft Matter, 2013, 9, 875-885.	2.7	33
348	Nanoengineering of bioactive glasses: hollow and dense nanospheres. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	33
349	Bio-inspired Aloe vera sponges for biomedical applications. Carbohydrate Polymers, 2014, 112, 264-270.	10.2	33
350	Bioactıve Glassâ€Polymer Nanocomposites for Bone Tıssue Regeneration Applicatıons: A Revıew. Advanced Engineering Materials, 2019, 21, 1900287.	3.5	33
351	Dynamic microfactories co-encapsulating osteoblastic and adipose-derived stromal cells for the biofabrication of bone units. Biofabrication, 2020, 12, 015005.	7.1	33
352	Double network laminarin-boronic/alginate dynamic bioink for 3D bioprinting cell-laden constructs. Biofabrication, 2021, 13, 035045.	7.1	33
353	Oriented morphology and enhanced mechanical properties of poly(l-lactic acid) from shear controlled orientation in injection molding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 490, 81-89.	5.6	32
354	Combining biomimetic principles from the lotus leaf and mussel adhesive: polystyrene films with superhydrophobic and adhesive layers. RSC Advances, 2013, 3, 9352.	3.6	32
355	Nacre-inspired nanocomposites produced using layer-by-layer assembly: Design strategies and biomedical applications. Materials Science and Engineering C, 2017, 76, 1263-1273.	7.3	32
356	Control of Cell Alignment and Morphology by Redesigning ECMâ€Mimetic Nanotopography on Multilayer Membranes. Advanced Healthcare Materials, 2017, 6, 1601462.	7.6	32
357	Strategies for re-vascularization and promotion of angiogenesis in trauma and disease. Biomaterials, 2021, 269, 120628.	11.4	32
358	The dipolar relaxation behaviour of a liquid-crystalline side-chain polymer as studied by thermally stimulated discharge currents. Polymer, 1994, 35, 5170-5178.	3.8	31
359	Chemistry and Applications of Phosphorylated Chitin and Chitosan. E-Polymers, 2006, 6, .	3.0	31
360	Calcium-phosphate derived from mineralized algae for bone tissue engineering applications. Materials Letters, 2007, 61, 3495-3499.	2.6	31

#	Article	IF	CITATIONS
361	Novel Riceâ€shaped Bioactive Ceramic Nanoparticles. Advanced Engineering Materials, 2009, 11, B25.	3.5	31
362	Multi-Layered Films Containing a Biomimetic Stimuli-Responsive Recombinant Protein. Nanoscale Research Letters, 2009, 4, 1247-1253.	5.7	31
363	Development of an injectable system based on elastin-like recombinamer particles for tissue engineering applications. Soft Matter, 2011, 7, 6426.	2.7	31
364	Layer-by-Layer Film Growth Using Polysaccharides and Recombinant Polypeptides: A Combinatorial Approach. Journal of Physical Chemistry B, 2013, 117, 6839-6848.	2.6	31
365	Synthesis and characterization of bioactive biodegradable chitosan composite spheres with shape memory capability. Journal of Non-Crystalline Solids, 2016, 432, 158-166.	3.1	31
366	Cell-Adhesive Bioinspired and Catechol-Based Multilayer Freestanding Membranes for Bone Tissue Engineering. Biomimetics, 2017, 2, 19.	3.3	31
367	Preparation of Well-Dispersed Chitosan/Alginate Hollow Multilayered Microcapsules for Enhanced Cellular Internalization. Molecules, 2018, 23, 625.	3.8	31
368	Responsive laminarin-boronic acid self-healing hydrogels for biomedical applications. Polymer Journal, 2020, 52, 997-1006.	2.7	31
369	Human Platelet Lysatesâ€Based Hydrogels: A Novel Personalized 3D Platform for Spheroid Invasion Assessment. Advanced Science, 2020, 7, 1902398.	11.2	31
370	Influence of Â-radiation sterilisation in properties of new chitosan/soybean protein isolate membranes for guided bone regeneration. Journal of Materials Science: Materials in Medicine, 2004, 15, 523-528.	3.6	30
371	Biodegradable poly(L-lactic acid)/poly(butylene succinate-co-adipate) blends: Miscibility, morphology, and thermal behavior. Journal of Applied Polymer Science, 2007, 105, 3204-3210.	2.6	30
372	Straightforward Determination of the Degree of <i>N</i> â€Acetylation of Chitosan by Means of Firstâ€Derivative UV Spectrophotometry. Macromolecular Chemistry and Physics, 2008, 209, 1463-1472.	2.2	30
373	Stereocomplexation and morphology of enantiomeric poly(lactic acid)s with moderateâ€molecularâ€weight. Journal of Applied Polymer Science, 2008, 107, 1621-1627.	2.6	30
374	Biomimetic Caâ€₽ coatings incorporating bisphosphonates produced on starchâ€based degradable biomaterials. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 92B, 55-67.	3.4	30
375	Bioactivity and Viscoelastic Characterization of Chitosan/Bioglass® Composite Membranes. Macromolecular Bioscience, 2012, 12, 1106-1113.	4.1	30
376	Different hyaluronic acid morphology modulates primary articular chondrocyte behavior in hyaluronic acid oated polycaprolactone scaffolds. Journal of Biomedical Materials Research - Part A, 2013, 101A, 518-527.	4.0	30
377	Free and copolymerized Î ³ -cyclodextrins regulate the performance of dexamethasone-loaded dextran microspheres for bone regeneration. Journal of Materials Chemistry B, 2014, 2, 4943-4956.	5.8	30
378	Biocompatible Polymeric Microparticles Produced by a Simple Biomimetic Approach. Langmuir, 2014, 30, 4535-4539.	3.5	30

#	Article	IF	CITATIONS
379	Highly robust hydrogels via a fast, simple and cytocompatible dual crosslinking-based process. Chemical Communications, 2015, 51, 15673-15676.	4.1	30
380	Structural monitoring and modeling of the mechanical deformation of three-dimensional printed poly(<i>Îμ</i> -caprolactone) scaffolds. Biofabrication, 2017, 9, 025015.	7.1	30
381	Liquefied Microcapsules as Dualâ€Microcarriers for 3D+3D Bottomâ€Up Tissue Engineering. Advanced Healthcare Materials, 2019, 8, e1901221.	7.6	30
382	Data Analysis with the Vogelâ^'Fulcherâ^'Tammannâ^'Hesse Equation. Journal of Physical Chemistry A, 2004, 108, 10824-10833.	2.5	29
383	Structural evolution of the amorphous phase during crystallization of poly(l-lactic acid): A synchrotron wide-angle X-ray scattering study. Journal of Non-Crystalline Solids, 2007, 353, 2567-2572.	3.1	29
384	Creep-recovery behaviour of cork. Materials Letters, 2007, 61, 2473-2477.	2.6	29
385	Natural Polymers in tissue engineering applications. , 2008, , 145-192.		29
386	Enzymatic degradation of 3D scaffolds of starch-poly-(É›-caprolactone) prepared by supercritical fluid technology. Polymer Degradation and Stability, 2010, 95, 2110-2117.	5.8	29
387	Liquefied Capsules Coated with Multilayered Polyelectrolyte Films for Cell Immobilization. Advanced Engineering Materials, 2011, 13, B218.	3.5	29
388	Multifunctionalized CMCht/PAMAM Dendrimer Nanoparticles Modulate the Cellular Uptake by Astrocytes and Oligodendrocytes in Primary Cultures of Glial Cells. Macromolecular Bioscience, 2012, 12, 591-597.	4.1	29
389	Dual stimuli responsive poly(N-isopropylacrylamide) coated chitosan scaffolds for controlled release prepared from a non residue technology. Journal of Supercritical Fluids, 2012, 66, 398-404.	3.2	29
390	Chitosan/chondroitin sulfate multilayers as supports for calcium phosphate biomineralization. Materials Letters, 2014, 121, 62-65.	2.6	29
391	Cellular uptake of multilayered capsules produced with natural and genetically engineered biomimetic macromolecules. Acta Biomaterialia, 2014, 10, 2653-2662.	8.3	29
392	Electrochromic devices incorporating biohybrid electrolytes doped with a lithium salt, an ionic liquid or a mixture of both. Electrochimica Acta, 2015, 161, 226-235.	5.2	29
393	Designing biomaterials for tissue engineering based on the deconstruction of the native cellular environment. Materials Letters, 2015, 141, 198-202.	2.6	29
394	Assembling Human Platelet Lysate into Multiscale 3D Scaffolds for Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2015, 1, 2-6.	5.2	29
395	In vivo osteogenic differentiation of stem cells inside compartmentalized capsules loaded with co-cultured endothelial cells. Acta Biomaterialia, 2017, 53, 483-494.	8.3	29
396	Mechanochemical Patternable ECMâ€Mimetic Hydrogels for Programmed Cell Orientation. Advanced Healthcare Materials, 2020, 9, e1901860.	7.6	29

#	Article	IF	CITATIONS
397	Development of novel chitosan / guar gum inks for extrusion-based 3D bioprinting: Process, printability and properties. Bioprinting, 2021, 21, e00122.	5.8	29
398	Effect of solvent-dependent viscoelastic properties of chitosan membranes on the permeation of 2-phenylethanol. Carbohydrate Polymers, 2009, 75, 651-659.	10.2	28
399	Wettable arrays onto superhydrophobic surfaces for bioactivity testing of inorganic nanoparticles. Materials Letters, 2011, 65, 296-299.	2.6	28
400	The role of organic solvent on the preparation of chitosan scaffolds by supercritical assisted phase inversion. Journal of Supercritical Fluids, 2012, 72, 326-332.	3.2	28
401	Alternative methodology for chitin–hydroxyapatite composites using ionic liquids and supercritical fluid technology. Journal of Bioactive and Compatible Polymers, 2013, 28, 481-491.	2.1	28
402	Platelet lysate membranes as new autologous templates for tissue engineering applications. Inflammation and Regeneration, 2014, 34, 033-044.	3.7	28
403	Fast and Mild Strategy, Using Superhydrophobic Surfaces, to Produce Collagen/Platelet Lysate Gel Beads for Skin Regeneration. Stem Cell Reviews and Reports, 2015, 11, 161-179.	5.6	28
404	Biomimetic polysaccharide/bioactive glass nanoparticles multilayer membranes for guided tissue regeneration. RSC Advances, 2016, 6, 75988-75999.	3.6	28
405	A Closed Chondromimetic Environment within Magneticâ€Responsive Liquified Capsules Encapsulating Stem Cells and Collagen II/TGFâ€Î²3 Microparticles. Advanced Healthcare Materials, 2016, 5, 1346-1355.	7.6	28
406	Nanostructured interfacial self-assembled peptide–polymer membranes for enhanced mineralization and cell adhesion. Nanoscale, 2017, 9, 13670-13682.	5.6	28
407	Layered PEGDA hydrogel for islet of Langerhans encapsulation and improvement of vascularization. Journal of Materials Science: Materials in Medicine, 2017, 28, 195.	3.6	28
408	Molecular motions of side-chain liquid crystalline polymers in the liquid crystalline phase studied by the thermally stimulated currents technique. Polymer, 1994, 35, 3561-3564.	3.8	27
409	The relaxation frequency as observed in thermally stimulated depolarisation current experiments in polymers. Thermochimica Acta, 1999, 332, 161-170.	2.7	27
410	Blending polysaccharides with biodegradable polymers. II. Structure and biological response of chitosan/polycaprolactone blends. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 544-554.	3.4	27
411	Hierarchical Fibrillar Scaffolds Obtained by Nonâ€conventional Layerâ€By‣ayer Electrostatic Selfâ€Assembly. Advanced Healthcare Materials, 2013, 2, 422-427.	7.6	27
412	Photopatterned Antibodies for Selective Cell Attachment. Langmuir, 2014, 30, 10066-10071.	3.5	27
413	Assembly of cell-laden hydrogel fiber into non-liquefied and liquefied 3D spiral constructs by perfusion-based layer-by-layer technique. Biofabrication, 2015, 7, 011001.	7.1	27
414	Platelet lysate-based pro-angiogenic nanocoatings. Acta Biomaterialia, 2016, 32, 129-137.	8.3	27

#	Article	IF	CITATIONS
415	Natural Origin Biomaterials for 4D Bioprinting Tissue‣ike Constructs. Advanced Materials Technologies, 2021, 6, 2100168.	5.8	27
416	Role of thermal history on the thermal behavior of poly(L-lactic acid) studied by DSC and optical microscopy. Journal of Thermal Analysis and Calorimetry, 2005, 80, 171-175.	3.6	26
417	Thermal characterization of a vinylidene fluoride-trifluorethylene (75–25) (%mol) copolymer film. Journal of Non-Crystalline Solids, 2006, 352, 5376-5381.	3.1	26
418	Development of Biomimetic Chitosanâ€Based Hydrogels Using an Elastinâ€Like Polymer. Advanced Engineering Materials, 2010, 12, B37.	3.5	26
419	In Vivo Biological Responses to Silk Proteins Functionalized with Bone Sialoprotein. Macromolecular Bioscience, 2013, 13, 444-454.	4.1	26
420	<i>In Vivo</i> High-Content Evaluation of Three-Dimensional Scaffolds Biocompatibility. Tissue Engineering - Part C: Methods, 2014, 20, 851-864.	2.1	26
421	Modular Functionalization of Laminarin to Create Value-Added Naturally Derived Macromolecules. Journal of the American Chemical Society, 2020, 142, 19689-19697.	13.7	26
422	Novel Biodegradable Laminarin Microparticles for Biomedical Applications. Bulletin of the Chemical Society of Japan, 2020, 93, 713-719.	3.2	26
423	Banded spherulites in poly(L-lactic acid): Effects of the crystallization temperature and molecular weight. Journal of Applied Polymer Science, 2007, 105, 3500-3504.	2.6	25
424	Synthesis and Characterization ofNâ€methylenephenyl Phosphonic Chitosan. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 271-275.	2.2	25
425	Chitosan Beads as Templates for Layer-by-Layer Assembly and their Application in the Sustained Release of Bioactive Agents. Journal of Bioactive and Compatible Polymers, 2008, 23, 367-380.	2.1	25
426	Study of the glass transition on viscous-forming and powder materials using dynamic mechanical analysis. Polymer Testing, 2009, 28, 89-95.	4.8	25
427	Carboxymethylchitosan/Poly(amidoamine) Dendrimer Nanoparticles in Central Nervous Systemsâ€Regenerative Medicine: Effects on Neuron/Glial Cell Viability and Internalization Efficiency. Macromolecular Bioscience, 2010, 10, 1130-1140.	4.1	25
428	Non-monotonic cell differentiation pattern on extreme wettability gradients. Biomaterials Science, 2013, 1, 202-212.	5.4	25
429	Bioinspired superamphiphobic surfaces as a tool for polymer- and solvent-independent preparation of drug-loaded spherical particles. Acta Biomaterialia, 2014, 10, 4314-4322.	8.3	25
430	Magnetically Multilayer Polysaccharide Membranes for Biomedical Applications. ACS Biomaterials Science and Engineering, 2015, 1, 1016-1025.	5.2	25
431	Hydroalcoholic extracts from the bark of Quercus suber L. (Cork): optimization of extraction conditions, chemical composition and antioxidant potential. Wood Science and Technology, 2017, 51, 855-872.	3.2	25
432	Multifunctional laminarin microparticles for cell adhesion and expansion. Carbohydrate Polymers, 2018, 202, 91-98.	10.2	25

#	Article	IF	CITATIONS
433	Bioinstructive Layer-by-Layer-Coated Customizable 3D Printed Perfusable Microchannels Embedded in Photocrosslinkable Hydrogels for Vascular Tissue Engineering. Biomolecules, 2021, 11, 863.	4.0	25
434	Organotypic 3D decellularized matrix tumor spheroids for high-throughput drug screening. Biomaterials, 2021, 275, 120983.	11.4	25
435	Physicochemical Characterization of Novel Chitosan-Soy Protein/ TEOS Porous Hybrids for Tissue Engineering Applications. Materials Science Forum, 2006, 514-516, 1000-1004.	0.3	24
436	Superhydrophobic Surfaces as a Tool for the Fabrication of Hierarchical Spherical Polymeric Carriers. Small, 2015, 11, 3648-3652.	10.0	24
437	The influence of surface modified poly(<scp>l</scp> -lactic acid) films on the differentiation of human monocytes into macrophages. Biomaterials Science, 2017, 5, 551-560.	5.4	24
438	Recent advances in the design of implantable insulin secreting heterocellular islet organoids. Biomaterials, 2021, 269, 120627.	11.4	24
439	Polymerisation of ethylene catalysed by mono-imine-2,6-diacetylpyridine iron/methylaluminoxane (MAO) catalyst system: effect of the ligand on polymer microstructure. Polymer International, 2002, 51, 1301-1303.	3.1	23
440	Viscoelastic monitoring of starch-based biomaterials in simulated physiological conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 370, 321-325.	5.6	23
441	β-PVDF Membranes Induce Cellular Proliferation and Differentiation in Static and Dynamic Conditions. Materials Science Forum, 0, 587-588, 72-76.	0.3	23
442	Nanogrooved microdiscs for bottom-up modulation of osteogenic differentiation. Nanoscale, 2019, 11, 16214-16221.	5.6	23
443	Oxidized Cashew Gum Scaffolds for Tissue Engineering. Macromolecular Materials and Engineering, 2019, 304, 1800574.	3.6	23
444	Mechanical Properties of Ca-Saturated Hydrogels with Functionalized Alginate. Gels, 2019, 5, 23.	4.5	23
445	Gelatin Methacryloyl (GelMA) Nanocomposite Hydrogels Embedding Bioactive Naringin Liposomes. Polymers, 2020, 12, 2944.	4.5	23
446	Brewer's yeast polysaccharides $\hat{a} \in$ " A review of their exquisite structural features and biomedical applications. Carbohydrate Polymers, 2022, 277, 118826.	10.2	23
447	3D Printed Dualâ€Porosity Scaffolds: The Combined Effect of Stiffness and Porosity in the Modulation of Macrophage Polarization. Advanced Healthcare Materials, 2022, 11, e2101415.	7.6	23
448	A thermally stimulated discharge currents study of the molecular motions in two polysiloxane side-chain liquid crystalline polymers. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 269-277.	2.1	22
449	Local motions in side-chain liquid crystalline polymers. A thermally stimulated currents study. Thermochimica Acta, 1998, 323, 65-73.	2.7	22

450 Dynamic Mechanical Analysis in Polymers for Medical Applications. , 2002, , 139-164.

#	Article	IF	CITATIONS
451	Creep of PVDF monofilament sutures: service performance prediction from short-term tests. Polymer, 2003, 44, 4293-4300.	3.8	22
452	Enzymatic degradation behavior and cytocompatibility of silk fibroin–starch–chitosan conjugate membranes. Materials Science and Engineering C, 2012, 32, 1314-1322.	7.3	22
453	Characterization of chitosan and polycaprolactone membranes designed for wound repair application. Journal of Materials Science, 2012, 47, 659-667.	3.7	22
454	The effects of platelet lysate patches on the activity of tendon-derived cells. Acta Biomaterialia, 2018, 68, 29-40.	8.3	22
455	Cell encapsulation in liquified compartments: Protocol optimization and challenges. PLoS ONE, 2019, 14, e0218045.	2.5	22
456	Bioengineering a humanized 3D tri-culture osteosarcoma model to assess tumor invasiveness and therapy response. Acta Biomaterialia, 2021, 134, 204-214.	8.3	22
457	Effects of moisture and degradation time over the mechanical dynamical performance of starch-based biomaterials. Journal of Applied Polymer Science, 2000, 78, 2345-2357.	2.6	21
458	Ionic liquids as foaming agents of semi-crystalline natural-based polymers. Green Chemistry, 2012, 14, 1949.	9.0	21
459	On-Chip Assessment of the Protein-Release Profile from 3D Hydrogel Arrays. Analytical Chemistry, 2013, 85, 2391-2396.	6.5	21
460	Tuneable spheroidal hydrogel particles for cell and drug encapsulation. Soft Matter, 2018, 14, 5622-5627.	2.7	21
461	Protein-olive oil-in-water nanoemulsions as encapsulation materials for curcumin acting as anticancer agent towards MDA-MB-231 cells. Scientific Reports, 2021, 11, 9099.	3.3	21
462	Polysaccharide-Based Nanobiomaterials as Controlled Release Systems for Tissue Engineering Applications. Current Pharmaceutical Design, 2015, 21, 4837-4850.	1.9	21
463	Advancing Tissue Decellularized Hydrogels for Engineering Human Organoids. Advanced Functional Materials, 2022, 32, .	14.9	21
464	Water effect in the thermal and molecular dynamics behavior of poly(L-lactic acid). Journal of Thermal Analysis and Calorimetry, 2007, 88, 425-429.	3.6	20
465	A combinatorial study of nanocomposite hydrogels: on-chip mechanical/viscoelastic and pre-osteoblast interaction characterization. Journal of Materials Chemistry B, 2014, 2, 5627.	5.8	20
466	Solvent-Free Strategy Yields Size and Shape-Uniform Capsules. Journal of the American Chemical Society, 2017, 139, 1057-1060.	13.7	20
467	One‣tep Rapid Fabrication of Cellâ€Only Living Fibers. Advanced Materials, 2020, 32, 1906305.	21.0	20
468	Repurposing Old Drugs into New Epigenetic Inhibitors: Promising Candidates for Cancer Treatment?. Pharmaceutics, 2020, 12, 410.	4.5	20

#	Article	IF	CITATIONS
469	Effects of the strain rate and temperature in stress–strain tests: study of the glass transition of a polyamide-6. Polymer Testing, 2001, 20, 937-943.	4.8	19
470	Effect of the mechanical stretching on the ferroelectric properties of a (VDF/TrFE) (75/25) copolymer film. Solid State Communications, 2004, 129, 5-8.	1.9	19
471	Dielectric characterization of neutralized and nonneutralized chitosan upon drying. Biopolymers, 2006, 81, 149-159.	2.4	19
472	In vivo biodistribution of carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles in rats. Journal of Bioactive and Compatible Polymers, 2011, 26, 619-627.	2.1	19
473	Biological responses to spider silk-antibiotic fusion protein. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 356-368.	2.7	19
474	Synthesis and characterization of stable dicarboxylic pegylated magnetite nanoparticles. Materials Letters, 2013, 100, 266-270.	2.6	19
475	Chitosan Membranes Exhibiting Shape Memory Capability by the Action of Controlled Hydration. Polymers, 2014, 6, 1178-1186.	4.5	19
476	Microfluidic production of hyaluronic acid derivative microfibers to control drug release. Materials Letters, 2016, 182, 309-313.	2.6	19
477	Design Advances in Particulate Systems for Biomedical Applications. Advanced Healthcare Materials, 2016, 5, 1687-1723.	7.6	19
478	Multilayered Hollow Tubes as Blood Vessel Substitutes. ACS Biomaterials Science and Engineering, 2016, 2, 2304-2314.	5.2	19
479	Elastic chitosan/chondroitin sulfate multilayer membranes. Biomedical Materials (Bristol), 2016, 11, 035008.	3.3	19
480	The potential of cashew gum functionalization as building blocks for layer-by-layer films. Carbohydrate Polymers, 2017, 174, 849-857.	10.2	19
481	Multilayered Films Produced by Layer-by-Layer Assembly of Chitosan and Alginate as a Potential Platform for the Formation of Human Adipose-Derived Stem Cell aggregates. Polymers, 2017, 9, 440.	4.5	19
482	Bioinstructive Naringin‣oaded Micelles for Guiding Stem Cell Osteodifferentiation. Advanced Healthcare Materials, 2018, 7, e1800890.	7.6	19
483	Antibacterial free-standing polysaccharide composite films inspired by the sea. International Journal of Biological Macromolecules, 2019, 133, 933-944.	7.5	19
484	Bioactive silica nanoparticles with calcium and phosphate for single dose osteogenic differentiation. Materials Science and Engineering C, 2020, 107, 110348.	7.3	19
485	Role of active nanoliposomes in the surface and bulk mechanical properties of hybrid hydrogels. Materials Today Bio, 2020, 6, 100046.	5.5	19
486	Screening of dual chemo-photothermal cellular nanotherapies in organotypic breast cancer 3D spheroids. Journal of Controlled Release, 2021, 331, 85-102.	9.9	19

#	Article	IF	CITATIONS
487	Platelet lysates-based hydrogels incorporating bioactive mesoporous silica nanoparticles for stem cell osteogenic differentiation. Materials Today Bio, 2021, 9, 100096.	5.5	19
488	Modelling of thermally stimulated depolarization current peaks obtained by global and thermal cleaning experiments. Journal Physics D: Applied Physics, 1998, 31, 2898-2907.	2.8	18
489	Structural relaxation in a polyester thermoset as seen by thermally stimulated recovery. Polymer, 2001, 42, 4173-4180.	3.8	18
490	Synthesis of polar vinyl monomer-olefin copolymers by α-diimine nickel catalyst. Polymer International, 2001, 50, 579-587.	3.1	18
491	The Effect of Transreactions on the Structure and Dynamic Mechanical Properties of 1:1 Poly(ethylene) Tj ETQq1 Macromolecular Materials and Engineering, 2003, 288, 778-788.	1 0.78431 3.6	.4 rgBT /Ove 18
492	Mechanical Spectroscopy Studies on a Side-Chain Liquid Crystalline Polysiloxane. Comparison with Dielectric and DSC Data. Macromolecules, 2003, 36, 2816-2824.	4.8	18
493	Copolymerization of ethylene/unsaturated alcohols using nickel catalysts: effect of the ligand on the activity and comonomer incorporation. Journal of Organometallic Chemistry, 2005, 690, 895-909.	1.8	18
494	Stress–strain experiments as a mechanical spectroscopic technique to characterise the glass transition dynamics in poly(ethylene terephthalate). Polymer Testing, 2006, 25, 953-960.	4.8	18
495	Analysing protein competition on self-assembled mono-layers studied with quartz crystal microbalance. Acta Biomaterialia, 2010, 6, 3499-3505.	8.3	18
496	Thermosensitive polymeric matrices for three-dimensional cell culture strategies. Acta Biomaterialia, 2011, 7, 526-529.	8.3	18
497	Selective Cell Recruitment and Spatially Controlled Cell Attachment on Instructive Chitosan Surfaces Functionalized with Antibodies. Biointerphases, 2012, 7, 65.	1.6	18
498	Enhanced Cell Affinity of Chitosan Membranes Mediated by Superficial Cross-Linking: A Straightforward Method Attainable by Standard Laboratory Procedures. Biomacromolecules, 2014, 15, 291-301.	5.4	18
499	Sequential ionic and thermogelation of chitosan spherical hydrogels prepared using superhydrophobic surfaces to immobilize cells and drugs. Journal of Bioactive and Compatible Polymers, 2014, 29, 50-65.	2.1	18
500	Poly(É›-caprolactone) Electrospun Scaffolds Filled with Nanoparticles. Production and Optimization According to Taguchi's Methodology. Journal of Macromolecular Science - Physics, 2014, 53, 781-799.	1.0	18
501	Fractality and metastability of a complex amide cross-linked dipodal alkyl/siloxane hybrid. RSC Advances, 2014, 4, 59664-59675.	3.6	18
502	Unraveling the Effect of the Hydration Level on the Molecular Mobility of Nanolayered Polymeric Systems. Macromolecular Rapid Communications, 2015, 36, 405-412.	3.9	18
503	Cork extractives exhibit thermo-oxidative protection properties in polypropylene–cork composites and as direct additives for polypropylene. Polymer Degradation and Stability, 2015, 116, 45-52.	5.8	18
504	Engineering Enriched Microenvironments with Gradients of Platelet Lysate in Hydrogel Fibers. Biomacromolecules, 2016, 17, 1985-1997.	5.4	18

#	Article	IF	CITATIONS
505	Polysaccharide-based freestanding multilayered membranes exhibiting reversible switchable properties. Soft Matter, 2016, 12, 1200-1209.	2.7	18
506	Extraction and Physicochemical Characterization of Chitin from Cicada orni Sloughs of the South-Eastern French Mediterranean Basin. Molecules, 2020, 25, 2543.	3.8	18
507	Dielectric behaviour of a side-chain-bearing liquid-crystalline polysiloxane. Journal of Thermal Analysis, 1995, 44, 1037-1046.	0.6	17
508	Absorbed water in the cork structure. A study by thermally stimulated currents, dielectric relaxation spectroscopy, isothermal depolarization experiments and differential scanning calorimetry. Journal of Materials Science, 1995, 30, 4394-4400.	3.7	17
509	Mechanical Characterization and Influence of the High Temperature Shrinkage of β-PVDF Films on its Electromechanical Properties. Ferroelectrics, 2003, 294, 61-71.	0.6	17
510	Influence of the sample mass on the study of the glass transition and the structural relaxation by differential scanning calorimetry. Journal of Non-Crystalline Solids, 2004, 337, 68-77.	3.1	17
511	Liquid Crystalline Behaviour of Chitosan in Formic, Acetic, Monochloroacetic Acid Solutions. Materials Science Forum, 2006, 514-516, 1010-1014.	0.3	17
512	Microhardness of starch based biomaterials in simulated physiological conditions. Acta Biomaterialia, 2007, 3, 69-76.	8.3	17
513	Cell engineering by the internalization of bioinstructive micelles for enhanced bone regeneration. Nanomedicine, 2015, 10, 1707-1721.	3.3	17
514	Multiphasic, Multistructured and Hierarchical Strategies for Cartilage Regeneration. Advances in Experimental Medicine and Biology, 2015, 881, 143-160.	1.6	17
515	Multilayered membranes with tuned well arrays to be used as regenerative patches. Acta Biomaterialia, 2017, 57, 313-323.	8.3	17
516	Sequentially Moldable and Bondable Four-Dimensional Hydrogels Compatible with Cell Encapsulation. Biomacromolecules, 2018, 19, 2742-2749.	5.4	17
517	Design Principles and Multifunctionality in Cell Encapsulation Systems for Tissue Regeneration. Advanced Healthcare Materials, 2018, 7, e1701444.	7.6	17
518	Curcumin Loaded Nanoliposomes Localization by Nanoscale Characterization. International Journal of Molecular Sciences, 2020, 21, 7276.	4.1	17
519	The molecular relaxation mechanisms in cork as studied by thermally stimulated discharge currents. Journal of Materials Science, 1995, 30, 2035-2041.	3.7	16
520	Dipolar relaxations in the glass transition region and in the liquid crystalline phase of two side-chain liquid crystalline polysiloxanes. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 2067-2075.	2.1	16
521	A simple method for calibrating the temperature in dynamic mechanical analysers and thermal mechanical analysers. Polymer Testing, 2004, 23, 423-430.	4.8	16
522	Transport of Small Anionic and Neutral Solutes through Chitosan Membranes: Dependence on Cross-Linking and Chelation of Divalent Cations. Biomacromolecules, 2008, 9, 2132-2138.	5.4	16

#	Article	IF	CITATIONS
523	Processing and characterization of chitosan microspheres to be used as templates for layer-by-layer assembly. Journal of Materials Science: Materials in Medicine, 2010, 21, 1855-1865.	3.6	16
524	Development of a Novel Cell Encapsulation System Based on Natural Origin Polymers for Tissue Engineering Applications. Journal of Bioactive and Compatible Polymers, 2010, 25, 341-359.	2.1	16
525	Bone marrow stromal cells on a three-dimensional bioactive fiber mesh undergo osteogenic differentiation in the absence of osteogenic media supplements: The effect of silanol groups. Acta Biomaterialia, 2014, 10, 4175-4185.	8.3	16
526	<i>In vitro</i> bioactivity studies of ceramic structures isolated from marine sponges. Biomedical Materials (Bristol), 2016, 11, 045004.	3.3	16
527	Screening of Nanocomposite Scaffolds Arrays Using Superhydrophobicâ€Wettable Micropatterns. Advanced Functional Materials, 2017, 27, 1701219.	14.9	16
528	Threeâ€Dimensional Osteosarcoma Models for Advancing Drug Discovery and Development. Advanced Therapeutics, 2019, 2, 1800108.	3.2	16
529	Fabrication of Artificial Nanobasement Membranes for Cell Compartmentalization in 3D Tissues. Small, 2020, 16, e1907434.	10.0	16
530	Coffee Melanoidinâ€Based Multipurpose Film Formation: Application to Single ell Nanoencapsulation. ChemNanoMat, 2020, 6, 379-385.	2.8	16
531	Minimalist Tissue Engineering Approaches Using Low Materialâ€Based Bioengineered Systems. Advanced Healthcare Materials, 2021, 10, e2002110.	7.6	16
532	Preparation of Chitosan Scaffolds for Tissue Engineering Using Supercritical Fluid Technology. Materials Science Forum, 0, 636-637, 22-25.	0.3	15
533	Bioinspired methodology for preparing magnetic responsive chitosan beads to be integrated in a tubular bioreactor for biomedical applications. Biomedical Materials (Bristol), 2013, 8, 045008.	3.3	15
534	Biomimetic click assembled multilayer coatings exhibiting responsive properties. Materials Today Chemistry, 2017, 4, 150-163.	3.5	15
535	Injectable Hyaluronic Acid Hydrogels Enriched with Platelet Lysate as a Cryostable Off-the-Shelf System for Cell-Based Therapies. Regenerative Engineering and Translational Medicine, 2017, 3, 53-69.	2.9	15
536	Biomedical films of graphene nanoribbons and nanoflakes with natural polymers. RSC Advances, 2017, 7, 27578-27594.	3.6	15
537	Engineering Membranes for Bone Regeneration. Tissue Engineering - Part A, 2017, 23, 1502-1533.	3.1	15
538	Coculture of Spheroids/2D Cell Layers Using a Miniaturized Patterned Platform as a Versatile Method to Produce Scaffoldâ€Free Tissue Engineering Building Blocks. Advanced Biology, 2018, 2, 1700069.	3.0	15
539	Self-Assembled Bioactive Colloidal Gels as Injectable Multiparticle Shedding Platforms. ACS Applied Materials & Interfaces, 2020, 12, 31282-31291.	8.0	15
540	Enzymatically degradable, starch-based layer-by-layer films: application to cytocompatible single-cell nanoencapsulation. Soft Matter, 2020, 16, 6063-6071.	2.7	15

#	Article	IF	CITATIONS
541	Cell Behavior within Nanogrooved Sandwich Culture Systems. Small, 2020, 16, e2001975.	10.0	15
542	Stratified 3D Microtumors as Organotypic Testing Platforms for Screening Pancreatic Cancer Therapies. Small Methods, 2021, 5, e2001207.	8.6	15
543	Physicochemical Interactions in Nanofunctionalized Alginate/GelMA IPN Hydrogels. Nanomaterials, 2021, 11, 2256.	4.1	15
544	Capacitive interdigitated system of high osteoinductive/conductive performance for personalized acting-sensing implants. Npj Regenerative Medicine, 2021, 6, 80.	5.2	15
545	Hipster microcarriers: exploring geometrical and topographical cues of non-spherical microcarriers in biomedical applications. Materials Horizons, 2022, 9, 908-933.	12.2	15
546	Dipolar relaxations in a side-chain polyacrylate liquid crystal. A study by thermally stimulated currents. Thermochimica Acta, 1996, 285, 347-359.	2.7	14
547	Cooperative Character of the Relaxation Processes in a Side-Chain Liquid Crystalline Polymer. Journal of Macromolecular Science - Physics, 2003, 42, 1169-1182.	1.0	14
548	Partial Coated Stem Cells with Bioinspired Silica as New Generation of Cellular Hybrid Materials. Advanced Functional Materials, 2021, 31, 2009619.	14.9	14
549	Molecular motions in a polycarbonate composite as studied by thermally stimulated recovery and dynamic mechanical analysis. Macromolecular Symposia, 1999, 148, 437-454.	0.7	13
550	Molecular mobility in a thermoset as seen by TSR and DMA near Tg. Materials Research Innovations, 2001, 4, 170-178.	2.3	13
551	Study of the influence of β-radiation on the properties and mineralization of different starch-based biomaterials. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 74B, 560-569.	3.4	13
552	Influence of Molecular Weight and Crystallinity of Poly(L-Lactic Acid) on the Adhesion and Proliferation of Human Osteoblast Like Cells. Materials Science Forum, 2006, 514-516, 1020-1024.	0.3	13
553	Chitosan Improves the Biological Performance of Soy-Based Biomaterials. Tissue Engineering - Part A, 2010, 16, 2883-2890.	3.1	13
554	Dextrin―and Conductingâ€Polymerâ€Containing Biocomposites: Properties and Behavior as Cellular Matrix. Macromolecular Materials and Engineering, 2012, 297, 359-368.	3.6	13
555	Combinatorial Effect of Silicon and Calcium Release from Starch-Based Scaffolds on Osteogenic Differentiation of Human Adipose Stem Cells. ACS Biomaterials Science and Engineering, 2015, 1, 760-770.	5.2	13
556	Injectable PEGylated fibrinogen cell-laden microparticles made with a continuous solvent- and oil-free preparation method. Acta Biomaterialia, 2015, 13, 78-87.	8.3	13
557	Compartmentalized bioencapsulated liquefied 3D macro-construct by perfusion-based layer-by-layer technique. RSC Advances, 2015, 5, 2511-2516.	3.6	13
558	High performance free-standing films by layer-by-layer assembly of graphene flakes and ribbons with natural polymers. Journal of Materials Chemistry B, 2016, 4, 7718-7730.	5.8	13

#	Article	IF	CITATIONS
559	Dynamic Electrophoretic Assembly of Metal–Phenolic Films: Accelerated Formation and Cytocompatible Detachment. Chemistry of Materials, 2020, 32, 7746-7753.	6.7	13
560	One‣tep Allâ€Aqueous Interfacial Assembly of Robust Membranes for Longâ€Term Encapsulation and Culture of Adherent Stem/Stromal Cells. Advanced Healthcare Materials, 2021, 10, e2100266.	7.6	13
561	Universal Strategy for Designing Shape Memory Hydrogels. , 2022, 4, 701-706.		13
562	Study of the Segmental Dynamics in Semi-Crystalline Poly(lactic acid) using Mechanical Spectroscopies. Macromolecular Bioscience, 2005, 5, 337-343.	4.1	12
563	Thermal Behaviour and Glass Transition Dynamics of Inclusion Complexes of <i>α</i> â€Cyclodextrin with Poly(<scp>D</scp> , <scp>L</scp> â€lactic acid). Macromolecular Rapid Communications, 2008, 29, 1341-1345.	3.9	12
564	Membranes of poly(<scp>dl</scp> -lactic acid)/Bioglass [®] with asymmetric bioactivity for biomedical applications. Journal of Bioactive and Compatible Polymers, 2012, 27, 429-440.	2.1	12
565	A nanotectonics approach to produce hierarchically organized bioactive glass nanoparticles-based macrospheres. Nanoscale, 2012, 4, 6293.	5.6	12
566	Synthesis and characterization of sensitive hydrogels based on semiâ€interpenetrated networks of poly[2â€ethylâ€(2â€pyrrolidone) methacrylate] and hyaluronic acid. Journal of Biomedical Materials Research - Part A, 2013, 101A, 157-166.	4.0	12
567	Surface Modification of Silica-Based Marine Sponge Bioceramics Induce Hydroxyapatite Formation. Crystal Growth and Design, 2014, 14, 4545-4552.	3.0	12
568	Nickel(II) complexes of bidentate N–N′ ligands containing mixed pyrazole, pyrimidine and pyridine aromatic rings as catalysts for ethylene polymerisation. Journal of Organometallic Chemistry, 2015, 799-800, 90-98.	1.8	12
569	Effect of Polyelectrolyte Multilayers Assembled on Ordered Nanostructures on Adhesion of Human Fibroblasts. ACS Applied Materials & Interfaces, 2016, 8, 25142-25151.	8.0	12
570	Flexible method for fabricating protein patterns on superhydrophobic platforms controlled by magnetic field. Biomaterials Science, 2017, 5, 408-411.	5.4	12
571	Bioactive Hydrogel Marbles. Scientific Reports, 2018, 8, 15215.	3.3	12
572	Geometrically Controlled Liquefied Capsules for Modular Tissue Engineering Strategies. Advanced Biology, 2020, 4, e2000127.	3.0	12
573	Synthesis and characterization of scaffolds produced under mild conditions based on oxidized cashew gums and carboxyethyl chitosan. International Journal of Biological Macromolecules, 2021, 176, 26-36.	7.5	12
574	New insights into the biomimetic design and biomedical applications of bioengineered bone microenvironments. APL Bioengineering, 2021, 5, 041507.	6.2	12
575	Simple versus cooperative relaxations in complex correlated systems. Journal of Applied Physics, 2001, 89, 1844.	2.5	11
576	Analysis of the thermal environment inside the furnace of a dynamic mechanical analyser. Polymer Testing, 2003, 22, 471-481.	4.8	11

#	Article	IF	CITATIONS
577	Supercritical phase inversion of starch-poly(ε-caprolactone) for tissue engineering applications. Journal of Materials Science: Materials in Medicine, 2010, 21, 533-540.	3.6	11
578	Eco-friendly sol-gel derived sodium-based ormolytes for electrochromic devices. Electrochimica Acta, 2017, 232, 484-494.	5.2	11
579	Investigating the effect of fibulinâ€1 on the differentiation of human nasal inferior turbinateâ€derived mesenchymal stem cells into osteoblasts. Journal of Biomedical Materials Research - Part A, 2017, 105, 2291-2298.	4.0	11
580	Fabrication of Quasiâ€2D Shapeâ€Tailored Microparticles using Wettability Contrastâ€Based Platforms. Advanced Materials, 2021, 33, e2007695.	21.0	11
581	Core–shell microcapsules: biofabrication and potential applications in tissue engineering and regenerative medicine. Biomaterials Science, 2022, 10, 2122-2153.	5.4	11
582	Human Proteinâ€Based Porous Scaffolds as Platforms for Xenoâ€Free 3D Cell Culture. Advanced Healthcare Materials, 2022, 11, e2102383.	7.6	11
583	The Thermally Stimulated Currents Spectrum of Side-Chain Liquid Crystalline Polymers. A Further Contribution for the Attribution of the Different Discharges at the Molecular Level. Molecular Crystals and Liquid Crystals, 1996, 281, 267-278.	0.3	10
584	Stress release in oriented HIPS as observed by dynamic mechanical analysis. Thermochimica Acta, 1999, 332, 171-177.	2.7	10
585	Molecular mobility in polymers studied with thermally stimulated recovery. Magyar Apróvad Közlemények, 2002, 70, 633-649.	1.4	10
586	(R=alkyl or aryl) complexes as catalysts for ethylene polymerization. Inorganic Chemistry Communication, 2003, 6, 331-334.	3.9	10
587	Hydrogels And Hydrophilic Partially Degradable Bone Cements Based On Biodegradable Blends Incorporating Starch. , 2003, , 243-260.		10
588	Synthesis and Characterization of Chitosanâ€graftâ€Poly(3â€(trimethoxysilyl)propyl methacrylate) Initiated by Ceric (IV) Ion. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 489-494.	2.2	10
589	Cell behaviour in new poly(l-lactic acid) films with crystallinity gradients. Materials Letters, 2012, 87, 105-108.	2.6	10
590	Biomineralization in chitosan/Bioglass® composite membranes under different dynamic mechanical conditions. Materials Science and Engineering C, 2013, 33, 4480-4483.	7.3	10
591	Cork processing with supercritical carbon dioxide: Impregnation and sorption studies. Journal of Supercritical Fluids, 2015, 104, 251-258.	3.2	10
592	Multiscale characterization of the hierarchical structure of Dynastes hercules elytra. Micron, 2017, 101, 16-24.	2.2	10
593	Open Fluidics: A Cell Culture Flow System Developed Over Wettability Contrastâ€Based Chips. Advanced Healthcare Materials, 2017, 6, 1700638.	7.6	10
594	Mesenchymal Stem Cells Relevance in Multicellular Bioengineered 3D In Vitro Tumor Models. Biotechnology Journal, 2017, 12, 1700079.	3.5	10

JOãO F MANO

#	Article	IF	CITATIONS
595	Complex Morphogenesis by a Model Intrinsically Disordered Protein. Small, 2020, 16, e2005191.	10.0	10
596	Modeling of Cell-Mediated Self-Assembled Colloidal Scaffolds. ACS Applied Materials & Interfaces, 2020, 12, 48321-48328.	8.0	10
597	Coordination Compounds As Multi-Delivery Systems for Osteoporosis. ACS Applied Materials & amp; Interfaces, 2021, 13, 35469-35483.	8.0	10
598	An Immunomodulatory Miniaturized 3D Screening Platform Using Liquefied Capsules. Advanced Healthcare Materials, 2021, 10, 2001993.	7.6	10
599	Self-glucose feeding hydrogels by enzyme empowered degradation for 3D cell culture. Materials Horizons, 2022, 9, 694-707.	12.2	10
600	Molecular motions in a side-chain liquid-crystalline polymethacrylate. A thermally stimulated currents study of the dipolar relaxations in the vitreous and liquid-crystalline phases and at the glass transition. Macromolecular Chemistry and Physics, 1995, 196, 2289-2301.	2.2	9
601	Temperature Calibration in Dielectric Measurements. Magyar Apróvad Közlemények, 2001, 65, 37-49.	1.4	9
602	Phase heterogeneity in poly(methyl acrylate)-polystyrene sequential interpenetrating polymer networks studied by thermally stimulated recovery. Journal of Non-Crystalline Solids, 2002, 307-310, 758-764.	3.1	9
603	Nanostructured Composites Based on Polyethylene–Polyamide Blends. II. Probing the Orientation in Polyethylene–Polyamide Nanocomposites and Their Precursors. Journal of Macromolecular Science - Physics, 2004, 43, 163-176.	1.0	9
604	Synthesis of N-Carboxymethyl Chitosan Beads for Controlled Drug Delivery Applications. Materials Science Forum, 2006, 514-516, 1015-1019.	0.3	9
605	Multiple melting behaviour of poly(l-lactide-co-glycolide) investigated by DSC. Polymer Testing, 2009, 28, 452-455.	4.8	9
606	Hybrid biodegradable membranes of silane-treated chitosan/soy protein for biomedical applications. Journal of Bioactive and Compatible Polymers, 2013, 28, 385-397.	2.1	9
607	Inclusion complexes of α-cyclodextrins with poly(d,l-lactic acid): structural, characterization, and glass transition dynamics. Colloid and Polymer Science, 2014, 292, 863-871.	2.1	9
608	BSA/HSA ratio modulates the properties of Ca2+-induced cold gelation scaffolds. International Journal of Biological Macromolecules, 2016, 89, 535-544.	7.5	9
609	Light responsive multilayer surfaces with controlled spatial extinction capability. Journal of Materials Chemistry B, 2016, 4, 1398-1404.	5.8	9
610	Temperature-responsive nanomagnetic logic gates for cellular hyperthermia. Materials Horizons, 2019, 6, 524-530.	12.2	9
611	Metabolomic Applications in Stem Cell Research: a Review. Stem Cell Reviews and Reports, 2021, 17, 2003-2024.	3.8	9
612	Supramolecular dendrimer-containing layer-by-layer nanoassemblies for bioapplications: current status and future prospects. Polymer Chemistry, 2021, 12, 5902-5930.	3.9	9

#	Article	IF	CITATIONS
613	Programmable Living Units for Emulating Pancreatic Tumorâ€&troma Interplay. Advanced Healthcare Materials, 2022, 11, e2102574.	7.6	9
614	G9a inhibition by CM-272: Developing a novel anti-tumoral strategy for castration-resistant prostate cancer using 2D and 3D in vitro models. Biomedicine and Pharmacotherapy, 2022, 150, 113031.	5.6	9
615	Molecular motions in a rigid backbone polymer: poly(n-hexyl isocyanate). A Study by thermally stimulated currents. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 2003.	1.7	8
616	Temperature correction of dynamic mechanical and thermomechanical analysers during heating, cooling and isothermal experiments. Thermochimica Acta, 2000, 346, 133-145.	2.7	8
617	Synthesis, structure, thermal and non-linear optical properties of L-argininium hydrogen selenite. Acta Crystallographica Section B: Structural Science, 2001, 57, 828-832.	1.8	8
618	Innovative Technique for the Preparation of Porous Bilayer Hydroxyapatite/Chitosan Scaffolds for Osteochondral Applications. Key Engineering Materials, 2006, 309-311, 927-930.	0.4	8
619	In vitro monitoring of surface mechanical properties of poly(L-lactic acid) using microhardness. Journal of Applied Polymer Science, 2007, 105, 3860-3864.	2.6	8
620	Mineralization of Chitosan Membrane Using a Double Diffusion System for Bone Related Applications. Materials Science Forum, 0, 587-588, 77-81.	0.3	8
621	Surface properties of extracts from cork black condensate. Holzforschung, 2010, 64, .	1.9	8
622	In vitro evaluation of the cytotoxicity and cellular uptake of CMCht/PAMAM dendrimer nanoparticles by glioblastoma cell models. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	8
623	Silk-Fibroin/Methacrylated Gellan Gum Hydrogel As An Novel Scaffold For Application In Meniscus Cell-Based Tissue Engineering. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2013, 29, e53-e55.	2.7	8
624	Confinement Effects on the Dynamic Behavior of Poly(<scp>d</scp> , <scp>l</scp> -lactic Acid) upon Incorporation in α-Cyclodextrin. Journal of Physical Chemistry B, 2014, 118, 6972-6981.	2.6	8
625	Novel antibacterial bioactive glass nanocomposite functionalized with tetracycline hydrochloride. Biomedical Glasses, 2015, 1, .	2.4	8
626	Layer-by-Layer Assembly for Biofunctionalization of Cellulosic Fibers with Emergent Antimicrobial Agents. Advances in Polymer Science, 2015, , 225-240.	0.8	8
627	Biomimetic Interfaces in Biomedical Devices. Advanced Healthcare Materials, 2017, 6, 1700761.	7.6	8
628	From Honeycomb- to Microsphere-Patterned Surfaces of Poly(Lactic Acid) and a Starch-Poly(Lactic) Tj ETQq0 0 0 2017, 15, 31-42.	rgBT /Ove 1.6	erlock 10 Tf 5 8
629	Screening of perfused combinatorial 3D microenvironments for cell culture. Acta Biomaterialia, 2019, 96, 222-236.	8.3	8
630	Complex-shaped magnetic 3D cell-based structures for tissue engineering. Acta Biomaterialia, 2020, 118, 18-31.	8.3	8

#	Article	IF	CITATIONS
631	Microparticles orchestrating cell fate in bottom-up approaches. Current Opinion in Biotechnology, 2022, 73, 276-281.	6.6	8
632	Designing highly customizable human based platforms for cell culture using proteins from the amniotic membrane. Materials Science and Engineering C, 2022, 134, 112574.	7.3	8
633	Engineering mammalian living materials towards clinically relevant therapeutics. EBioMedicine, 2021, 74, 103717.	6.1	8
634	Bioengineered Hierarchical Bonelike Compartmentalized Microconstructs Using Nanogrooved Microdiscs. ACS Applied Materials & amp; Interfaces, 2022, 14, 19116-19128.	8.0	8
635	Cooperative and Local Relaxations in Complex Systems: Polymers and Crystals. Ferroelectrics, 2002, 270, 271-276.	0.6	7
636	Natural Origin Materials for Bone Tissue Engineering – Properties, Processing, and Performance. , 2011, , 557-586.		7
637	New biomaterial based on cotton with incorporated Biomolecules. Journal of Applied Polymer Science, 2014, 131, .	2.6	7
638	Porous Polylactic Acid-Silica Hybrids: Preparation, Characterization, and Study of Mesenchymal Stem Cell Osteogenic Differentiation. Macromolecular Bioscience, 2015, 15, 262-274.	4.1	7
639	Membranes combining chitosan and natural-origin nanoliposomes for tissue engineering. RSC Advances, 2016, 6, 83626-83637.	3.6	7
640	Novel Antibacterial and Bioactive Silicate Glass Nanoparticles for Biomedical Applications. Advanced Engineering Materials, 2018, 20, 1700855.	3.5	7
641	Smart Instructive Polymer Substrates for Tissue Engineering. , 2019, , 411-438.		7
642	Differential Modulation of the Phospholipidome of Proinflammatory Human Macrophages by the Flavonoids Quercetin, Naringin and Naringenin. Molecules, 2020, 25, 3460.	3.8	7
643	Efficient Singleâ€Đose Induction of Osteogenic Differentiation of Stem Cells Using Multiâ€Bioactive Hybrid Nanocarriers. Advanced Biology, 2020, 4, e2000123.	3.0	7
644	Leachableâ€Free Fabrication of Hydrogel Foams Enabling Homogeneous Viability of Encapsulated Cells in Largeâ€Volume Constructs. Advanced Healthcare Materials, 2020, 9, e2000543.	7.6	7
645	Instantaneous fibrillation of egg white proteome with ionic liquid and macromolecular crowding. Communications Materials, 2020, 1, .	6.9	7
646	Chemical modification strategies to prepare advanced protein-based biomaterials. Biomaterials and Biosystems, 2021, 1, 100010.	2.2	7
647	Comparison of the Physicochemical Properties of Chitin Extracted from Cicada orni Sloughs Harvested in Three Different Years and Characterization of the Resulting Chitosan. Applied Sciences (Switzerland), 2021, 11, 11278.	2.5	7
648	NMR Metabolomics Assessment of Osteogenic Differentiation of Adipose-Tissue-Derived Mesenchymal Stem Cells. Journal of Proteome Research, 2022, 21, 654-670.	3.7	7

#	Article	IF	CITATIONS
649	Allâ€Aqueous Freeform Fabrication of Perfusable Self‣tanding Soft Compartments. Advanced Materials, 2022, 34, .	21.0	7
650	Advances in bioengineering pancreatic tumor-stroma physiomimetic Biomodels. Biomaterials, 2022, 287, 121653.	11.4	7
651	Modelling of TSDC results in polymeric materials. Journal Physics D: Applied Physics, 2000, 33, 280-285.	2.8	6
652	Dynamic-mechanical behavior of hydrophobic–hydrophilic interpenetrating copolymer networks. Polymer Engineering and Science, 2006, 46, 930-937.	3.1	6
653	Effect of Poling on the Mechanical Properties of β-Poly(Vinylidene Fluoride). Materials Science Forum, 2006, 514-516, 951-955.	0.3	6
654	Tissue engineering using natural polymers. , 2007, , 197-217.		6
655	The effects of Anodonta cygnea biological fluids on biomineralization of chitosan membranes. Journal of Membrane Science, 2010, 364, 82-89.	8.2	6
656	New Composite Membranes Containing Bioactive Glass-Ceramic Nanoparticles and Chitosan for Biomedical Applications. Materials Science Forum, 0, 636-637, 31-35.	0.3	6
657	Isolation of Friedelin from Black Condensate of Cork. Natural Product Communications, 2011, 6, 1934578X1100601.	0.5	6
658	Three-Dimensional Scaffolds as a Model System for Neural and Endothelial â€~In Vitro' Culture. Journal of Biomaterials Applications, 2011, 26, 293-310.	2.4	6
659	Moldable Superhydrophobic Surfaces. Advanced Materials Interfaces, 2016, 3, 1600074.	3.7	6
660	Nanostructured Biopolymer/Few‣ayer Graphene Freestanding Films with Enhanced Mechanical and Electrical Properties. Macromolecular Materials and Engineering, 2018, 303, 1700316.	3.6	6
661	Physical immobilization of particles inspired by pollination. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5405-5410.	7.1	6
662	Nanomaterials for Biomedical Applications. Biotechnology Journal, 2020, 15, e2000574.	3.5	6
663	Design of Proteinâ€Based Liquefied Cellâ€Laden Capsules with Bioinspired Adhesion for Tissue Engineering. Advanced Healthcare Materials, 2021, 10, e2100782.	7.6	6
664	Emerging modulators for osteogenic differentiation: a combination of chemical and topographical cues for bone microenvironment engineering. Soft Matter, 2022, 18, 3107-3119.	2.7	6
665	Endo- and Exometabolome Crosstalk in Mesenchymal Stem Cells Undergoing Osteogenic Differentiation. Cells, 2022, 11, 1257.	4.1	6
666	Macrophage-targeted shikonin-loaded nanogels for modulation of inflammasome activation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 42, 102548.	3.3	6

#	Article	IF	CITATIONS
667	Multiple and inter-related relaxation mechanisms in the mesophase of side-chain liquid crystalline polysiloxanes: a thermally stimulated currents study. Polymer, 1996, 37, 3161-3164.	3.8	5
668	Comparing dielectric measurements on poly(ethylene terephthalate) at constant heating rates with isothermal measurements. Polymer, 1999, 40, 2675-2679.	3.8	5
669	Re-crystallization of MNA under a strong dc electric field. Solid State Sciences, 2001, 3, 733-740.	3.2	5
670	The Dynamics of the Glass Transition in a Semicrystalline PET Studied by Mechanical and Dielectric Spectroscopic Methods. Defect and Diffusion Forum, 2002, 206-207, 131-134.	0.4	5
671	Study of the Molecular Mobility in Polymers with the Thermally Stimulated Recovery Technique—A Review. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2005, 45, 99-124.	2.2	5
672	Dielectric and thermal characterization of low density ethylene/10â€undecenâ€1â€ol copolymers prepared with nickel catalysts. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2802-2812.	2.1	5
673	Layer-by-layer self-assembly techniques for nanostructured devices in tissue engineering. , 2013, , 88-118.		5
674	Introducing biomimetic approaches to materials development and product design for engineering students. Bioinspired, Biomimetic and Nanobiomaterials, 2015, 4, 207-212.	0.9	5
675	Nanostructured Capsules for Cartilage Tissue Engineering. Methods in Molecular Biology, 2015, 1340, 181-189.	0.9	5
676	Bone Tissue Disorders: Healing Through Coordination Chemistry. Chemistry - A European Journal, 2020, 26, 15416-15437.	3.3	5
677	Freestanding Magnetic Microtissues for Tissue Engineering Applications. Advanced Healthcare Materials, 2022, 11, e2101532.	7.6	5
678	Bioengineering the human bone marrow microenvironment in liquefied compartments: A promising approach for the recapitulation of osteovascular niches. Acta Biomaterialia, 2022, 149, 167-178.	8.3	5
679	Preparation of Vancomycin-Loaded Aerogels Implementing Inkjet Printing and Superhydrophobic Surfaces. Gels, 2022, 8, 417.	4.5	5
680	Chain Reorientation in β-PVDF Films Upon Transverse Mechanical Deformation Studied by SEM and Dielectric Relaxation. Ferroelectrics, 2003, 294, 73-83.	0.6	4
681	Study of the viscoelastic properties of PET by thermally stimulated recovery. Plastics, Rubber and Composites, 2003, 32, 281-290.	2.0	4
682	Nanostructure Evolution during Uni-Axial Deformation of PET – A WAXS and SAXS Study Using Synchrotron Radiation. Materials Science Forum, 2006, 514-516, 1583-1587.	0.3	4
683	Bioâ€Inspired Mineral Growth on Porous Spherulitic Textured Poly(Lâ€Iactic acid)/Bioactive Glass Composite Scaffolds. Advanced Engineering Materials, 2008, 10, B18.	3.5	4
684	Bioactivity and Viscoelastic Characterization in Physiological Simulated Conditions of Chitosan/Bioglass® Composite Membranes. Materials Science Forum, 0, 636-637, 26-30.	0.3	4

#	Article	IF	CITATIONS
685	Preparation and Characterization of New Biodegradable Films Made from Poly(L-Lactic Acid) and Chitosan Blends Using a Common Solvent. Journal of Macromolecular Science - Physics, 2011, 50, 1121-1129.	1.0	4
686	Multilayers as 3D nanostructured porous constructs. Bioinspired, Biomimetic and Nanobiomaterials, 2012, 1, 245-251.	0.9	4
687	Homogeneous poly(L-lactic acid)/chitosan blended films. Polymers for Advanced Technologies, 2014, 25, 1492-1500.	3.2	4
688	Smart instructive polymer substrates for tissue engineering. , 2014, , 301-326.		4
689	Supramolecular Presentation of Hyaluronan onto Model Surfaces for Studying the Behavior of Cancer Stem Cells. Advanced Biology, 2019, 3, 1900017.	3.0	4
690	In Situ Cross-Linking of Artificial Basement Membranes in 3D Tissues and Their Size-Dependent Molecular Permeability. Biomacromolecules, 2020, 21, 4923-4932.	5.4	4
691	The Therapeutic Potential of Hematopoietic Stem Cells in Bone Regeneration. Tissue Engineering - Part B: Reviews, 2021, , .	4.8	4
692	3D-Bioprinted Constructs that Breathe. Matter, 2021, 4, 15-17.	10.0	4
693	Dipolar Motions in Two Side-Chain Liquid-Crystalline Polysiloxanes Studied by the TSDC Technique. Molecular Crystals and Liquid Crystals, 1995, 261, 567-575.	0.3	3
694	Influence of experimental variables on thermally stimulated recovery results: analysis of simulations and real data on a polymeric system. Polymer International, 2002, 51, 434-442.	3.1	3
695	Behaviour of the Ferroelectric Phase Transition of P(VDF/TrFE) (75/25) with Increasing Deformation. Ferroelectrics, 2004, 304, 23-26.	0.6	3
696	Intrinsic compensation phenomenon in thermally stimulated depolarisation studies. Thermochimica Acta, 2005, 430, 135-141.	2.7	3
697	Enzymatic Degradation Behaviour of Starch Conjugated Phosphorylated Chitosan. Materials Science Forum, 2006, 514-516, 995-999.	0.3	3
698	Osteochondral Tissue Engineering Constructs with a Cartilage Part Made of Poly(L-lactic Acid) / Starch Blend and a Bioactive Poly(L-Lactic Acid) Composite Layer for Subchondral Bone. Key Engineering Materials, 2006, 309-311, 1109-1112.	0.4	3
699	Electric Techniques. Handbook of Thermal Analysis and Calorimetry, 2008, 5, 209-268.	1.6	3
700	Thermomechanical processing environment and morphology development of a thermotropic polymer liquid crystal. Journal of Applied Polymer Science, 2010, 115, 2991-3004.	2.6	3
701	Development of new poly(ïµ-caprolactone)/chitosan films. Polymer International, 2013, 62, 1425-1432.	3.1	3
702	Bioinspired biomaterials to develop cell-rich spherical microtissues for 3D in vitro tumor modeling. ,		3

2020, , 43-65.

#	Article	IF	CITATIONS
703	Adjustable conduits for guided peripheral nerve regeneration prepared from bi-zonal unidirectional and multidirectional laminar scaffold of type I collagen. Materials Science and Engineering C, 2021, 121, 111838.	7.3	3
704	Customizable and Regioselective Oneâ€Pot Nâ^'H Functionalization of DNA Nucleobases to Create a Library of Nucleobase Derivatives for Biomedical Applications. European Journal of Organic Chemistry, 2021, 2021, 4423-4433.	2.4	3
705	Miscibility of a PET/PEN Blend Studied by Dynamic Mechanical Analysis. Defect and Diffusion Forum, 2002, 206-207, 135-138.	0.4	2
706	Bioactive Composite Chitosan Membranes to Be Used in Bone Regeneration Applications. Key Engineering Materials, 2003, 240-242, 423-426.	0.4	2
707	Electrical Response of β-PVDF in a Constant Uniaxial Strain Rate Deformation. Ferroelectrics, 2004, 304, 43-46.	0.6	2
708	A Novel pH and Thermo-sensitive N,O-Carboxymethyl Chitosan-graft-Poly(N-isopropylacrylamide) Hydrogel for Controlled Drug Delivery. E-Polymers, 2007, 7, .	3.0	2
709	Layer-by-layer assembly: Layer-By-Layer Technique for Producing Porous Nanostructured 3D Constructs Using Moldable Freeform Assembly of Spherical Templates (Small 23/2010). Small, 2010, 6, 2643-2643.	10.0	2
710	Superhydrophobic to Superhydrophylic Biomimetic Poly(3-Hydroxybutyrate) Surfaces Made by Phase Inversion. Materials Science Forum, 2012, 730-732, 44-49.	0.3	2
711	Natural Fibres as Reinforcement Strategy on Cork-Polymer Composites. Materials Science Forum, 2012, 730-732, 373-378.	0.3	2
712	Polymer Particles: Biomimetic Methodology to Produce Polymeric Multilayered Particles for Biotechnological and Biomedical Applications (Small 15/2013). Small, 2013, 9, 2486-2486.	10.0	2
713	Correction to "Multilayered Hierarchical Capsules Providing Cell Adhesion Sitesâ€: Biomacromolecules, 2013, 14, 1250-1250.	5.4	2
714	Biomaterials: Nanoengineering Hybrid Supramolecular Multilayered Biomaterials Using Polysaccharides and Selfâ€Assembling Peptide Amphiphiles (Adv. Funct. Mater. 17/2017). Advanced Functional Materials, 2017, 27, .	14.9	2
715	Advanced Control over Cell-Material Interfaces. Polymers, 2017, 9, 704.	4.5	2
716	Cell-Based Microarrays Using Superhydrophobic Platforms Patterned with Wettable Regions. Methods in Molecular Biology, 2018, 1771, 11-26.	0.9	2
717	Engineering Strategies for Allogeneic Solid Tissue Acceptance. Trends in Molecular Medicine, 2021, 27, 572-587.	6.7	2
718	Molecular dynamics in polymeric systems. E-Polymers, 2004, 4, .	3.0	1
719	Glass Transition And Compensation Phenomenon In Thermally Stimulated Studies On Polymers. Materials Research Innovations, 2004, 8, 136-137.	2.3	1
720	Ethylene Polymerization over Transition Metal Supported Catalysts. III. Vanadium. E-Polymers, 2006, 6, .	3.0	1

#	Article	IF	CITATIONS
721	Processing of starch-based blends for biomedical applications. , 2008, , 85-105.		1
722	Superhydrophobic Coatings: Bioinspired Degradable Substrates with Extreme Wettability Properties (Adv. Mater. 18/2009). Advanced Materials, 2009, 21, NA-NA.	21.0	1
723	Biomimetic and Smart Polymeric Surfaces for Biomedical and Biotechnological Applications. Materials Science Forum, 2010, 636-637, 3-8.	0.3	1
724	Nanostructured Thin Coatings from Chitosan and an Elastin-Like Recombinamer with Acute Stimuli-Responsive Behavior. Materials Science Forum, 2012, 730-732, 32-37.	0.3	1
725	Investigation of calcium carbonate precipitated in the presence of alkanols. Crystal Research and Technology, 2014, 49, 418-430.	1.3	1
726	Polycaprolactone membranes reinforced by toughened sol–gel produced silica networks. Journal of Sol-Gel Science and Technology, 2014, 71, 136-146.	2.4	1
727	BIOMIMETIC SUPERHYDROPHOBIC SURFACES. World Scientific Series in Nanoscience and Nanotechnology, 2014, , 153-180.	0.1	1
728	3D Cell Culture: Fabrication of Hydrogel Particles of Defined Shapes Using Superhydrophobic-Hydrophilic Micropatterns (Adv. Mater. 35/2016). Advanced Materials, 2016, 28, 7552-7552.	21.0	1
729	Thin Silicaâ€Based Microsheets with Controlled Geometry. European Journal of Inorganic Chemistry, 2020, 2020, 1574-1578.	2.0	1
730	Cellâ€Based Therapy: Partial Coated Stem Cells with Bioinspired Silica as New Generation of Cellular Hybrid Materials (Adv. Funct. Mater. 29/2021). Advanced Functional Materials, 2021, 31, 2170211.	14.9	1
731	Bioactive Composites Reinforced with Inorganic Glasses and Glass–Ceramics for Tissue Engineering Applications. Springer Series in Biomaterials Science and Engineering, 2014, , 331-353.	1.0	1
732	Protocol of Osteogenesis from BMSC Cultured with Dexamethasone-Loaded Dendrimer Nanoparticles onto Ceramic and Polymeric Scaffolds: In Vivo Studies. Manuals in Biomedical Research, 2014, , 67-74.	0.0	1
733	Temperature-responsive bioactive hydrogels based on a multifunctional recombinant elastin-like polymer. Biomaterials and Biomechanics in Bioengineering, 2015, 2, 47-59.	0.1	1
734	Fabrication of highly stretchable hydrogel based on crosslinking between alendronates functionalized poly-1³-glutamate and calcium cations. Materials Today Bio, 2022, 14, 100225.	5.5	1
735	Natural-based biomaterials for drug delivery wound healing patches. , 2022, , 51-73.		1
736	<title>Physical significance of the compensation behavior associated with glass transition relaxation as observed by thermally stimulated currents</title> . , 1997, 3181, 59.		0
737	Mechanical Behaviour of Polyethylene/Hydroxyapatite Bone-Analogue Composites Moulded with an Induced Anisotropy. Key Engineering Materials, 2001, 218-220, 469-474.	0.4	0
738	Thermal stability of side-chain polymer liquid crystals. E-Polymers, 2004, 4, .	3.0	0

#	Article	IF	CITATIONS
739	Using mechanical spectroscopies to study the glass transition dynamics in unsaturated polyester resins cured with different styrene contents. Colloid and Polymer Science, 2005, 283, 753-761.	2.1	0
740	Study of the Fosfosal Controlled Permeation through Glutaraldehyde Crosslinked Chitosan Membranes. Materials Science Forum, 2006, 514-516, 990-994.	0.3	0
741	New biomineralization strategies for the use of natural-based polymeric materials in bone-tissue engineering. , 2008, , 193-230.		0
742	Physical Properties of an Artificial Extracellular Matrix Based on a Crosslinked Elastin-Like Polymer. Materials Science Forum, 0, 587-588, 47-51.	0.3	0
743	Materials for Healthcare Applications Symposium, EUROMAT 2011 (Montpellier, France, 12–15 September) Tj	ET <u>Q</u> g11().784314 rg
744	Cell Alignment: Control of Cell Alignment and Morphology by Redesigning ECMâ€Mimetic Nanotopography on Multilayer Membranes (Adv. Healthcare Mater. 15/2017). Advanced Healthcare Materials, 2017, 6, .	7.6	0
745	AFOB Special Issue on Stem Cells in Tissue Engineering and Regenerative Medicine. Biotechnology Journal, 2017, 12, 1700683.	3.5	0
746	Editorial. Materials Today Bio, 2019, 1, 100012.	5.5	0
747	Frontispiece: Bone Tissue Disorders: Healing Through Coordination Chemistry. Chemistry - A European Journal, 2020, 26, .	3.3	0
748	Consistent Inclusion of Mesenchymal Stem Cells into In Vitro Tumor Models. Methods in Molecular Biology, 2021, 2269, 3-23.	0.9	0
749	Bioimaging of Mesenchymal Stem Cells Spatial Distribution and Interactions with 3D In Vitro Tumor Spheroids. Methods in Molecular Biology, 2021, 2269, 49-61.	0.9	0
750	Biomimetic Materials: Smart Polymer Surfaces for Tissue Engineering. , 0, , 932-946.		0
751	Mechanical Characterization. , 0, , 4399-4410.		0
752	Biomimetic Materials: Smart Polymer Surfaces for Tissue Engineering. , 2017, , 214-228.		0
753	Biomorphs: Complex Morphogenesis by a Model Intrinsically Disordered Protein (Small 51/2020). Small, 2020, 16, .	10.0	0
754	Nanoscale design in biomineralization for developing new biomaterials. , 2022, , 345-384.		0
755	Chapter 8. Bioactive Nanoparticles, Nanofibers, and Polymeric Nanocomposites. RSC Smart Materials, 0, , 183-220.	0.1	0