Thomas J Galarneau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3516899/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NOAA's Second-Generation Global Medium-Range Ensemble Reforecast Dataset. Bulletin of the American Meteorological Society, 2013, 94, 1553-1565.	3.3	287
2	An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. Journal of Geophysical Research, 2010, 115, .	3.3	219
3	Defining "Atmospheric River― How the Glossary of Meteorology Helped Resolve a Debate. Bulletin of the American Meteorological Society, 2018, 99, 837-839.	3.3	161
4	Predecessor Rain Events ahead of Tropical Cyclones. Monthly Weather Review, 2010, 138, 3272-3297.	1.4	120
5	The Extratropical Transition of Tropical Cyclones. Part I: Cyclone Evolution and Direct Impacts. Monthly Weather Review, 2017, 145, 4317-4344.	1.4	102
6	Intensification of Hurricane Sandy (2012) through Extratropical Warm Core Seclusion. Monthly Weather Review, 2013, 141, 4296-4321.	1.4	93
7	A Multiscale Analysis of the Extreme Weather Events over Western Russia and Northern Pakistan during July 2010. Monthly Weather Review, 2012, 140, 1639-1664.	1.4	88
8	Diagnosing Forecast Errors in Tropical Cyclone Motion. Monthly Weather Review, 2013, 141, 405-430.	1.4	85
9	The Vertical Structure of Mesoscale Convective Vortices. Journals of the Atmospheric Sciences, 2009, 66, 686-704.	1.7	78
10	A Global Climatology of Baroclinically Influenced Tropical Cyclogenesis. Monthly Weather Review, 2013, 141, 1963-1989.	1.4	68
11	Climatology of Tropical Cyclogenesis in the North Atlantic (1948–2004). Monthly Weather Review, 2008, 136, 1284-1304.	1.4	59
12	Distant Effects of a Recurving Tropical Cyclone on Rainfall in a Midlatitude Convective System: A High-Impact Predecessor Rain Event*. Monthly Weather Review, 2011, 139, 650-667.	1.4	58
13	The Mesoscale Predictability Experiment (MPEX). Bulletin of the American Meteorological Society, 2015, 96, 2127-2149.	3.3	55
14	The Extratropical Transition of Tropical Cyclones. Part II: Interaction with the Midlatitude Flow, Downstream Impacts, and Implications for Predictability. Monthly Weather Review, 2019, 147, 1077-1106.	1.4	55
15	Sensitivity in the Overland Reintensification of Tropical Cyclone Erin (2007) to Near-Surface Soil Moisture Characteristics. Monthly Weather Review, 2011, 139, 3848-3870.	1.4	53
16	Revisiting the 26.5ŰC Sea Surface Temperature Threshold for Tropical Cyclone Development. Bulletin of the American Meteorological Society, 2015, 96, 1929-1943.	3.3	48
17	Development of North Atlantic Tropical Disturbances near Upper-Level Potential Vorticity Streamers. Journals of the Atmospheric Sciences, 2015, 72, 572-597.	1.7	39
18	An Analysis of Multiple Predecessor Rain Events ahead of Tropical Cyclones Ike and Lowell: 10–15 September 2008. Monthly Weather Review, 2012, 140, 1081-1107.	1.4	35

THOMAS J GALARNEAU

#	Article	IF	CITATIONS
19	A Multiscale Examination of the 31 May 1998 Mechanicville, New York, Tornado. Weather and Forecasting, 2005, 20, 494-516.	1.4	32
20	Moisture Transport into Midlatitudes ahead of Recurving Tropical Cyclones and Its Relevance in Two Predecessor Rain Events. Monthly Weather Review, 2012, 140, 1810-1827.	1.4	27
21	Development and Tropical Transition of an Alpine Lee Cyclone. Part I: Case Analysis and Evaluation of Numerical Guidance. Monthly Weather Review, 2010, 138, 2281-2307.	1.4	25
22	Petascale WRF simulation of hurricane Sandy deployment of NCSA's cray XE6 blue waters. , 2013, , .		21
23	Baroclinic Transition of a Long-Lived Mesoscale Convective Vortex. Monthly Weather Review, 2009, 137, 562-584.	1.4	18
24	Development and Tropical Transition of an Alpine Lee Cyclone. Part II: Orographic Influence on the Development Pathway. Monthly Weather Review, 2010, 138, 2308-2326.	1.4	13
25	Sensitivity of Dryline Convection Forecasts to Upstream Forecast Errors for Two Weakly Forced MPEX Cases. Monthly Weather Review, 2017, 145, 1831-1852.	1.4	13
26	A Comparison of South American and African Preferential Pathways for Extreme Cold Events. Monthly Weather Review, 2013, 141, 2066-2086.	1.4	12
27	Directional Analysis of the Storm Surge from Hurricane Sandy 2012, with Applications to Charleston, New Orleans, and the Philippines. PLoS ONE, 2015, 10, e0122113.	2.5	11
28	The Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) Field Campaign: Perspectives of Early Career Scientists. Bulletin of the American Meteorological Society, 2012, 93, 173-187.	3.3	10
29	Influence of Storm–Storm and Storm–Environment Interactions on Tropical Cyclone Formation and Evolution. Monthly Weather Review, 2017, 145, 4855-4875.	1.4	9
30	Diagnosis of Track Forecast Errors for Tropical Cyclone Rita (2005) Using GEFS Reforecasts. Weather and Forecasting, 2015, 30, 1334-1354.	1.4	8
31	Influence of a Predecessor Rain Event on the Track of Tropical Cyclone Isaac (2012). Monthly Weather Review, 2015, 143, 3354-3376.	1.4	7
32	Stratospheric Influences on the MJO-Induced Rossby Wave Train: Effects on Intraseasonal Climate. Journal of Climate, 2020, 33, 365-389.	3.2	7
33	Multiscale Upstream and In Situ Precursors to the Elevated Mixed Layer and High-Impact Weather over the Midwest United States. Weather and Forecasting, 2017, 32, 905-923.	1.4	6
34	The Chiricahua Gap and the Role of Easterly Water Vapor Transport in Southeastern Arizona Monsoon Precipitation. Journal of Hydrometeorology, 2017, 18, 2511-2520.	1.9	6
35	The Hurricane Harvey (2017) Texas Rainstorm: Synoptic Analysis and Sensitivity to Soil Moisture. Monthly Weather Review, 2020, 148, 2479-2502.	1.4	6
36	The Second Real-Time, Virtual Spring Forecasting Experiment to Advance Severe Weather Prediction. Bulletin of the American Meteorological Society, 2022, 103, E1114-E1116.	3.3	3

#	Article	IF	CITATIONS
37	Closed Anticyclones of the Subtropics and Midlatitudes: A 54-Yr Climatology (1950–2003) and Three Case Studies. Meteorological Monographs, 2008, 55, 349-392.	5.0	2
38	Short-Term Prediction of a Nocturnal Significant Tornado Outbreak Using a Convection-Allowing Ensemble. Weather and Forecasting, 2022, , .	1.4	1
39	A Comparison of the Vorticity Dynamics Governing the Oceanic Bomb Cyclone of 4–5 January 1989 and the Super Derecho of 8 May 2009. Journals of the Atmospheric Sciences, 2020, 77, 3081-3103.	1.7	0