Keith E J Tyo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3516810/publications.pdf

Version: 2024-02-01

218677 133252 4,344 61 26 59 h-index citations g-index papers 5190 68 68 68 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Chemical-damage MINE: A database of curated and predicted spontaneous metabolic reactions. Metabolic Engineering, 2022, 69, 302-312.	7.0	5
2	MINE 2.0: enhanced biochemical coverage for peak identification in untargeted metabolomics. Bioinformatics, 2022, 38, 3484-3487.	4.1	6
3	Dynamic Control of Gene Expression with Riboregulated Switchable Feedback Promoters. ACS Synthetic Biology, 2021, 10, 1199-1213.	3 . 8	19
4	Curating a comprehensive set of enzymatic reaction rules for efficient novel biosynthetic pathway design. Metabolic Engineering, 2021, 65, 79-87.	7.0	12
5	Recording Temporal Signals with Minutes Resolution Using Enzymatic DNA Synthesis. Journal of the American Chemical Society, 2021, 143, 16630-16640.	13.7	12
6	Engineering Acinetobacter baylyi ADP1 for mevalonate production from lignin-derived aromatic compounds. Metabolic Engineering Communications, 2021, 13, e00173.	3.6	14
7	Enabling commercial success of industrial biotechnology. Science, 2021, 374, 1563-1565.	12.6	10
8	Development of a genetic toolset for the highly engineerable and metabolically versatile Acinetobacter baylyi ADP1. Nucleic Acids Research, 2020, 48, 5169-5182.	14.5	30
9	Bayesian inference of metabolic kinetics from genome-scale multiomics data. PLoS Computational Biology, 2019, 15, e1007424.	3.2	29
10	Model-guided mechanism discovery and parameter selection for directed evolution. Applied Microbiology and Biotechnology, 2019, 103, 9697-9709.	3 . 6	2
11	Kinetic ensemble model of gas fermenting Clostridium autoethanogenum for improved ethanol production. Biochemical Engineering Journal, 2019, 148, 46-56.	3 . 6	27
12	Metabolic kinetic modeling provides insight into complex biological questions, but hurdles remain. Current Opinion in Biotechnology, 2019, 59, 24-30.	6.6	42
13	Metabolic In Silico Network Expansions to Predict and Exploit Enzyme Promiscuity. Methods in Molecular Biology, 2019, 1927, 11-21.	0.9	5
14	Chemically Inducible Chromosomal Evolution (CIChE) for Multicopy Metabolic Pathway Engineering. Methods in Molecular Biology, 2019, 1927, 37-45.	0.9	2
15	Detection of a Peptide Biomarker by Engineered Yeast Receptors. ACS Synthetic Biology, 2018, 7, 696-705.	3.8	20
16	Development of novel metabolite-responsive transcription factors via transposon-mediated protein fusion. Protein Engineering, Design and Selection, 2018, 31, 55-63.	2.1	13
17	High-resolution mapping of DNA polymerase fidelity using nucleotide imbalances and next-generation sequencing. Nucleic Acids Research, 2018, 46, e78-e78.	14.5	19
18	CellSort: a support vector machine tool for optimizing fluorescence-activated cell sorting and reducing experimental effort. Bioinformatics, 2017, 33, 909-916.	4.1	9

#	Article	IF	CITATIONS
19	A Glucose-Sensing Toggle Switch for Autonomous, High Productivity Genetic Control. ACS Synthetic Biology, 2017, 6, 1296-1304.	3.8	67
20	Modulating and evaluating receptor promiscuity through directed evolution and modeling. Protein Engineering, Design and Selection, 2017, 30, 455-465.	2.1	6
21	Generation and Validation of the iKp1289 Metabolic Model for Klebsiella pneumoniae KPPR1. Journal of Infectious Diseases, 2017, 215, S37-S43.	4.0	23
22	Predicting novel substrates for enzymes with minimal experimental effort with active learning. Metabolic Engineering, 2017, 44, 171-181.	7.0	31
23	Acceleration Strategies to Enhance Metabolic Ensemble Modeling Performance. Biophysical Journal, 2017, 113, 1150-1162.	0.5	24
24	Increased Processivity, Misincorporation, and Nucleotide Incorporation Efficiency in Sulfolobus solfataricus Dpo4 Thumb Domain Mutants. Applied and Environmental Microbiology, 2017, 83, .	3.1	4
25	DNA binding strength increases the processivity and activity of a Y-Family DNA polymerase. Scientific Reports, 2017, 7, 4756.	3.3	13
26	Nucleotide-time alignment for molecular recorders. PLoS Computational Biology, 2017, 13, e1005483.	3.2	0
27	N-Terminal-Based Targeted, Inducible Protein Degradation in Escherichia coli. PLoS ONE, 2016, 11, e0149746.	2.5	23
28			
	Plasmid-based one-pot saturation mutagenesis. Nature Methods, 2016, 13, 928-930.	19.0	130
29	Plasmid-based one-pot saturation mutagenesis. Nature Methods, 2016, 13, 928-930. Characterizing and predicting carboxylic acid reductase activity for diversifying bioaldehyde production. Biotechnology and Bioengineering, 2016, 113, 944-952.	3.3	37
	Characterizing and predicting carboxylic acid reductase activity for diversifying bioaldehyde		
29	Characterizing and predicting carboxylic acid reductase activity for diversifying bioaldehyde production. Biotechnology and Bioengineering, 2016, 113, 944-952. Exploring <i>De Novo</i>	3.3	37
30	Characterizing and predicting carboxylic acid reductase activity for diversifying bioaldehyde production. Biotechnology and Bioengineering, 2016, 113, 944-952. Exploring <i>De Novo</i> metabolic pathways from pyruvate to propionic acid. Biotechnology Progress, 2016, 32, 303-311.	3.3 2.6	37
29 30 31	Characterizing and predicting carboxylic acid reductase activity for diversifying bioaldehyde production. Biotechnology and Bioengineering, 2016, 113, 944-952. Exploring <i>De Novo</i> metabolic pathways from pyruvate to propionic acid. Biotechnology Progress, 2016, 32, 303-311. Evaluating enzymatic synthesis of small molecule drugs. Metabolic Engineering, 2016, 33, 138-147. Regulatory effects on central carbon metabolism from poly-3-hydroxybutryate synthesis. Metabolic	3.3 2.6 7.0	37 16 15
29 30 31 32	Characterizing and predicting carboxylic acid reductase activity for diversifying bioaldehyde production. Biotechnology and Bioengineering, 2016, 113, 944-952. Exploring <i>De Novo</i> metabolic pathways from pyruvate to propionic acid. Biotechnology Progress, 2016, 32, 303-311. Evaluating enzymatic synthesis of small molecule drugs. Metabolic Engineering, 2016, 33, 138-147. Regulatory effects on central carbon metabolism from poly-3-hydroxybutryate synthesis. Metabolic Engineering, 2015, 28, 180-189. MINEs: open access databases of computationally predicted enzyme promiscuity products for	3.3 2.6 7.0	37 16 15 14
30 31 32 33	Characterizing and predicting carboxylic acid reductase activity for diversifying bioaldehyde production. Biotechnology and Bioengineering, 2016, 113, 944-952. Exploring <i>De Novo</i> metabolic pathways from pyruvate to propionic acid. Biotechnology Progress, 2016, 32, 303-311. Evaluating enzymatic synthesis of small molecule drugs. Metabolic Engineering, 2016, 33, 138-147. Regulatory effects on central carbon metabolism from poly-3-hydroxybutryate synthesis. Metabolic Engineering, 2015, 28, 180-189. MINEs: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics. Journal of Cheminformatics, 2015, 7, 44. Efficient searching and annotation of metabolic networks using chemical similarity. Bioinformatics,	3.3 2.6 7.0 7.0	37 16 15 14

#	Article	IF	CITATIONS
37	Impact of protein uptake and degradation on recombinant protein secretion in yeast. Applied Microbiology and Biotechnology, 2014, 98, 7149-7159.	3.6	23
38	Editorial overview: Cell and pathway engineering. Moving from possible to profitable: recent innovations in cell and pathway engineering. Current Opinion in Biotechnology, 2014, 29, v-vii.	6.6	0
39	Virus-like particles: the future of microbial factories and cell-free systems as platforms for vaccine development. Current Opinion in Biotechnology, 2013, 24, 1089-1093.	6.6	88
40	Computational Tools for Guided Discovery and Engineering of Metabolic Pathways. Methods in Molecular Biology, 2013, 985, 123-147.	0.9	14
41	Statistical Analysis of Molecular Signal Recording. PLoS Computational Biology, 2013, 9, e1003145.	3.2	26
42	Different expression systems for production of recombinant proteins in <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2012, 109, 1259-1268.	3.3	128
43	Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Research, 2012, 12, 491-510.	2.3	157
44	Engineering of vesicle trafficking improves heterologous protein secretion in Saccharomyces cerevisiae. Metabolic Engineering, 2012, 14, 120-127.	7.0	97
45	Synthetic biology: Emerging methodologies to catalyze the metabolic engineering design cycle. Metabolic Engineering, 2012, 14, 187-188.	7.0	4
46	Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress. BMC Biology, 2012, 10, 16.	3.8	72
47	Measuring Cation Dependent DNA Polymerase Fidelity Landscapes by Deep Sequencing. PLoS ONE, 2012, 7, e43876.	2.5	54
48	Meeting report: Gothenburg Life Science Conference XI - Industrial Systems Biology. Biotechnology Journal, 2011, 6, 259-261.	3.5	1
49	Molecular and process design for rotavirus-like particle production in Saccharomyces cerevisiae. Microbial Cell Factories, 2011, 10, 33.	4.0	47
50	Directed Evolution of Promoters and Tandem Gene Arrays for Customizing RNA Synthesis Rates and Regulation. Methods in Enzymology, 2011, 497, 135-155.	1.0	19
51	Analysis of polyhydroxybutyrate flux limitations by systematic genetic and metabolic perturbations. Metabolic Engineering, 2010, 12, 187-195.	7.0	52
52	Prospects of yeast systems biology for human health: integrating lipid, protein and energy metabolism. FEMS Yeast Research, 2010, 10, 1046-1059.	2.3	59
53	Isoprenoid Pathway Optimization for Taxol Precursor Overproduction in <i>Escherichia coli</i> Science, 2010, 330, 70-74.	12.6	1,426
54	Toward design-based engineering of industrial microbes. Current Opinion in Microbiology, 2010, 13, 255-262.	5.1	82

KEITH E J TYO

#	Article	IF	CITATION
55	Identification of gene disruptions for increased polyâ€3â€hydroxybutyrate accumulation in <i>Synechocystis</i> PCC 6803. Biotechnology Progress, 2009, 25, 1236-1243.	2.6	44
56	Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nature Biotechnology, 2009, 27, 760-765.	17.5	272
57	A highâ€throughput screen for hyaluronic acid accumulation in recombinant ⟨i⟩Escherichia coli⟨ i⟩ transformed by libraries of engineered sigma factors. Biotechnology and Bioengineering, 2008, 101, 788-796.	3.3	53
58	Terpenoids: Opportunities for Biosynthesis of Natural Product Drugs Using Engineered Microorganisms. Molecular Pharmaceutics, 2008, 5, 167-190.	4.6	363
59	Expanding the metabolic engineering toolbox: more options to engineer cells. Trends in Biotechnology, 2007, 25, 132-137.	9.3	200
60	High-Throughput Screen for Poly-3-Hydroxybutyrate in Escherichia coli and Synechocystis sp. Strain PCC6803. Applied and Environmental Microbiology, 2006, 72, 3412-3417.	3.1	83
61	Metabolic Engineering. , 2005, 100, 1-17.		19