
## Natalia Wilke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3516784/publications.pdf Version: 2024-02-01



Ναταιία Μλικέ

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The antimicrobial peptide Polybia-MP1 differentiates membranes with the hopanoid, diplopterol from those with cholesterol. BBA Advances, 2021, 1, 100002.                                                           | 1.6 | 5         |
| 2  | On the Coupling between Mechanical Properties and Electrostatics in Biological Membranes.<br>Membranes, 2021, 11, 478.                                                                                              | 3.0 | 29        |
| 3  | Triglyceride Lenses at the Air–Water Interface as a Model System for Studying the Initial Stage in the<br>Biogenesis of Lipid Droplets. Langmuir, 2021, 37, 10958-10970.                                            | 3.5 | 6         |
| 4  | Hopanoid Hopene Locates in the Interior of Membranes and Affects Their Properties. Langmuir, 2021, 37, 11900-11908.                                                                                                 | 3.5 | 1         |
| 5  | Recovery from chilling modulates the acyl-editing of phosphatidic acid molecular species in barley roots (Hordeum vulgare L.). Plant Physiology and Biochemistry, 2021, 167, 862-873.                               | 5.8 | 11        |
| 6  | lonic environment, thickness and line tension as determinants of phase separation in whole Purified<br>Myelin Membranes monolayers. Colloids and Surfaces B: Biointerfaces, 2021, 207, 112027.                      | 5.0 | 1         |
| 7  | N-terminal acetylation of a mastoparan-like peptide enhances PE/PG segregation in model membranes.<br>Chemistry and Physics of Lipids, 2020, 232, 104975.                                                           | 3.2 | 3         |
| 8  | Surface charge density and fatty acids enhance the membrane permeation rate of CPP–cargo complexes. Soft Matter, 2020, 16, 9890-9898.                                                                               | 2.7 | 8         |
| 9  | Somuncurins: Bioactive Peptides from the Skin of the Endangered Endemic Patagonian Frog<br>Pleurodema somuncurense. Journal of Natural Products, 2020, 83, 972-984.                                                 | 3.0 | 8         |
| 10 | Influence of Ca2+ on the surface behavior of phosphatidic acid and its mixture with diacylglycerol pyrophosphate at different pHs. Chemistry and Physics of Lipids, 2020, 228, 104887.                              | 3.2 | 5         |
| 11 | Hopanoids Like Sterols Form Compact but Fluid Films. Langmuir, 2019, 35, 9848-9857.                                                                                                                                 | 3.5 | 16        |
| 12 | Interaction of a Polyarginine Peptide with Membranes of Different Mechanical Properties.<br>Biomolecules, 2019, 9, 625.                                                                                             | 4.0 | 21        |
| 13 | Hopanoids, like sterols, modulate dynamics, compaction, phase segregation and permeability of membranes. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 183060.                                          | 2.6 | 24        |
| 14 | Negative Dipole Potentials and Carboxylic Polar Head Groups Foster the Insertion of Cell-Penetrating<br>Peptides into Lipid Monolayers. Langmuir, 2018, 34, 3102-3111.                                              | 3.5 | 16        |
| 15 | The interfacial electrostatic potential modulates the insertion of cell-penetrating peptides into lipid bilayers. Physical Chemistry Chemical Physics, 2018, 20, 5180-5189.                                         | 2.8 | 33        |
| 16 | Effect of N-terminal acetylation on lytic activity and lipid-packing perturbation induced in model<br>membranes by a mastoparan-like peptide. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860,<br>737-748. | 2.6 | 22        |
| 17 | Regulation of phase boundaries and phase-segregated patterns in model membranes. Biochimica Et<br>Biophysica Acta - Biomembranes, 2018, 1860, 1972-1984.                                                            | 2.6 | 8         |
| 18 | Mechanical Stability of Lipid Membranes Decorated with Dextran Sulfate. ACS Omega, 2018, 3, 11673-11683.                                                                                                            | 3.5 | 5         |

NATALIA WILKE

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Low-cost equipment for electroformation of Giant Unilamellar Vesicles. HardwareX, 2018, 4, e00037.                                                                                                                      | 2.2 | 15        |
| 20 | Combination of cyclic voltammetry and single-particle Brownian dynamics methodology to evaluate the fluidity of phospholipid monolayers at polarized liquid/liquid interfaces. Electrochimica Acta, 2018, 281, 611-618. | 5.2 | 1         |
| 21 | Sizes of lipid domains: What do we know from artificial lipid membranes? What are the possible<br>shared features with membrane rafts in cells?. Biochimica Et Biophysica Acta - Biomembranes, 2017,<br>1859, 789-802.  | 2.6 | 75        |
| 22 | Molecular Explanation for the Abnormal Flux of Material into a Hot Spot in Ester Monolayers.<br>Journal of Physical Chemistry B, 2017, 121, 5621-5632.                                                                  | 2.6 | 1         |
| 23 | Interaction of dextran derivatives with lipid monolayers and the consequential modulation of the film properties. Chemistry and Physics of Lipids, 2017, 204, 34-42.                                                    | 3.2 | 13        |
| 24 | Electrostatic interactions at the microscale modulate dynamics and distribution of lipids in bilayers.<br>Soft Matter, 2017, 13, 686-694.                                                                               | 2.7 | 10        |
| 25 | Wrinkled labyrinths in critical demixing ferrofluid. Soft Matter, 2017, 13, 7307-7311.                                                                                                                                  | 2.7 | 4         |
| 26 | The insertion of Polybia-MP1 peptide into phospholipid monolayers is regulated by its anionic nature and phase state. Chemistry and Physics of Lipids, 2017, 207, 38-48.                                                | 3.2 | 21        |
| 27 | Dipolar interactions between domains in lipid monolayers at the air–water interface. Soft Matter, 2016, 12, 4769-4777.                                                                                                  | 2.7 | 9         |
| 28 | The rheological properties of beta amyloid Langmuir monolayers: Comparative studies with melittin peptide. Colloids and Surfaces B: Biointerfaces, 2016, 146, 180-187.                                                  | 5.0 | 15        |
| 29 | The interfacial properties of the peptide Polybia-MP1 and its interaction with DPPC are modulated by<br>lateral electrostatic attractions. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 393-402.           | 2.6 | 30        |
| 30 | The Rheological Properties of Lipid Monolayers Modulate the Incorporation of <scp>l</scp> -Ascorbic<br>Acid Alkyl Esters. Langmuir, 2016, 32, 587-595.                                                                  | 3.5 | 22        |
| 31 | Searching for line active molecules on biphasic lipid monolayers. Soft Matter, 2015, 11, 2147-2156.                                                                                                                     | 2.7 | 12        |
| 32 | Energetics of the Phase Transition in Free-Standing versus Supported Lipid Membranes. Journal of<br>Physical Chemistry B, 2015, 119, 8718-8724.                                                                         | 2.6 | 11        |
| 33 | The Presence of Sterols Favors Sticholysin I-Membrane Association and Pore Formation Regardless of Their Ability to Form Laterally Segregated Domains. Langmuir, 2015, 31, 9911-9923.                                   | 3.5 | 31        |
| 34 | Zn2+-dependent surface behavior of diacylglycerol pyrophosphate and its mixtures with phosphatidic acid at different pHs. Frontiers in Plant Science, 2014, 5, 371.                                                     | 3.6 | 8         |
| 35 | Lipid Monolayers at the Air–Water Interface. Behavior Research Methods, 2014, 20, 51-81.                                                                                                                                | 4.0 | 21        |
| 36 | Phase coexistence in films composed of DLPC and DPPC: A comparison between different model membrane systems. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1823-1831.                                       | 2.6 | 40        |

NATALIA WILKE

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Surface Behavior of Sphingomyelins with Very Long Chain Polyunsaturated Fatty Acids and Effects of<br>Their Conversion to Ceramides. Langmuir, 2014, 30, 4385-4395.                       | 3.5 | 15        |
| 38 | Inter-Domain Interactions in Charged Lipid Monolayers. Journal of Physical Chemistry B, 2014, 118, 519-529.                                                                               | 2.6 | 11        |
| 39 | Stiffness of Lipid Monolayers with Phase Coexistence. Langmuir, 2013, 29, 10807-10816.                                                                                                    | 3.5 | 20        |
| 40 | Ascorbyl palmitate interaction with phospholipid monolayers: Electrostatic and rheological preponderancy. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2496-2505.            | 2.6 | 24        |
| 41 | Effect of chitosan on distearoylphosphatidylglycerol films at air/water and liquid/liquid interfaces.<br>Electrochimica Acta, 2013, 94, 124-133.                                          | 5.2 | 22        |
| 42 | Molecular determinants for the line tension of coexisting liquid phases in monolayers. Chemistry and<br>Physics of Lipids, 2012, 165, 737-744.                                            | 3.2 | 13        |
| 43 | Line Tension in Lipid Monolayers with Liquid-Liquid Phase Coexistence. Biophysical Journal, 2012, 102,<br>95a.                                                                            | 0.5 | 0         |
| 44 | Modulation of the domain topography of biphasic monolayers of stearic acid and dimyristoyl phosphatidylcholine. Chemistry and Physics of Lipids, 2012, 165, 232-237.                      | 3.2 | 27        |
| 45 | Surface Phase Behavior and Domain Topography of Ascorbyl Palmitate Monolayers. Langmuir, 2011, 27,<br>10914-10919.                                                                        | 3.5 | 21        |
| 46 | Redox-active tyrosine residue in the microcin J25 molecule. Biochemical and Biophysical Research<br>Communications, 2011, 406, 366-370.                                                   | 2.1 | 8         |
| 47 | Phase diagram of mixed monolayers of stearic acid and dimyristoylphosphatidylcholine. Effect of the acid ionization. Chemistry and Physics of Lipids, 2011, 164, 386-392.                 | 3.2 | 45        |
| 48 | Electrostatic field effects on membrane domain segregation and on lateral diffusion. Biophysical<br>Reviews, 2011, 3, 185-192.                                                            | 3.2 | 9         |
| 49 | The surface organization of diacylglycerol pyrophosphate and its interaction with phosphatidic acid<br>at the air–water interface. Chemistry and Physics of Lipids, 2010, 163, 771-777.   | 3.2 | 10        |
| 50 | Rheological Properties of a Two Phase Lipid Monolayer at the Air/Water Interface: Effect of the<br>Composition of the Mixture. Langmuir, 2010, 26, 11050-11059.                           | 3.5 | 45        |
| 51 | The Influence of Domain Crowding on the Lateral Diffusion of Ceramide-Enriched Domains in a Sphingomyelin Monolayer. Journal of Physical Chemistry B, 2009, 113, 12844-12851.             | 2.6 | 31        |
| 52 | Composition-driven Surface Domain Structuring Mediated by Sphingolipids and Membrane-active<br>Proteins. Cell Biochemistry and Biophysics, 2008, 50, 79-109.                              | 1.8 | 33        |
| 53 | Effect of externally applied electrostatic fields on the surface topography of ceramide-enriched domains in mixed monolayers with sphingomyelin. Biophysical Chemistry, 2006, 122, 36-42. | 2.8 | 19        |
| 54 | Electron-Transfer Processes at Electrodes Covered by Lipid Layers. Correlation with the Lipid<br>Behavior at the Airâ^'Water Interface. Langmuir, 2003, 19, 6876-6880.                    | 3.5 | 3         |