
Mohamed Naji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3516748/publications.pdf Version: 2024-02-01

Μομαμέρ Ναιι

#	Article	IF	CITATIONS
1	Insight into the Crystal Structures and Physical Properties of the Uranium Borides UB1.78±0.02, UB3.61±0.041 and UB11.19±0.13. Minerals (Basel, Switzerland), 2022, 12, 29.	2.0	Ο
2	Insight into the structure–elastic property relationship of calcium silicate glasses: a multi-length scale approach. Physical Chemistry Chemical Physics, 2021, 23, 17973-17983.	2.8	1
3	Irradiation of thorium-bearing molten fluoride salt in graphite crucibles. Nuclear Engineering and Design, 2021, 375, 111094.	1.7	2
4	Low temperature treatment and structural characterization of Na 2M2Fe(PO4)3 (M= Mn or Ni) Alluaudite phases. IOP Conference Series: Materials Science and Engineering, 2021, 1160, 012004.	0.6	0
5	Sol-gel synthesis and structural study of a lithium titanate phase Li _{3x} La _{2/3.x} â—¡ _{1/3-2x} TiO ₃ as solid electrolyte. IOP Conference Series: Materials Science and Engineering, 2021, 1160, 012005.	0.6	3
6	Solid-liquid equilibria in the ThO2 –ZrO2 system: An experimental study. Journal of Nuclear Materials, 2019, 521, 99-108.	2.7	5
7	Laserâ€induced oxidation of UO ₂ : A Raman study. Journal of Raman Spectroscopy, 2018, 49, 878-884.	2.5	28
8	Thermal diffusivity and conductivity of thorium- uranium mixed oxides. Journal of Nuclear Materials, 2018, 500, 381-388.	2.7	33
9	The Raman fingerprint of plutonium dioxide: Some example applications for the detection of PuO2 in host matrices. Journal of Nuclear Materials, 2018, 499, 268-271.	2.7	10
10	A low-temperature synthesis method for AnO ₂ nanocrystals (An = Th, U, Np, and Pu) and associate solid solutions. CrystEngComm, 2018, 20, 4614-4622.	2.6	40
11	The behaviour of parent and daughter nuclides in aerosols released in radiological dispersion events: a study of a SrTiO3 source. Journal of Raman Spectroscopy, 2017, 48, 549-559.	2.5	6
12	On the Role of the Electrical Field in Spark Plasma Sintering of UO2+x. Scientific Reports, 2017, 7, 46625.	3.3	29
13	Raman study of the oxidation in (U, Pu)O 2 as a function of Pu content. Journal of Nuclear Materials, 2017, 495, 484-491.	2.7	23
14	Fingerprint of local disorder in long range ordered isometric pyrochlores. Scientific Reports, 2017, 7, 12269.	3.3	17
15	A Novel Technique for Raman Analysis of Highly Radioactive Samples Using Any Standard Micro-Raman Spectrometer. Journal of Visualized Experiments, 2017, , .	0.3	2
16	Chemically stabilized δ-Bi2O3 phase: Raman scattering and X-ray diffraction studies. Oriental Journal of Chemistry, 2016, 32, 47-57.	0.3	10
17	Further insights into the chemistry of the Bi–U–O system. Dalton Transactions, 2016, 45, 7847-7855.	3.3	27
18	Raman Scattering from Decoupled Phonon and Electron States in NpO ₂ . Journal of Physical Chemistry C, 2016, 120, 4799-4805.	3.1	9

Mohamed Naji

#	Article	IF	CITATIONS
19	An original approach for Raman spectroscopy analysis of radioactive materials and its application to americiumâ€containing samples. Journal of Raman Spectroscopy, 2015, 46, 750-756.	2.5	30
20	Joint Raman spectroscopic and quantum chemical analysis of the vibrational features of Cs 2 RuO 4. Journal of Raman Spectroscopy, 2015, 46, 661-668.	2.5	11
21	In Situ High-Temperature Probing of the Local Order of a Silicate Glass and Melt during Structural Relaxation. Journal of Physical Chemistry C, 2015, 119, 8838-8848.	3.1	14
22	Iron titanium phosphates as high-specific-capacity electrode materials for lithium ion batteries. Journal of Alloys and Compounds, 2014, 585, 434-441.	5.5	22
23	Structural Relaxation Dynamics and Annealing Effects of Sodium Silicate Glass. Journal of Physical Chemistry B, 2013, 117, 5757-5764.	2.6	17
24	Heating Rate Effect on the Activation of Viscoelastic Relaxation in Silicate Glasses. Physics Procedia, 2013, 48, 125-131.	1.2	3
25	Synthesis, structure refinement and vibrational spectroscopy studies of the Bilâ^'xTalâ^'xTe2xO4 (OÂâ‰ÅxÂâ‰Â0.2) solid solution with stibiotantalite type structure. Materials Chemistry and Physics, 2012, 135 241-248.	,4.0	5
26	Glasses formation, characterization, and crystal-structure determination in the Bi2O3–Sb2O3–TeO2 system prepared in an air. Journal of Materials Science, 2011, 46, 5439-5446.	3.7	23
27	AnO2 Nanocrystals via Hydrothermal Decomposition of Actinide Oxalates. , 0, , .		0