Agnieszka Wolińska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/351660/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Does the Use of an Intercropping Mixture Really Improve the Biology of Monocultural Soils?—A Search for Bacterial Indicators of Sensitivity and Resistance to Long-Term Maize Monoculture. Agronomy, 2022, 12, 613.	1.3	11
2	Functional and Seasonal Changes in the Structure of Microbiome Inhabiting Bottom Sediments of a Pond Intended for Ecological King Carp Farming. Biology, 2022, 11, 913.	1.3	4
3	A Comprehensive Analysis Using Colorimetry, Liquid Chromatography-Tandem Mass Spectrometry and Bioassays for the Assessment of Indole Related Compounds Produced by Endophytes of Selected Wheat Cultivars. Molecules, 2021, 26, 1394.	1.7	6
4	Bacterial Endophytes of Spring Wheat Grains and the Potential to Acquire Fe, Cu, and Zn under Their Low Soil Bioavailability. Biology, 2021, 10, 409.	1.3	11
5	Phenotype Switching in Metal-Tolerant Bacteria Isolated from a Hyperaccumulator Plant. Biology, 2021, 10, 879.	1.3	Ο
6	Fungal Indicators of Sensitivity and Resistance to Long-Term Maize Monoculture: A Culture-Independent Approach. Frontiers in Microbiology, 2021, 12, 799378.	1.5	10
7	Culture-independent analysis of an endophytic core microbiome in two species of wheat: Triticum aestivum L. (cv. â€~Hondia') and the first report of microbiota in Triticum spelta L. (cv. â€~Rokosz'). Systematic and Applied Microbiology, 2020, 43, 126025.	1.2	65
8	Soil Microbial Community Profiling and Bacterial Metabolic Activity of Technosols as an Effect of Soil Properties following Land Reclamation: A Case Study from the Abandoned Iron Sulphide and Uranium Mine in Rudki (South-Central Poland). Agronomy, 2020, 10, 1795.	1.3	13
9	Biodiversity in the Rhizosphere of Selected Winter Wheat (Triticum aestivum L.) Cultivars—Genetic and Catabolic Fingerprinting. Agronomy, 2020, 10, 953.	1.3	19
10	Azolla filiculoides L. as a source of metal-tolerantÂmicroorganisms. PLoS ONE, 2020, 15, e0232699.	1.1	24
11	Technogenic soils (Technosols) developed from mine spoils containing Fe sulphides: Microbiological activity as an indicator of soil development following land reclamation. Applied Soil Ecology, 2020, 156, 103699.	2.1	29
12	New Insight into the Composition of Wheat Seed Microbiota. International Journal of Molecular Sciences, 2020, 21, 4634.	1.8	39
13	Azolla filiculoides L. as a source of metal-tolerant microorganisms. , 2020, 15, e0232699.		Ο
14	Azolla filiculoides L. as a source of metal-tolerant microorganisms. , 2020, 15, e0232699.		0
15	Azolla filiculoides L. as a source of metal-tolerant microorganisms. , 2020, 15, e0232699.		Ο
16	Azolla filiculoides L. as a source of metal-tolerant microorganisms. , 2020, 15, e0232699.		0
17	Methanotrophic Bacterial Biomass as Potential Mineral Feed Ingredients for Animals. International Journal of Environmental Research and Public Health, 2019, 16, 2674.	1.2	14
18	The Study on the Cultivable Microbiome of the Aquatic Fern Azolla Filiculoides L. as New Source of Beneficial Microorganisms. Applied Sciences (Switzerland), 2019, 9, 2143.	1.3	11

Agnieszka Wolińska

#	Article	IF	CITATIONS
19	Actinobacteria Structure in Autogenic, Hydrogenic and Lithogenic Cultivated and Non-Cultivated Soils: A Culture-Independent Approach. Agronomy, 2019, 9, 598.	1.3	17
20	Agricultural and Other Biotechnological Applications Resulting from Trophic Plant-Endophyte Interactions. Agronomy, 2019, 9, 779.	1.3	30
21	Activity and Identification of Methanotrophic Bacteria in Arable and No-Tillage Soils from Lublin Region (Poland). Microbial Ecology, 2019, 77, 701-712.	1.4	17
22	Catabolic Fingerprinting and Diversity of Bacteria in Mollic Gleysol Contaminated with Petroleum Substances. Applied Sciences (Switzerland), 2018, 8, 1970.	1.3	18
23	Indicators of arable soils fatigue – Bacterial families and genera: A metagenomic approach. Ecological Indicators, 2018, 93, 490-500.	2.6	44
24	Community-level physiological profiles of microorganisms inhabiting soil contaminated with heavy metals. International Agrophysics, 2018, 32, 101-109.	0.7	24
25	METHANOTROPHIC ACTIVITY OF ROCKS SURROUNDING BADENIAN SALTS IN THE "WIELICZKA―SALT MINE. Carpathian Journal of Earth and Environmental Sciences, 2018, 13, 107-119.	0.2	5
26	Bacteroidetes as a sensitive biological indicator of agricultural soil usage revealed by a culture-independent approach. Applied Soil Ecology, 2017, 119, 128-137.	2.1	154
27	Microbial biodiversity in arable soils is affected by agricultural practices. International Agrophysics, 2017, 31, 259-271.	0.7	31
28	Microbial biodiversity of meadows under different modes of land use: catabolic and genetic fingerprinting. World Journal of Microbiology and Biotechnology, 2017, 33, 154.	1.7	23
29	Metagenomic Analysis of Some Potential Nitrogen-Fixing Bacteria in Arable Soils at Different Formation Processes. Microbial Ecology, 2017, 73, 162-176.	1.4	45
30	Biological Activity of Autochthonic Bacterial Community in Oil-Contaminated Soil. Water, Air, and Soil Pollution, 2016, 227, 130.	1.1	38
31	The impact of agricultural soil usage on activity and abundance of ammonifying bacteria in selected soils from Poland. SpringerPlus, 2016, 5, 565.	1.2	13
32	Bacterial Abundance and Dehydrogenase Activity in Selected Agricultural Soils from Lublin Region. Polish Journal of Environmental Studies, 2015, 24, 2677-2682.	0.6	26
33	Bioelectricity Production from Soil Using Microbial Fuel Cells. Applied Biochemistry and Biotechnology, 2014, 173, 2287-2296.	1.4	21