Chi Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3516458/chi-zhang-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

40 1,816 22 42 g-index

48 2,516 13 5.65 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
40	Switching plasmonic nanogaps between classical and quantum regimes with supramolecular interactions <i>Science Advances</i> , 2022 , 8, eabj9752	14.3	1
39	Activatable cancer sono-immunotherapy using semiconducting polymer nanobodies <i>Advanced Materials</i> , 2022 , e2203246	24	14
38	Semiconducting Polymer Nano-regulators with Cascading Activation for Photodynamic Cancer Immunotherapy <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	10
37	Renal-Clearable Molecular Probe for Near-Infrared Fluorescence Imaging and Urinalysis of SARS-CoV-2. <i>Journal of the American Chemical Society</i> , 2021 , 143, 18827-18831	16.4	10
36	Semiconducting polymer nano-PROTACs for activatable photo-immunometabolic cancer therapy. <i>Nature Communications</i> , 2021 , 12, 2934	17.4	84
35	Charge-Reversal Polymer Nano-modulators for Photodynamic Immunotherapy of Cancer. <i>Angewandte Chemie</i> , 2021 , 133, 19504-19512	3.6	2
34	Activatable Polymer Nanoenzymes for Photodynamic Immunometabolic Cancer Therapy. <i>Advanced Materials</i> , 2021 , 33, e2007247	24	99
33	Thermally-driven gold@poly(N-isopropylacrylamide) core-shell nanotransporters for molecular extraction. <i>Journal of Colloid and Interface Science</i> , 2021 , 584, 789-794	9.3	3
32	Bio-inspired nanoenzyme for metabolic reprogramming and anti-inflammatory treatment of hyperuricemia and gout. <i>Science China Chemistry</i> , 2021 , 64, 616-628	7.9	5
31	Charge-Reversal Polymer Nano-modulators for Photodynamic Immunotherapy of Cancer. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 19355-19363	16.4	27
30	Semiconducting Polymer Nanoparticles as Activatable Nanomedicines for Combinational Phototherapy. <i>ACS Applied Polymer Materials</i> , 2021 , 3, 4375-4389	4.3	9
29	Smart Nano-PROTACs Reprogram Tumor Microenvironment for Activatable Photo-metabolic Cancer Immunotherapy <i>Angewandte Chemie - International Edition</i> , 2021 , e202114957	16.4	11
28	Flexible Three-Dimensional Net for Intravascular Fishing of Circulating Tumor Cells. <i>Analytical Chemistry</i> , 2020 , 92, 5447-5455	7.8	5
27	Molecular and nanoengineering approaches towards activatable cancer immunotherapy. <i>Chemical Society Reviews</i> , 2020 , 49, 4234-4253	58.5	110
26	Molecularly Engineered Macrophage-Derived Exosomes with Inflammation Tropism and Intrinsic Heme Biosynthesis for Atherosclerosis Treatment. <i>Angewandte Chemie</i> , 2020 , 132, 4097-4103	3.6	7
25	Molecularly Engineered Macrophage-Derived Exosomes with Inflammation Tropism and Intrinsic Heme Biosynthesis for Atherosclerosis Treatment. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4068-4074	16.4	76
24	Recent Progress on Activatable Nanomedicines for Immunometabolic Combinational Cancer Therapy. <i>Small Structures</i> , 2020 , 1, 2000026	8.7	29

(2017-2020)

23	mHealth: A smartphone-controlled, wearable platform for tumour treatment. <i>Materials Today</i> , 2020 , 40, 91-100	21.8	5
22	PLA-PEG Micelles Loaded with a Classic Vasodilator for Oxidative Cataract Prevention. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 407-412	5.5	6
21	Enzyme-Driven Membrane-Targeted Chimeric Peptide for Enhanced Tumor Photodynamic Immunotherapy. <i>ACS Nano</i> , 2019 , 13, 11249-11262	16.7	67
20	A versatile bacterial membrane-binding chimeric peptide with enhanced photodynamic antimicrobial activity. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 1087-1095	7.3	17
19	Artificial Super Neutrophils for Inflammation Targeting and HClO Generation against Tumors and Infections. <i>Advanced Materials</i> , 2019 , 31, e1901179	24	74
18	Nanotherapeutics interfere with cellular redox homeostasis for highly improved photodynamic therapy. <i>Biomaterials</i> , 2019 , 224, 119500	15.6	33
17	Activatable molecular agents for cancer theranostics. <i>Chemical Science</i> , 2019 , 11, 618-630	9.4	62
16	A two-photon excited O-evolving nanocomposite for efficient photodynamic therapy against hypoxic tumor. <i>Biomaterials</i> , 2019 , 194, 84-93	15.6	64
15	Leptin induces IL-6 and IL-8 expression through leptin receptor Ob-Rb in human dental pulp fibroblasts. <i>Acta Odontologica Scandinavica</i> , 2019 , 77, 205-212	2.2	5
14	A self-delivery membrane system for enhanced anti-tumor therapy. <i>Biomaterials</i> , 2018 , 161, 81-94	15.6	38
13	Dual Drug Delivery System Based on Biodegradable Organosilica Core-Shell Architectures. <i>ACS Applied Materials & Discourse Materials</i>	9.5	23
12	A Transformable Chimeric Peptide for Cell Encapsulation to Overcome Multidrug Resistance. <i>Small</i> , 2018 , 14, e1703321	11	55
11	Biomedical applications of functional peptides in nano-systems. <i>Materials Today Chemistry</i> , 2018 , 9, 91-	162	27
10	PD-1 Blockade for Improving the Antitumor Efficiency of Polymer-Doxorubicin Nanoprodrug. <i>Small</i> , 2018 , 14, e1802403	11	42
9	Peptide-Based Multifunctional Nanomaterials for Tumor Imaging and Therapy. <i>Advanced Functional Materials</i> , 2018 , 28, 1804492	15.6	61
8	A Charge Reversible Self-Delivery Chimeric Peptide with Cell Membrane-Targeting Properties for Enhanced Photodynamic Therapy. <i>Advanced Functional Materials</i> , 2017 , 27, 1700220	15.6	84
7	Tumor-Triggered Geometrical Shape Switch of Chimeric Peptide for Enhanced in Vivo Tumor Internalization and Photodynamic Therapy. <i>ACS Nano</i> , 2017 , 11, 3178-3188	16.7	90
6	An O2 Self-Supplementing and Reactive-Oxygen-Species-Circulating Amplified Nanoplatform via H2O/H2O2 Splitting for Tumor Imaging and Photodynamic Therapy. <i>Advanced Functional Materials</i> , 2017 , 27, 1700626	15.6	135

5	A Two-Photon Excitation Based Fluorogenic Probe for Sialome Imaging in Living Systems. <i>Advanced Science</i> , 2016 , 3, 1500211	13.6	7
4	An O2 Self-Sufficient Biomimetic Nanoplatform for Highly Specific and Efficient Photodynamic Therapy. <i>Advanced Functional Materials</i> , 2016 , 26, 7847-7860	15.6	256
3	A Red Light Activatable Multifunctional Prodrug for Image-Guided Photodynamic Therapy and Cascaded Chemotherapy. <i>Advanced Functional Materials</i> , 2016 , 26, 6257-6269	15.6	107
2	Hydrogen peroxide detection with high specificity in living cells and inflamed tissues. <i>International Journal of Energy Production and Management</i> , 2016 , 3, 217-22	5.3	14
1	Long-term thiol monitoring in living cells using bioorthogonal chemistry. <i>Chemical Communications</i> , 2015 , 51, 388-90	5.8	11