Helle Bogetofte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3516430/publications.pdf Version: 2024-02-01

HELLE ROCETOFTE

#	Article	IF	CITATIONS
1	Pharmacological Rescue of Mitochondrial Deficits in iPSC-Derived Neural Cells from Patients with Familial Parkinson's Disease. Science Translational Medicine, 2012, 4, 141ra90.	12.4	444
2	ER Stress and Autophagic Perturbations Lead to Elevated Extracellular α-Synuclein in GBA-N370S Parkinson's iPSC-Derived Dopamine Neurons. Stem Cell Reports, 2016, 6, 342-356.	4.8	279
3	Improved Cell Therapy Protocols for Parkinson's Disease Based on Differentiation Efficiency and Safety of hESC-, hiPSC-, and Non-Human Primate iPSC-Derived Dopaminergic Neurons. Stem Cells, 2013, 31, 1548-1562.	3.2	197
4	PARK2 Mutation Causes Metabolic Disturbances and Impaired Survival of Human iPSC-Derived Neurons. Frontiers in Cellular Neuroscience, 2019, 13, 297.	3.7	47
5	Perturbations in RhoA signalling cause altered migration and impaired neuritogenesis in human iPSC-derived neural cells with PARK2 mutation. Neurobiology of Disease, 2019, 132, 104581.	4.4	32
6	Lysosomal perturbations in human dopaminergic neurons derived from induced pluripotent stem cells with PARK2 mutation. Scientific Reports, 2020, 10, 10278.	3.3	31
7	Identification of bioactive metabolites in human iPSC-derived dopaminergic neurons with PARK2 mutation: Altered mitochondrial and energy metabolism. Stem Cell Reports, 2021, 16, 1510-1526.	4.8	25
8	Microglia-Secreted Factors Enhance Dopaminergic Differentiation of Tissue- and iPSC-Derived Human Neural Stem Cells. Stem Cell Reports, 2021, 16, 281-294.	4.8	23
9	Levodopa Therapy for Parkinson's Disease: History, Current Status and Perspectives. CNS and Neurological Disorders - Drug Targets, 2020, 19, 572-583.	1.4	18
10	REST Protects Dopaminergic Neurons from Mitochondrial and α-Synuclein Oligomer Pathology in an Alpha Synuclein Overexpressing BAC-Transgenic Mouse Model. Journal of Neuroscience, 2021, 41, 3731-3746.	3.6	15
11	Group I Metabotropic Glutamate Receptors: A Potential Target for Regulation of Proliferation and Differentiation of an Immortalized Human Neural Stem Cell Line. Basic and Clinical Pharmacology and Toxicology, 2015, 116, 329-336.	2.5	14
12	<p>The Validity of Intracerebral Hemorrhage Diagnoses in the Danish Patient Registry and the Danish Stroke Registry</p> . Clinical Epidemiology, 2020, Volume 12, 1313-1325.	3.0	12
13	Activation of Group <scp>II</scp> Metabotropic Glutamate Receptors Increases Proliferation but does not Influence Neuronal Differentiation of a Human Neural Stem Cell Line. Basic and Clinical Pharmacology and Toxicology, 2018, 122, 367-372.	2.5	2