Petter S Woll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3515947/publications.pdf

Version: 2024-02-01

		185998	189595
57	4,644 citations	28	50
papers	citations	h-index	g-index
60	60	60	7402
60	60	60	7483
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Aged healthy mice acquire clonal hematopoiesis mutations. Blood, 2022, 139, 629-634.	0.6	13
2	T cells targeted to TdT kill leukemic lymphoblasts while sparing normal lymphocytes. Nature Biotechnology, 2022, 40, 488-498.	9.4	12
3	The extent of residual WT HSPCs is associated with the degree of anemia in patients with <i>SF3B1</i> -mutated MDS-RS. Blood Advances, 2022, 6, 4705-4709.	2.5	2
4	Targeting stem cells in myelodysplastic syndromes and acute myeloid leukemia. Journal of Internal Medicine, 2022, 292, 262-277.	2.7	7
5	Stem cell concepts in myelodysplastic syndromes: lessons and challenges. Journal of Internal Medicine, 2021, 289, 650-661.	2.7	2
6	Integrative Analysis of Primary <i>SF3B1 mt</i> Ring Sideroblasts Provides Fundamental Insights into MDS-RS Pathogenesis and Dyserythropoiesis. Blood, 2021, 138, 146-146.	0.6	2
7	A three-dimensional in vitro model of erythropoiesis recapitulates erythroid failure in myelodysplastic syndromes. Leukemia, 2020, 34, 271-282.	3.3	13
8	The concept of leukaemic stem cells in acute myeloid leukaemia 25Âyears on: hitting a moving target. British Journal of Haematology, 2019, 187, 144-156.	1.2	7
9	InÂVivo Labeling by CD73 Marks Multipotent Stromal Cells and Highlights Endothelial Heterogeneity in the Bone Marrow Niche. Cell Stem Cell, 2018, 22, 262-276.e7.	5.2	47
10	Canonical Notch signaling is dispensable for adult steady-state and stress myelo-erythropoiesis. Blood, 2018, 131, 1712-1719.	0.6	14
11	Mapping the <scp>CLEC</scp> 12A expression on myeloid progenitors in normal bone marrow; implications for understanding <scp>CLEC</scp> 12Aâ€related cancer stem cell biology. Journal of Cellular and Molecular Medicine, 2018, 22, 2311-2318.	1.6	29
12	Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature, 2018, 554, 106-111.	13.7	269
13	Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia. Nature Medicine, 2017, 23, 692-702.	15.2	336
14	SF3B1-initiating mutations in MDS-RSs target lymphomyeloid hematopoietic stem cells. Blood, 2017, 130, 881-890.	0.6	66
15	Progression in patients with low- and intermediate-1-risk del(5q) myelodysplastic syndromes is predicted by a limited subset of mutations. Haematologica, 2017, 102, 498-508.	1.7	34
16	Integrative Genomics Identifies the Molecular Basis of Resistance to Azacitidine Therapy in Myelodysplastic Syndromes. Cell Reports, 2017, 20, 572-585.	2.9	99
17	Niche-mediated depletion of the normal hematopoietic stem cell reservoir by Flt3-ITD–induced myeloproliferation. Journal of Experimental Medicine, 2017, 214, 2005-2021.	4.2	43
18	Distinct myeloid progenitor–differentiation pathways identified through single-cell RNA sequencing. Nature Immunology, 2016, 17, 666-676.	7.0	188

#	Article	IF	Citations
19	Macrophage colony-stimulating factor receptor marks and regulates a fetal myeloid-primed B-cell progenitor in mice. Blood, 2016, 128, 217-226.	0.6	29
20	Initial seeding of the embryonic thymus by immune-restricted lympho-myeloid progenitors. Nature Immunology, 2016, 17, 1424-1435.	7.0	49
21	Perturbed hematopoietic stem and progenitor cell hierarchy in myelodysplastic syndromes patients with monosomy 7 as the sole cytogenetic abnormality. Oncotarget, 2016, 7, 72685-72698.	0.8	21
22	Autophagy limits proliferation and glycolytic metabolism in acute myeloid leukemia. Cell Death Discovery, 2015, 1 , .	2.0	125
23	Clonal variegation and dynamic competition of leukemia-initiating cells in infant acute lymphoblastic leukemia with MLL rearrangement. Leukemia, 2015, 29, 38-50.	3.3	48
24	An animal model mimicking pedunculopontine nucleus cholinergic degeneration in Parkinson's disease. Brain Structure and Function, 2015, 220, 479-500.	1.2	49
25	Myelodysplastic Syndromes Are Propagated by Rare and Distinct Human Cancer Stem Cells InÂVivo. Cancer Cell, 2014, 25, 794-808.	7.7	272
26	Characterization of the Hematopoietic Stem and Progenitor Cell Hierarchy in Myelodysplastic Syndromes Patients with Monosomy 7 As the Sole Cytogenetic Abnormality. Blood, 2014, 124, 3490-3490.	0.6	16
27	Identification of a Prognostic Gene Expression Signature for AZA Response in MDS and CMML Patients. Blood, 2014, 124, 4601-4601.	0.6	0
28	Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature, 2013, 502, 232-236.	13.7	493
29	FLT3-ITDs Instruct a Myeloid Differentiation and Transformation Bias in Lymphomyeloid Multipotent Progenitors. Cell Reports, 2013, 3, 1766-1776.	2.9	40
30	Lymphomyeloid Contribution of an Immune-Restricted Progenitor Emerging Prior to Definitive Hematopoietic Stem Cells. Cell Stem Cell, 2013, 13, 535-548.	5.2	225
31	Quiescent leukaemic cells account for minimal residual disease in childhood lymphoblastic leukaemia. Leukemia, 2013, 27, 1204-1207.	3.3	45
32	Silencing of <scp>ASXL</scp> 1 impairs the granulomonocytic lineage potential of human <scp>CD</scp> 34 ⁺ progenitor cells. British Journal of Haematology, 2013, 160, 842-850.	1.2	19
33	Impact of isolated germline JAK2V617I mutation on human hematopoiesis. Blood, 2013, 121, 4156-4165.	0.6	42
34	The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential. Nature Immunology, 2012, 13, 412-419.	7.0	132
35	Dicer is selectively important for the earliest stages of erythroid development. Blood, 2012, 120, 2412-2416.	0.6	12
36	FLT3 expression initiates in fully multipotent mouse hematopoietic progenitor cells. Blood, 2011, 118, 1544-1548.	0.6	62

#	Article	lF	CITATIONS
37	GATA3 is redundant for maintenance and self-renewal of hematopoietic stem cells. Blood, 2011, 118, 1291-1293.	0.6	23
38	Coexistence of LMPP-like and GMP-like Leukemia Stem Cells in Acute Myeloid Leukemia. Cancer Cell, 2011, 19, 138-152.	7.7	545
39	Germline Activating JAK2 V617I Mutation in a Family with Hereditary Thrombocytosis. Blood, 2011, 118, 1738-1738.	0.6	1
40	The Earliest Thymic T Cell Progenitors Sustain B Cell and Myeloid Lineage Potentials. Blood, 2011, 118, 2335-2335.	0.6	0
41	FLT3-ITDs Introduce a Myeloid Differentiation and Transformation Bias to Multipotent Lympho-Myeloid Progenitors. Blood, 2011, 118, 1380-1380.	0.6	0
42	Persistent Malignant Stem Cells in del(5q) Myelodysplasia in Remission. New England Journal of Medicine, 2010, 363, 1025-1037.	13.9	236
43	Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood, 2009, 113, 6094-6101.	0.6	231
44	Wnt signaling promotes hematoendothelial cell development from human embryonic stem cells. Blood, 2008, 111, 122-131.	0.6	161
45	Differences in lymphocyte developmental potential between human embryonic stem cell and umbilical cord blood–derived hematopoietic progenitor cells. Blood, 2008, 112, 2730-2737.	0.6	62
46	Are the KIR genes actively silenced prior to their tissueâ€specific activation? A KIR intronic promoter produces spliced antisense transcripts in human ES cells. FASEB Journal, 2008, 22, 850.5.	0.2	0
47	Efficient and Stable Transgene Expression in Human Embryonic Stem Cells Using Transposon-Mediated Gene Transfer. Stem Cells, 2007, 25, 2919-2927.	1.4	111
48	NK Cells Derived from Human Embryonic Stem Cells Demonstrate More Effective In Vivo Clearance of Xenografted Human Tumor Cells Compared to NK Cells Derived from Cord Blood. Blood, 2007, 110, 2745-2745.	0.6	1
49	Hematopoietic Engraftment of Human Embryonic Stem Cell-Derived Cells Is Regulated by Recipient Innate Immunity. Stem Cells, 2006, 24, 1370-1380.	1.4	164
50	Characterization of Hematopoietic Progenitor Cells Derived from Human Embryonic Stem Cells That Differentiate into Natural Killer Cells Capable of In Vivo Anti-Tumor Activity Blood, 2006, 108, 645-645.	0.6	4
51	Effect of Two Common Polymorphisms in the ATP Binding Cassette Transporter A1 Gene on HDL-Cholesterol Concentration. Clinical Chemistry, 2005, 51, 907-909.	1.5	19
52	Human Embryonic Stem Cell-Derived NK Cells Acquire Functional Receptors and Cytolytic Activity. Journal of Immunology, 2005, 175, 5095-5103.	0.4	198
53	Human Embryonic Stem Cells Differentiate into Functional Natural Killer Cells with the Capacity To Mediate Anti-Tumor Activity Blood, 2005, 106, 763-763.	0.6	0
54	Plasma homocysteine levels in living kidney donors before and after uninephrectomy. Translational Research, 2004, 143, 340-343.	2.4	13

PETTER S WOLL

#	Article	IF	CITATIONS
55	CD34+ Cells Derived from Human Embryonic Stem Cells Demonstrate Hematopoietic Stem Cell Potential In Vitro and in Vivo Blood, 2004, 104, 564-564.	0.6	6
56	Absence of ABCA1 Mutations in Individuals with Low Serum HDL-Cholesterol. Clinical Chemistry, 2003, 49, 521-522.	1.5	6
57	Part E: Directed Differentiation of Human Embryonic Stem Cells into Lymphocytes. , 0, , 287-297.		O