
Russell S Thomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3515837/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nature Biotechnology, 2010, 28, 827-838.	17.5	795
2	ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology. Chemical Research in Toxicology, 2016, 29, 1225-1251.	3.3	456
3	Integration of Dosimetry, Exposure, and High-Throughput Screening Data in Chemical Toxicity Assessment. Toxicological Sciences, 2012, 125, 157-174.	3.1	336
4	Identification of toxicologically predictive gene sets using cDNA microarrays. Molecular Pharmacology, 2001, 60, 1189-1194.	2.3	258
5	Integrated Model of Chemical Perturbations of a Biological Pathway Using 18 <i>In Vitro</i> High-Throughput Screening Assays for the Estrogen Receptor. Toxicological Sciences, 2015, 148, 137-154.	3.1	251
6	A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data. Pharmacogenomics Journal, 2010, 10, 278-291.	2.0	249
7	Incorporating New Technologies Into Toxicity Testing and Risk Assessment: Moving From 21st Century Vision to a Data-Driven Framework. Toxicological Sciences, 2013, 136, 4-18.	3.1	230
8	The Next Generation Blueprint of Computational Toxicology at the U.S. Environmental Protection Agency. Toxicological Sciences, 2019, 169, 317-332.	3.1	225
9	Screening Chemicals for Estrogen Receptor Bioactivity Using a Computational Model. Environmental Science & Technology, 2015, 49, 8804-8814.	10.0	224
10	Incorporating Human Dosimetry and Exposure into High-Throughput <i>In Vitro</i> Toxicity Screening. Toxicological Sciences, 2010, 117, 348-358.	3.1	222
11	Incorporating High-Throughput Exposure Predictions With Dosimetry-Adjusted <i>In Vitro</i> Bioactivity to Inform Chemical Toxicity Testing. Toxicological Sciences, 2015, 148, 121-136.	3.1	190
12	Estimating Toxicity-Related Biological Pathway Altering Doses for High-Throughput Chemical Risk Assessment. Chemical Research in Toxicology, 2011, 24, 451-462.	3.3	188
13	A Method to Integrate Benchmark Dose Estimates with Genomic Data to Assess the Functional Effects of Chemical Exposure. Toxicological Sciences, 2007, 98, 240-248.	3.1	174
14	BMDExpress: a software tool for the benchmark dose analyses of genomic data. BMC Genomics, 2007, 8, 387.	2.8	171
15	Editor's Highlight: Analysis of the Effects of Cell Stress and Cytotoxicity on <i>In Vitro</i> Assay Activity Across a Diverse Chemical and Assay Space. Toxicological Sciences, 2016, 152, 323-339.	3.1	171
16	Temporal Concordance Between Apical and Transcriptional Points of Departure for Chemical Risk Assessment. Toxicological Sciences, 2013, 134, 180-194.	3.1	164
17	Development and Validation of a Computational Model for Androgen Receptor Activity. Chemical Research in Toxicology, 2017, 30, 946-964.	3.3	163
18	The Tox21 10K Compound Library: Collaborative Chemistry Advancing Toxicology. Chemical Research in Toxicology, 2021, 34, 189-216.	3.3	145

#	Article	IF	CITATIONS
19	Utility of In Vitro Bioactivity as a Lower Bound Estimate of In Vivo Adverse Effect Levels and in Risk-Based Prioritization. Toxicological Sciences, 2020, 173, 202-225.	3.1	138
20	IVT-seq reveals extreme bias in RNA sequencing. Genome Biology, 2014, 15, R86.	9.6	134
21	The US Federal Tox21 Program: A strategic and operational plan for continued leadership. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 163-168.	1.5	134
22	A Comprehensive Statistical Analysis of Predicting In Vivo Hazard Using High-Throughput In Vitro Screening. Toxicological Sciences, 2012, 128, 398-417.	3.1	133
23	Recommended approaches in the application of toxicogenomics to derive points of departure for chemical risk assessment. Archives of Toxicology, 2017, 91, 2045-2065.	4.2	132
24	Accelerating the Pace of Chemical Risk Assessment. Chemical Research in Toxicology, 2018, 31, 287-290.	3.3	130
25	Predicting Hepatotoxicity Using ToxCast <i>in Vitro</i> Bioactivity and Chemical Structure. Chemical Research in Toxicology, 2015, 28, 738-751.	3.3	124
26	BMDExpress 2: enhanced transcriptomic dose-response analysis workflow. Bioinformatics, 2019, 35, 1780-1782.	4.1	123
27	Genome-wide analysis of human HSF1 signaling reveals a transcriptional program linked to cellular adaptation and survival. Molecular BioSystems, 2006, 2, 627.	2.9	117
28	Toxicokinetic Triage for Environmental Chemicals. Toxicological Sciences, 2015, 147, 55-67.	3.1	117
29	Application of Transcriptional Benchmark Dose Values in Quantitative Cancer and Noncancer Risk Assessment. Toxicological Sciences, 2011, 120, 194-205.	3.1	116
30	Genome-scale functional profiling of the mammalian AP-1 signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12153-12158.	7.1	115
31	Formaldehyde: Integrating Dosimetry, Cytotoxicity, and Genomics to Understand Dose-Dependent Transitions for an Endogenous Compound. Toxicological Sciences, 2010, 118, 716-731.	3.1	114
32	<i>In Vitro</i> and Modelling Approaches to Risk Assessment from the U.S. Environmental Protection Agency ToxCast Programme. Basic and Clinical Pharmacology and Toxicology, 2014, 115, 69-76.	2.5	114
33	A Multi-Stakeholder Perspective on the Use of Alternative Test Strategies for Nanomaterial Safety Assessment. ACS Nano, 2013, 7, 6422-6433.	14.6	110
34	Aryl Hydrocarbon Receptor Regulates Cell Cycle Progression in Human Breast Cancer Cells via a Functional Interaction with Cyclin-Dependent Kinase 4. Molecular Pharmacology, 2010, 77, 195-201.	2.3	104
35	Relative Impact of Incorporating Pharmacokinetics on Predicting In Vivo Hazard and Mode of Action from High-Throughput In Vitro Toxicity Assays. Toxicological Sciences, 2013, 132, 327-346.	3.1	104
36	Evaluating In Vitro-In Vivo Extrapolation of Toxicokinetics. Toxicological Sciences, 2018, 163, 152-169.	3.1	98

#	Article	IF	CITATIONS
37	Activation of the Aryl-Hydrocarbon Receptor Inhibits Invasive and Metastatic Features of Human Breast Cancer Cells and Promotes Breast Cancer Cell Differentiation. Molecular Endocrinology, 2010, 24, 359-369.	3.7	96
38	Suspect Screening Analysis of Chemicals in Consumer Products. Environmental Science & Technology, 2018, 52, 3125-3135.	10.0	88
39	Genomic Signatures and Dose-Dependent Transitions in Nasal Epithelial Responses to Inhaled Formaldehyde in the Rat. Toxicological Sciences, 2008, 105, 368-383.	3.1	84
40	Integrating pathway-based transcriptomic data into quantitative chemical risk assessment: A five chemical case study. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2012, 746, 135-143.	1.7	84
41	Variability in Biological Exposure Indices Using Physiologically Based Pharmacokinetic Modeling and Monte Carlo Simulation. AIHA Journal, 1996, 57, 23-32.	0.4	83
42	High-Throughput Transcriptomics Platform for Screening Environmental Chemicals. Toxicological Sciences, 2021, 181, 68-89.	3.1	79
43	Identification of Chemical Modulators of the Constitutive Activated Receptor (CAR) in a Gene Expression Compendium. Nuclear Receptor Signaling, 2015, 13, nrs.13002.	1.0	77
44	Dose-dependent transitions in Nrf2-mediated adaptive response and related stress responses to hypochlorous acid in mouse macrophages. Toxicology and Applied Pharmacology, 2009, 238, 27-36.	2.8	76
45	A Chemical Category-Based Prioritization Approach for Selecting 75 Per- and Polyfluoroalkyl Substances (PFAS) for Tiered Toxicity and Toxicokinetic Testing. Environmental Health Perspectives, 2019, 127, 14501.	6.0	75
46	Systems toxicology. ALTEX: Alternatives To Animal Experimentation, 2012, 29, 119-128.	1.5	75
47	Aryl hydrocarbon receptor deficiency causes dysregulated cellular matrix metabolism and age-related macular degeneration-like pathology. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4069-78.	7.1	74
48	The Next Generation of Risk Assessment Multi-Year Study—Highlights of Findings, Applications to Risk Assessment, and Future Directions. Environmental Health Perspectives, 2016, 124, 1671-1682.	6.0	74
49	Quantitative analyses and transcriptomic profiling of circulating messenger RNAs as biomarkers of rat liver injury. Hepatology, 2010, 51, 2127-2139.	7.3	72
50	EDGE: A Centralized Resource for the Comparison, Analysis, and Distribution of Toxicogenomic Information. Molecular Pharmacology, 2005, 67, 1360-1368.	2.3	71
51	Incorporating Population Variability and Susceptible Subpopulations into Dosimetry for High-Throughput Toxicity Testing. Toxicological Sciences, 2014, 142, 210-224.	3.1	71
52	Systematically evaluating read-across prediction and performance using a local validity approach characterized by chemical structure and bioactivity information. Regulatory Toxicology and Pharmacology, 2016, 79, 12-24.	2.7	70
53	Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice. Toxicology and Applied Pharmacology, 2013, 272, 503-518.	2.8	67
54	Cross-species Comparisons of Transcriptomic Alterations in Human and Rat Primary Hepatocytes Exposed to 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Toxicological Sciences, 2012, 127, 199-215.	3.1	66

#	Article	IF	CITATIONS
55	Application of Genomic Biomarkers to Predict Increased Lung Tumor Incidence in 2-Year Rodent Cancer Bioassays. Toxicological Sciences, 2007, 97, 55-64.	3.1	65
56	Using ToxCastâ,,¢ Data to Reconstruct Dynamic Cell State Trajectories and Estimate Toxicological Points of Departure. Environmental Health Perspectives, 2016, 124, 910-919.	6.0	65
57	Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium. PLoS ONE, 2015, 10, e0112655.	2.5	61
58	Technical guide for applications of gene expression profiling in human health risk assessment of environmental chemicals. Regulatory Toxicology and Pharmacology, 2015, 72, 292-309.	2.7	60
59	Considerations for strategic use of high-throughput transcriptomics chemical screening data in regulatory decisions. Current Opinion in Toxicology, 2019, 15, 64-75.	5.0	58
60	A Comparison of Transcriptomic and Metabonomic Technologies for Identifying Biomarkers Predictive of Two-Year Rodent Cancer Bioassays. Toxicological Sciences, 2007, 96, 40-46.	3.1	55
61	Sequence variation and phylogenetic history of the mouse Ahr gene. Pharmacogenetics and Genomics, 2002, 12, 151-163.	5.7	54
62	Comparison of Microarrays and RNA-Seq for Gene Expression Analyses of Dose-Response Experiments. Toxicological Sciences, 2014, 137, 385-403.	3.1	54
63	Application of Gene Set Enrichment Analysis for Identification of Chemically-Induced, Biologically Relevant Transcriptomic Networks and Potential Utilization in Human Health Risk Assessment. Toxicological Sciences, 2017, 157, kfx021.	3.1	52
64	The Human Toxome Project. ALTEX: Alternatives To Animal Experimentation, 2015, 32, 112-124.	1.5	52
65	Regulation of Aryl Hydrocarbon Receptor Function by Selective Estrogen Receptor Modulators. Molecular Endocrinology, 2010, 24, 33-46.	3.7	50
66	New directions in incidence–dose modeling. Trends in Biotechnology, 2005, 23, 122-127.	9.3	49
67	Predicting Organ Toxicity Using <i>in Vitro</i> Bioactivity Data and Chemical Structure. Chemical Research in Toxicology, 2017, 30, 2046-2059.	3.3	49
68	Concentration- and Time-dependent Genomic Changes in the Mouse Urinary Bladder Following Exposure to Arsenate in Drinking Water for up to 12 Weeks. Toxicological Sciences, 2011, 123, 421-432.	3.1	48
69	Physiologically based pharmacokinetic/pharmacodynamic modeling of the toxicologic interaction between carbon tetrachloride and Kepone. Archives of Toxicology, 1996, 70, 704-713.	4.2	47
70	Expression profiling in canine osteosarcoma: identification of biomarkers and pathways associated with outcome. BMC Cancer, 2010, 10, 506.	2.6	47
71	Progress towards an OECD reporting framework for transcriptomics and metabolomics in regulatory toxicology. Regulatory Toxicology and Pharmacology, 2021, 125, 105020.	2.7	46
72	Use of Short-term Transcriptional Profiles to Assess the Long-term Cancer-Related Safety of Environmental and Industrial Chemicals. Toxicological Sciences, 2009, 112, 311-321.	3.1	45

#	Article	IF	CITATIONS
73	A Bistable Switch Underlying B-Cell Differentiation and Its Disruption by the Environmental Contaminant 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Toxicological Sciences, 2010, 115, 51-65.	3.1	45
74	SEURAT: Safety Evaluation Ultimately Replacing Animal Testing—Recommendations for future research in the field of predictive toxicology. Archives of Toxicology, 2015, 89, 15-23.	4.2	44
75	Screening a mouse liver gene expression compendium identifies modulators of the aryl hydrocarbon receptor (AhR). Toxicology, 2015, 336, 99-112.	4.2	44
76	The aryl hydrocarbon receptor interacts with ATP5 $\hat{1}\pm1$, a subunit of the ATP synthase complex, and modulates mitochondrial function. Toxicology and Applied Pharmacology, 2011, 254, 299-310.	2.8	43
77	Aryl hydrocarbon receptor knockâ€out exacerbates choroidal neovascularization via multiple pathogenic pathways. Journal of Pathology, 2015, 235, 101-112.	4.5	43
78	The application of physiologically based pharmacokinetic/ pharmacodynamic (PBPK/PD) modeling for exploring risk assessment approaches of chemical mixtures. Toxicology Letters, 1995, 79, 193-200.	0.8	42
79	An Integrated Genomic Analysis of Aryl Hydrocarbon Receptor-Mediated Inhibition of B-Cell Differentiation. Toxicological Sciences, 2010, 118, 454-469.	3.1	42
80	Systems pharmacology assessment of the 5-fluorouracil pathway. Pharmacogenomics, 2011, 12, 341-350.	1.3	42
81	Physiologically based pharmacokinetic/pharmacodynamic modeling of chemical mixtures and possible applications in risk assessment. Toxicology, 1995, 105, 275-282.	4.2	41
82	Functional analysis of multiple genomic signatures demonstrates that classification algorithms choose phenotype-related genes. Pharmacogenomics Journal, 2010, 10, 310-323.	2.0	41
83	Application of genomics to toxicology research Environmental Health Perspectives, 2002, 110, 919-923.	6.0	40
84	Assessing Toxicokinetic Uncertainty and Variability in Risk Prioritization. Toxicological Sciences, 2019, 172, 235-251.	3.1	40
85	The SEURAT-1 approach towards animal free human safety assessment. ALTEX: Alternatives To Animal Experimentation, 2015, 32, 9-24.	1.5	40
86	On selecting a minimal set of inÂvitro assays to reliably determine estrogen agonist activity. Regulatory Toxicology and Pharmacology, 2017, 91, 39-49.	2.7	39
87	Paving the way for application of next generation risk assessment to safety decision-making for cosmetic ingredients. Regulatory Toxicology and Pharmacology, 2021, 125, 105026.	2.7	39
88	Genome-wide Analysis of DNA Methylation and Gene Expression Changes in the Mouse Lung following Subchronic Arsenate Exposure. Toxicological Sciences, 2010, 117, 404-417.	3.1	38
89	Chemical Risk Assessment: Traditional vs Public Health Perspectives. American Journal of Public Health, 2017, 107, 1032-1039.	2.7	38
90	Using the concordance of in vitro and in vivo data to evaluate extrapolation assumptions. PLoS ONE, 2019, 14, e0217564.	2.5	37

#	Article	IF	CITATIONS
91	Variability in in vivo studies: Defining the upper limit of performance for predictions of systemic effect levels. Computational Toxicology, 2020, 15, 100126.	3.3	37
92	Chemical mixture toxicology: from descriptive to mechanistic, and going on to in silico toxicology. Environmental Toxicology and Pharmacology, 2004, 18, 65-81.	4.0	34
93	Profiling the ToxCast Library With a Pluripotent Human (H9) Stem Cell Line-Based Biomarker Assay for Developmental Toxicity. Toxicological Sciences, 2020, 174, 189-209.	3.1	34
94	Systems Biology and Biomarkers of Early Effects for Occupational Exposure Limit Setting. Journal of Occupational and Environmental Hygiene, 2015, 12, S41-S54.	1.0	31
95	mRNA transfection retrofits cell-based assays with xenobiotic metabolism. Journal of Pharmacological and Toxicological Methods, 2018, 92, 77-94.	0.7	31
96	Dose–response modeling in reproductive toxicology in the systems biology era. Reproductive Toxicology, 2005, 19, 327-337.	2.9	30
97	Genomic analysis of human lung fibroblasts exposed to vanadium pentoxide to identify candidate genes for occupational bronchitis. Respiratory Research, 2007, 8, 34.	3.6	30
98	Gene Expression Changes Following Acute Hydrogen Sulfide (H ₂ S)-induced Nasal Respiratory Epithelial Injury. Toxicologic Pathology, 2008, 36, 560-567.	1.8	28
99	Cross-Species Transcriptomic Analysis of Mouse and Rat Lung Exposed to Chloroprene. Toxicological Sciences, 2013, 131, 629-640.	3.1	28
100	Lineageâ€dependent effects of aryl hydrocarbon receptor agonists contribute to liver tumorigenesis. Hepatology, 2015, 61, 548-560.	7.3	28
101	MYC Is an Early Response Regulator of Human Adipogenesis in Adipose Stem Cells. PLoS ONE, 2014, 9, e114133.	2.5	28
102	Evaluation of gene expression changes in human primary uroepithelial cells following 24â€Hr exposures to inorganic arsenic and its methylated metabolites. Environmental and Molecular Mutagenesis, 2013, 54, 82-98.	2.2	26
103	Evaluation of androgen assay results using a curated Hershberger database. Reproductive Toxicology, 2018, 81, 272-280.	2.9	25
104	Transcriptional responses in the rat nasal epithelium following subchronic inhalation of naphthalene vapor. Toxicology and Applied Pharmacology, 2014, 280, 78-85.	2.8	24
105	Hexabromocyclododecane (HBCD): A case study applying tiered testing for human health risk assessment. Food and Chemical Toxicology, 2019, 131, 110581.	3.6	24
106	Stochastic Modeling of B Lymphocyte Terminal Differentiation and Its Suppression by Dioxin. BMC Systems Biology, 2010, 4, 40.	3.0	23
107	Regulation of Bach2 by the aryl hydrocarbon receptor as a mechanism for suppression of B-cell differentiation by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology and Applied Pharmacology, 2011, 252, 150-158.	2.8	23
108	Aryl hydrocarbon receptor knockout rats are insensitive to the pathological effects of repeated oral exposure to 2,3,7,8â€tetrachlorodibenzoâ€ <i>p</i> â€dioxin. Journal of Applied Toxicology, 2016, 36, 802-814.	2.8	23

#	Article	IF	CITATIONS
109	BMDExpress Data Viewer ―a visualization tool to analyze BMDExpress datasets. Journal of Applied Toxicology, 2016, 36, 1048-1059.	2.8	22
110	Development of a curated Hershberger database. Reproductive Toxicology, 2018, 81, 259-271.	2.9	22
111	A functional map of NFκB signaling identifies novel modulators and multiple system controls. Genome Biology, 2007, 8, R104.	9.6	20
112	Research toward the development of a biologically based dose response assessment for inorganic arsenic carcinogenicity: A progress report. Toxicology and Applied Pharmacology, 2007, 222, 388-398.	2.8	20
113	Development of an <i>In Vitro</i> Human Thyroid Microtissue Model for Chemical Screening. Toxicological Sciences, 2020, 174, 63-78.	3.1	19
114	Immunological characterization of the aryl hydrocarbon receptor (AHR) knockout rat in the presence and absence of 2,3,7,8-tetrachlorodibenzo- p -dioxin (TCDD). Toxicology, 2016, 368-369, 172-182.	4.2	17
115	The Alginate Immobilization of Metabolic Enzymes Platform Retrofits an Estrogen Receptor Transactivation Assay With Metabolic Competence. Toxicological Sciences, 2020, 178, 281-301.	3.1	17
116	All-or-none suppression of B cell terminal differentiation by environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology and Applied Pharmacology, 2013, 268, 17-26.	2.8	16
117	Biological Networks for Predicting Chemical Hepatocarcinogenicity Using Gene Expression Data from Treated Mice and Relevance across Human and Rat Species. PLoS ONE, 2013, 8, e63308.	2.5	16
118	Bringing together scientific disciplines for collaborative undertakings: a vision for advancing the adverse outcome pathway framework. International Journal of Radiation Biology, 2021, 97, 431-441.	1.8	15
119	Stochastic Simulation of Hepatic Preneoplastic Foci Development for Four Chlorobenzene Congeners in a Medium-Term Bioassay. Toxicological Sciences, 2003, 73, 301-314.	3.1	14
120	The Aryl-Hydrocarbon Receptor Protein Interaction Network (AHR-PIN) as Identified by Tandem Affinity Purification (TAP) and Mass Spectrometry. Journal of Toxicology, 2013, 2013, 1-12.	3.0	14
121	Use of a medium-term liver focus bioassay to assess the hepatocarcinogenicity of 1,2,4,5-tetrachlorobenzene and 1,4-dichlorobenzene. Cancer Letters, 1998, 129, 39-44.	7.2	13
122	Biological responses in rats exposed to cigarette smoke and Middle East sand (dust). Inhalation Toxicology, 2012, 24, 109-124.	1.6	13
123	Subchronic toxicity evaluation of potassium bromate in Fischer 344 rats. Environmental Toxicology and Pharmacology, 2013, 36, 1227-1234.	4.0	13
124	Development of 3D Dynamic Flow Model of Human Liver and Its Application to Prediction of Metabolic Clearance of 7-Ethoxycoumarin. Tissue Engineering - Part C: Methods, 2014, 20, 641-651.	2.1	13
125	A Genomics-Based Analysis of Relative Potencies of Dioxin-Like Compounds in Primary Rat Hepatocytes. Toxicological Sciences, 2013, 136, 595-604.	3.1	12
126	Evidence for hepatocarcinogenic activity of pentachlorobenzene with intralobular variation in foci incidence. Carcinogenesis, 1998, 19, 1855-1862.	2.8	11

#	Article	IF	CITATIONS
127	Subchronic Hepatotoxicity Evaluation of Hydrazobenzene in Fischer 344 Rats. International Journal of Toxicology, 2012, 31, 564-571.	1.2	11
128	Workflow for Defining Reference Chemicals for Assessing Performance of In Vitro Assays. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 261-276.	1.5	11
129	Enhanced Regional Expression of GlutathioneS-Transferase P1-1 with Colocalized AP-1 and CYP 1A2 Induction in Chlorobenzene-Induced Porphyria. Toxicology and Applied Pharmacology, 1998, 150, 22-31.	2.8	10
130	Immune cell-based screening assay for response to anticancer agents: applications in pharmacogenomics. Pharmacogenomics and Personalized Medicine, 2015, 8, 81.	0.7	10
131	Case Studies in Cellular Stress: Defining Adversity/Adaptation Tipping Points. Applied in Vitro Toxicology, 2017, 3, 199-210.	1.1	10
132	Plutonium Concentrations in Lichens of Rocky Flats Environs. Health Physics, 1995, 68, 311-319.	0.5	9
133	A Physiologically Based Pharmacodynamic Analysis of Hepatic Foci within a Medium-Term Liver Bioassay Using Pentachlorobenzene as a Promoter and Diethylnitrosamine as an Initiator. Toxicology and Applied Pharmacology, 2000, 166, 128-137.	2.8	9
134	Quantitative Property–Property Relationship for Screening-Level Prediction of Intrinsic Clearance: A Tool for Exposure Modeling for High-Throughput Toxicity Screening Data. Applied in Vitro Toxicology, 2015, 1, 140-146.	1.1	9
135	Assessing Safety Without Animal Testing: The Road Ahead. Toxicological Sciences, 2022, 187, 214-218.	3.1	9
136	Developing toxicologically predictive gene sets using cDNA microarrays and bayesian classification. Methods in Enzymology, 2002, 357, 198-205.	1.0	8
137	Risk science in the 21st century: a data-driven framework for incorporating new technologies into chemical safety assessment. International Journal of Risk Assessment and Management, 2017, 20, 88.	0.1	8
138	Assessing bioactivity-exposure profiles of fruit and vegetable extracts in the BioMAP profiling system. Toxicology in Vitro, 2019, 54, 41-57.	2.4	8
139	Response to "Incorporating Biological, Chemical, and Toxicological Knowledge Into Predictive Models of Toxicity― Toxicological Sciences, 2012, 130, 442-443.	3.1	7
140	Subchronic hepatotoxicity evaluation of bromobenzene in Fischer 344 rats. Journal of Applied Toxicology, 2013, 33, 370-377.	2.8	7
141	A Framework that Considers the Impacts of Time, Cost, and Uncertainty in the Determination of the Cost Effectiveness of Toxicityâ€Testing Methodologies. Risk Analysis, 2021, , .	2.7	7
142	In utero exposure to chloroquine alters sexual development in the male fetal rat. Toxicology and Applied Pharmacology, 2009, 237, 366-374.	2.8	6
143	Subchronic Hepatotoxicity Evaluation of 1,2,4-Tribromobenzene in Sprague-Dawley Rats. International Journal of Toxicology, 2012, 31, 250-256.	1.2	6
144	Comment on "On the Utility of ToxCast™ and ToxPi as Methods for Identifying New Obesogens― Environmental Health Perspectives, 2017, 125, A8-A11.	6.0	6

#	Article	IF	CITATIONS
145	Loss of Hif-2α Rescues the Hif-1α Deletion Phenotype of Neonatal Respiratory Distress In Mice. PLoS ONE, 2015, 10, e0139270.	2.5	6
146	Implementing in vitro bioactivity data to modernize priority setting of chemical inventories. ALTEX: Alternatives To Animal Experimentation, 2021, , .	1.5	6
147	Incorporating Monte Carlo Simulation into Physiologically Based Pharmacokinetic Models Using Advanced Continuous Simulation Language (ACSL): A Computational Method. Toxicological Sciences, 1996, 31, 19-28.	3.1	5
148	Subchronic urinary bladder toxicity evaluation of Nâ€Nitrosodiphenylamine in Fischer 344 rats. Journal of Applied Toxicology, 2013, 33, 383-389.	2.8	5
149	Subchronic Toxicity Evaluation of Anthraquinone in Fischer 344 Rats. International Journal of Toxicology, 2013, 32, 358-367.	1.2	5
150	A cellular genetics approach identifies gene-drug interactions and pinpoints drug toxicity pathway nodes. Frontiers in Genetics, 2014, 5, 272.	2.3	5
151	Estimating Hepatotoxic Doses Using High-Content Imaging in Primary Hepatocytes. Toxicological Sciences, 2021, 183, 285-301.	3.1	5
152	NetAtlas: a Cytoscape plugin to examine signaling networks based on tissue gene expression. In Silico Biology, 2008, 8, 47-52.	0.9	5
153	A value of information framework for assessing the tradeâ€offs associated with uncertainty, duration, and cost of chemical toxicity testing. Risk Analysis, 2023, 43, 498-515.	2.7	5
154	Basal Gene Expression in Male and Female Sprague-Dawley Rat Nasal Respiratory and Olfactory Epithelium. Inhalation Toxicology, 2007, 19, 941-949.	1.6	4
155	Subchronic Thyroid Toxicity Evaluation of 4,4′-Methylenebis(N,N′-Dimethyl)Aniline in Fischer 344 Rats. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2012, 75, 637-648.	2.3	4
156	Identifying genes that mediate anthracyline toxicity in immune cells. Frontiers in Pharmacology, 2015, 6, 62.	3.5	4
157	Chemical Screening in an Estrogen Receptor Transactivation Assay With Metabolic Competence. Toxicological Sciences, 2022, 187, 112-126.	3.1	4
158	Subchronic Hepatotoxicity Evaluation of 2,3,4,6-Tetrachlorophenol in Sprague Dawley Rats. Journal of Toxicology, 2012, 2012, 1-10.	3.0	2
159	Application of DNA microarrays for predicting toxicity and evaluating cross-species extrapolation. , 2003, , 31-38.		1
160	Response to "Accurate Risk-Based Chemical Screening * Relies on Robust Exposure Estimates". Toxicological Sciences, 2012, 128, 297-299.	3.1	0
161	Changing the Paradigm of Toxicity Testing From Observational to Predictive: An Update on Two Global In Vitro Screening Initiatives. Applied in Vitro Toxicology, 2015, 1, 91-98.	1.1	0
162	The Identification of Protein Kinase C Iota as a Regulator of the Mammalian Heat Shock Response Using Functional Genomic Screens. PLoS ONE, 2010, 5, e11850.	2.5	0