
Kaveh Khalili-Damghani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3514935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A new multi-objective particle swarm optimization method for solving reliability redundancy allocation problems. Reliability Engineering and System Safety, 2013, 111, 58-75.	5.1	157
2	Application of a fuzzy TOPSIS method base on modified preference ratio and fuzzy distance measurement in assessment of traffic police centers performance. Applied Soft Computing Journal, 2010, 10, 1028-1039.	4.1	129
3	A new multi-objective multi-mode model for solving preemptive time–cost–quality trade-off project scheduling problems. Expert Systems With Applications, 2014, 41, 1830-1846.	4.4	114
4	Solving multi-period project selection problems with fuzzy goal programming based on TOPSIS and a fuzzy preference relation. Information Sciences, 2013, 252, 42-61.	4.0	80
5	Uncertain multi-objective multi-commodity multi-period multi-vehicle location-allocation model for earthquake evacuation planning. Applied Mathematics and Computation, 2019, 350, 105-132.	1.4	78
6	A hybrid fuzzy multiple criteria group decision making approach for sustainable project selection. Applied Soft Computing Journal, 2013, 13, 339-352.	4.1	68
7	A hybrid fuzzy rule-based multi-criteria framework for sustainable project portfolio selection. Information Sciences, 2013, 220, 442-462.	4.0	66
	Stackastic optimization model for distribution and execution planning (A second why of Tahran) Ti FTO-0.0.0 m		

$_{8}$ Stochastic optimization model for distribution and evacuation planning (A case study of Tehran) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 4

9	Solving binary-state multi-objective reliability redundancy allocation series-parallel problem using efficient epsilon-constraint, multi-start partial bound enumeration algorithm, and DEA. Reliability Engineering and System Safety, 2012, 103, 35-44.	5.1	59
10	A new two-stage Stackelberg fuzzy data envelopment analysis model. Measurement: Journal of the International Measurement Confederation, 2014, 53, 277-296.	2.5	58
11	A new fuzzy network data envelopment analysis model for measuring the performance of agility in supply chains. International Journal of Advanced Manufacturing Technology, 2013, 69, 291-318.	1.5	56
12	A data envelopment analysis model with interval data and undesirable output for combined cycle power plant performance assessment. Expert Systems With Applications, 2015, 42, 760-773.	4.4	55
13	Drone shipping versus truck delivery in a cross-docking system with multiple fleets and products. Expert Systems With Applications, 2017, 72, 93-107.	4.4	55
14	A fuzzy group data envelopment analysis model for high-technology project selection: A case study at NASA. Computers and Industrial Engineering, 2013, 66, 10-23.	3.4	54
15	Hybrid soft computing approach based on clustering, rule mining, and decision tree analysis for customer segmentation problem: Real case of customer-centric industries. Applied Soft Computing Journal, 2018, 73, 816-828.	4.1	50
16	Uncertain network data envelopment analysis with undesirable outputs to evaluate the efficiency of electricity power production and distribution processes. Computers and Industrial Engineering, 2015, 88, 131-150.	3.4	47
17	Design of SCADA water resource management control center by a bi-objective redundancy allocation problem and particle swarm optimization. Reliability Engineering and System Safety, 2015, 133, 11-21.	5.1	46
18	An integrated multi-objective framework for solving multi-period project selection problems. Applied Mathematics and Computation, 2012, 219, 3122-3138.	1.4	45

#	Article	IF	CITATIONS
19	A hybrid fuzzy MCDM method for measuring the performance of publicly held pharmaceutical companies. Annals of Operations Research, 2015, 226, 589-621.	2.6	45
20	A fuzzy multi-objective multi-period network DEA model for efficiency measurement in oil refineries. Computers and Industrial Engineering, 2019, 135, 143-155.	3.4	45
21	A decision support system for fuzzy multi-objective multi-period sustainable project selection. Computers and Industrial Engineering, 2013, 64, 1045-1060.	3.4	44
22	Solving multi-mode time–cost–quality trade-off problems under generalized precedence relations. Optimization Methods and Software, 2015, 30, 965-1001.	1.6	44
23	A hybrid fuzzy group decision support framework for advanced-technology prioritization at NASA. Expert Systems With Applications, 2013, 40, 480-491.	4.4	42
24	A novel hybrid MCDM approach for outsourcing supplier selection. Journal of Modelling in Management, 2016, 11, 536-559.	1.1	42
25	A simulation-based optimization approach for free distributed repairable multi-state availability-redundancy allocation problems. Reliability Engineering and System Safety, 2017, 157, 177-191.	5.1	42
26	A robust simulation-optimization approach for pre-disaster multi-period location–allocation–inventory planning. Mathematics and Computers in Simulation, 2021, 179, 69-95.	2.4	42
27	A Decision Support System for Solving Multiâ€Objective Redundancy Allocation Problems. Quality and Reliability Engineering International, 2014, 30, 1249-1262.	1.4	39
28	A New Bi-objective Location-routing Problem for Distribution of Perishable Products: Evolutionary Computation Approach. Mathematical Modelling and Algorithms, 2015, 14, 287-312.	0.5	39
29	A hybrid approach based on fuzzy DEA and simulation to measure the efficiency of agility in supply chain: real case of dairy industry. International Journal of Management Science and Engineering Management, 2011, 6, 163-172.	2.6	36
30	A fuzzy multidimensional multiple-choice knapsack model for project portfolio selection using an evolutionary algorithm. Annals of Operations Research, 2013, 206, 449-483.	2.6	35
31	A comprehensive fuzzy DEA model for emerging market assessment and selection decisions. Applied Soft Computing Journal, 2016, 38, 676-702.	4.1	34
32	A fuzzy two-stage DEA approach for performance measurement: real case of agility performance in dairy supply chains. International Journal of Applied Decision Sciences, 2012, 5, 293.	0.2	32
33	Efficiency decomposition and measurement in two-stage fuzzy DEA models using a bargaining game approach. Computers and Industrial Engineering, 2018, 118, 394-408.	3.4	32
34	A dynamic multi-stage data envelopment analysis model with application to energy consumption in the cotton industry. Energy Economics, 2015, 51, 320-328.	5.6	28
35	A three-stage fuzzy DEA approach to measure performance of a serial process including JIT practices, agility indices, and goals in supply chains. International Journal of Services and Operations Management, 2012, 13, 147.	0.1	27
36	A fuzzy bi-objective mixed-integer programming method for solving supply chain network design problems under ambiguous and vague conditions. International Journal of Advanced Manufacturing Technology, 2014, 73, 1567-1595.	1.5	27

#	Article	IF	CITATIONS
37	Fuzzy type-II De-Novo programming for resource allocation and target setting in network data envelopment analysis: A natural gas supply chain. Expert Systems With Applications, 2019, 117, 312-329.	4.4	26
38	A stochastic bi-objective simulation–optimization model for cascade disaster location-allocation-distribution problems. Annals of Operations Research, 2022, 309, 103-141.	2.6	25
39	Solving fuzzy Multidimensional Multiple-Choice Knapsack Problems: The multi-start Partial Bound Enumeration method versus the efficient epsilon-constraint method. Applied Soft Computing Journal, 2013, 13, 1627-1638.	4.1	24
40	A Malmquist productivity index for network production systems in the energy sector. Annals of Operations Research, 2020, 284, 415-445.	2.6	23
41	Sensitivity and stability analysis in two-stage DEA models with fuzzy data. International Journal of Operational Research, 2013, 17, 1.	0.1	22
42	Modeling steel supply and demand functions using logarithmic multiple regression analysis (case) Tj ETQq0 0 0	rgBT /Over 4.2	rlock 10 Tf 50
43	A robust bi-objective location-routing model for providing emergency medical services. Journal of Humanitarian Logistics and Supply Chain Management, 2020, 10, 285-319.	1.7	20
44	Solving land-use suitability analysis and planning problem by a hybrid meta-heuristic algorithm. International Journal of Geographical Information Science, 2014, 28, 2390-2416.	2.2	19
45	A customized genetic algorithm for solving multi-period cross-dock truck scheduling problems. Measurement: Journal of the International Measurement Confederation, 2017, 108, 101-118.	2.5	19
46	A decentralized supply chain planning model: a case study of hardboard industry. International Journal of Advanced Manufacturing Technology, 2017, 93, 3813-3836.	1.5	19
47	An evolutionary computation approach to solving repairable multi-state multi-objective redundancy allocation problems. Neural Computing and Applications, 2018, 30, 127-139.	3.2	19
48	Mixed uncertainties in data envelopment analysis: A fuzzy-robust approach. Expert Systems With Applications, 2018, 103, 218-237.	4.4	16
49	Multi-resource trade-off problem of the project contractors in a cooperative environment: highway construction case study. International Journal of Management Science and Engineering Management, 2018, 13, 129-138.	2.6	16
50	Multi-objective flexibility-complexity trade-off problem in batch production systems using fuzzy goal programming. Expert Systems With Applications, 2020, 148, 113266.	4.4	16
51	A two-stage approach based on ANFIS and fuzzy goal programming for supplier selection. International Journal of Applied Decision Sciences, 2013, 6, 1.	0.2	15
52	Robust two-stage DEA models under discrete uncertain data. International Journal of Management Science and Engineering Management, 2017, 12, 216-224.	2.6	14
53	Optimizing human resource cost of an emergency hospital using multi-objective Bat algorithm. International Journal of Healthcare Management, 2021, 14, 873-879.	1.2	14
54	Solving a generalised precedence multi-objective multi-mode time-cost-quality trade-off project scheduling problem using a modified NSGA-II algorithm. International Journal of Services and Operations Management, 2013, 14, 355.	0.1	13

#	Article	IF	CITATIONS
55	Measuring Performance of a Three-Stage Network Structure Using Data Envelopment Analysis and Nash Bargaining Game: A Supply Chain Application. International Journal of Information Technology and Decision Making, 2018, 17, 1429-1467.	2.3	13
56	Simulation–optimization approach for a continuous-review, base-stock inventory model with general compound demands, random lead times, and lost sales. Simulation, 2016, 92, 547-564.	1.1	11
57	Solving a New Multi-Period Multi-Objective Multi-Product Aggregate Production Planning Problem Using Fuzzy Goal Programming. Industrial Engineering and Management Systems, 2014, 13, 369-382.	0.3	11
58	Human resources optimization in hospital emergency using the genetic algorithm approach. International Journal of Healthcare Management, 2020, , 1-8.	1.2	10
59	Development of a multi-period model to minimise logistic costs and maximise service level in a three-echelon multi-product supply chain considering back orders. International Journal of Applied Decision Sciences, 2015, 8, 145.	0.2	9
60	Solving a multi-objective multi-echelon supply chain logistic design and planning problem by a goal programming approach. International Journal of Management Science and Engineering Management, 2015, 10, 242-252.	2.6	9
61	Type-II Fuzzy Multi-Product, Multi-Level, Multi-Period Location–Allocation, Production–Distribution Problem in Supply Chains: Modelling and Optimisation Approach. Fuzzy Information and Engineering, 2018, 10, 260-283.	1.0	9
62	Uncertain Centralized/Decentralized Production-Distribution Planning Problem in Multi-Product Supply Chains: Fuzzy Mathematical Optimization Approaches. Industrial Engineering and Management Systems, 2016, 15, 156-172.	0.3	9
63	A New Stochastic Time-Cost-Quality Trade-Off Project Scheduling Problem Considering Multiple-Execution Modes, Preemption, and Generalized Precedence Relations. Industrial Engineering and Management Systems, 2017, 16, 271-287.	0.3	9
64	Performance measurement of police traffic centres using fuzzy DEA-based Malmquist productivity index. International Journal of Multicriteria Decision Making, 2012, 2, 94.	0.1	8
65	A Hybrid Approach Based on Multi-Criteria Satisfaction Analysis (MUSA) and a Network Data Envelopment Analysis (NDEA) to Evaluate Efficiency of Customer Services in Bank Branches. Industrial Engineering and Management Systems, 2015, 14, 347-371.	0.3	8
66	A new fuzzy clustering algorithm based on multi-objective mathematical programming. Top, 2015, 23, 168-197.	1.1	6
67	Designing a resilient skip-stop schedule in rapid rail transit using a simulation-based optimization methodology. Operational Research, 2021, 21, 1691-1721.	1.3	6
68	An event-driven simulation-optimisation approach to improve the resiliency of operation in a double-track urban rail line. Journal of Simulation, 2022, 16, 526-545.	1.0	6
69	Product processing prioritization in hybrid flow shop systems supported on Nash bargaining model and simulation-optimization. Expert Systems With Applications, 2021, 180, 115066.	4.4	6
70	Imprecise DEA Models to Assess the Agility of Supply Chains. Studies in Fuzziness and Soft Computing, 2014, , 167-198.	0.6	6
71	Dynamic strategic planning: A hybrid approach based on logarithmic regression, system dynamics, Game Theory and Fuzzy Inference System (Case study Steel Industry). Resources Policy, 2022, 77, 102769.	4.2	6
72	Solving customer insurance coverage recommendation problem using a two-stage clustering-classification model. International Journal of Management Science and Engineering Management, 2019, 14, 9-19	2.6	5

#	Article	IF	CITATIONS
73	A flexible mathematical model for crew pairing optimization to generate <i>n</i> -day pairings considering the risk of COVID-19: a real case study. Kybernetes, 2022, 51, 3545-3573.	1.2	5
74	An evolutionary approach with reliability priority to design Scada systems for water reservoirs. Evolving Systems, 2022, 13, 499-517.	2.4	4
75	An Integrated Model of Customer Experience, Perceived Value, Satisfaction, and Loyalty in Electronic Stores. International Journal of Enterprise Information Systems, 2016, 12, 31-46.	0.6	3
76	Cooperative mechanism based on data envelopment analysis and artificial neural network to measure efficiency: case study of Iranian ports. International Journal of Applied Decision Sciences, 2017, 10, 52.	0.2	3
77	Developing a fuzzy inference system to devise proper business strategies: a study on carpet industry. Journal of Industrial Engineering International, 2019, 15, 529-544.	1.8	3
78	A new network data envelopment analysis models to measure the efficiency of natural gas supply chain. Operational Research, 2021, 21, 1461-1486.	1.3	3
79	Multi-dimensional flexibility-complexity trade-off modeling in manufacturing systems. Kybernetes, 2019, 48, 1757-1781.	1.2	3
80	Designing an Intelligent Control Philosophy in Reservoirs of Water Transfer Networks in Supervisory Control and Data Acquisition System Stations. International Journal of Automation and Computing, 2021, 18, 694-717.	4.5	3
81	A Nash bargaining solution for a multi period competitive portfolio optimization problem: Co-evolutionary approach. Expert Systems With Applications, 2021, 184, 115509.	4.4	3
82	Analyzing the Investment Behavior in the Iranian Stock Exchange during the COVID-19 Pandemic Using Hybrid DEA and Data Mining Techniques. Mathematical Problems in Engineering, 2022, 2022, 1-16.	0.6	3
83	A Conceptual Model for Measuring Reverse Logistics Performance in Automobile Industry. International Journal of Strategic Decision Sciences, 2014, 5, 21-29.	0.0	2
84	Fuzzy Type-II Resource Allocation and Target Setting in Data Envelopment Analysis: A Real Case of Gas Refineries. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2021, 29, 65-105.	0.9	2
85	Tuning structural parameters of neural networks using genetic algorithm: A credit scoring application. Expert Systems, 2021, 38, e12733.	2.9	2
86	Stochastic multi-period multi-product multi-objective Aggregate Production Planning model in multi-echelon supply chain. International Journal of Production Management and Engineering, 2017, 5, 85.	0.8	2
87	A Nash bargaining game data envelopment analysis model for measuring efficiency of dynamic multi-period network structures. Journal of Modelling in Management, 2022, ahead-of-print, .	1.1	1
88	A Conceptual Model for Measuring Reverse Logistics Performance in Automobile Industry. , 0, , 1009-1019.		0