Mariarita Bertoldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3514831/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The novel P330L pathogenic variant of aromatic amino acid decarboxylase maps on the catalytic flexible loop underlying its crucial role. Cellular and Molecular Life Sciences, 2022, 79, 305.	2.4	8
2	Tyrosine Phosphorylation Modulates Peroxiredoxin-2 Activity in Normal and Diseased Red Cells. Antioxidants, 2021, 10, 206.	2.2	4
3	Aromatic <scp>l</scp> -amino acid decarboxylase deficiency: a patient-derived neuronal model for precision therapies. Brain, 2021, 144, 2443-2456.	3.7	16
4	Compound heterozygosis in AADC deficiency: A complex phenotype dissected through comparison among heterodimeric and homodimeric AADC proteins. Molecular Genetics and Metabolism, 2021, 134, 147-155.	0.5	10
5	Succinic Semialdehyde Dehydrogenase Deficiency: In Vitro and In Silico Characterization of a Novel Pathogenic Missense Variant and Analysis of the Mutational Spectrum of ALDH5A1. International Journal of Molecular Sciences, 2020, 21, 8578.	1.8	5
6	Protective Effect of Epigallocatechin-3-Gallate (EGCG) in Diseases with Uncontrolled Immune Activation: Could Such a Scenario Be Helpful to Counteract COVID-19?. International Journal of Molecular Sciences, 2020, 21, 5171.	1.8	81
7	Oxygen reactivity with pyridoxal 5′-phosphate enzymes: biochemical implications and functional relevance. Amino Acids, 2020, 52, 1089-1105.	1.2	12
8	Structural Insights into the Heme Pocket and Oligomeric State of Non-Symbiotic Hemoglobins from Arabidopsis thaliana. Biomolecules, 2020, 10, 1615.	1.8	3
9	New variants of AADC deficiency expand the knowledge of enzymatic phenotypes. Archives of Biochemistry and Biophysics, 2020, 682, 108263.	1.4	19
10	A novel compound heterozygous genotype associated with aromatic amino acid decarboxylase deficiency: Clinical aspects and biochemical studies. Molecular Genetics and Metabolism, 2019, 127, 132-137.	0.5	19
11	Aromatic amino acid decarboxylase deficiency: Molecular and metabolic basis and therapeutic outlook. Molecular Genetics and Metabolism, 2019, 127, 12-22.	0.5	66
12	Heterozygosis in aromatic amino acid decarboxylase deficiency: Evidence for a positive interallelic complementation between R347Q and R358H mutations. IUBMB Life, 2018, 70, 215-223.	1.5	13
13	Phosphorylation of pyridoxal 5′-phosphate enzymes: an intriguing and neglected topic. Amino Acids, 2018, 50, 205-215.	1.2	5
14	Cysteine 180 Is a Redox Sensor Modulating the Activity of Human Pyridoxal 5′-Phosphate Histidine Decarboxylase. Biochemistry, 2018, 57, 6336-6348.	1.2	5
15	New Insights Emerging from Recent Investigations on Human Group II Pyridoxal 5'-Phosphate Decarboxylases. Current Medicinal Chemistry, 2017, 24, 226-244.	1.2	13
16	A new molecular link between defective autophagy and erythroid abnormalities in chorea-acanthocytosis. Blood, 2016, 128, 2976-2987.	0.6	47
17	The novel R347g pathogenic mutation of aromatic amino acid decarboxylase provides additional molecular insights into enzyme catalysis and deficiency. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 676-682.	1.1	15
18	Parkinson's Disease: Recent Updates in the Identification of Human Dopa Decarboxylase Inhibitors. Current Drug Metabolism, 2016, 17, 513-518.	0.7	17

MARIARITA BERTOLDI

#	Article	IF	CITATIONS
19	Human Peroxiredoxins 1 and 2 and Their Interacting Protein Partners; Through Structure Toward Functions of Biological Complexes. Protein and Peptide Letters, 2015, 23, 69-77.	0.4	17
20	Resveratrol accelerates erythroid maturation by activation of FoxO3 and ameliorates anemia in beta-thalassemic mice. Haematologica, 2014, 99, 267-275.	1.7	89
21	The novel role of peroxiredoxin-2 in red cell membrane protein homeostasis and senescence. Free Radical Biology and Medicine, 2014, 76, 80-88.	1.3	35
22	Mammalian dopa decarboxylase: Structure, catalytic activity and inhibition. Archives of Biochemistry and Biophysics, 2014, 546, 1-7.	1.4	78
23	Membrane association of peroxiredoxin-2 in red cells is mediated by the N-terminal cytoplasmic domain of band 3. Free Radical Biology and Medicine, 2013, 55, 27-35.	1.3	71
24	Does the aromatic l-amino acid decarboxylase contribute to thyronamine biosynthesis?. Molecular and Cellular Endocrinology, 2012, 349, 195-201.	1.6	37
25	Oxidative stress modulates heme synthesis and induces peroxiredoxin-2 as a novel cytoprotective response in Â-thalassemic erythropoiesis. Haematologica, 2011, 96, 1595-1604.	1.7	63
26	Erythrocyte membrane changes of chorea-acanthocytosis are the result of altered Lyn kinase activity. Blood, 2011, 118, 5652-5663.	0.6	73
27	Peroxiredoxin-2 expression is increased in β-thalassemic mouse red cells but is displaced from the membrane as a marker of oxidative stress. Free Radical Biology and Medicine, 2010, 49, 457-466.	1.3	55
28	Deoxygenation affects tyrosine phosphoproteome of red cell membrane from patients with sickle cell disease. Blood Cells, Molecules, and Diseases, 2010, 44, 233-242.	0.6	30
29	Multiple roles of the active site lysine of Dopa decarboxylase. Archives of Biochemistry and Biophysics, 2009, 488, 130-139.	1.4	20
30	Insights into the Mechanism of Oxidative Deamination Catalyzed by DOPA Decarboxylase. Biochemistry, 2008, 47, 7187-7195.	1.2	26
31	A quinonoid is an intermediate of oxidative deamination reaction catalyzed by Dopa decarboxylase. FEBS Letters, 2005, 579, 5175-5180.	1.3	19
32	Probing the Role of Tyr 64 ofTreponema denticolaCystalysin by Site-Directed Mutagenesis and Kinetic Studiesâ€. Biochemistry, 2005, 44, 13970-13980.	1.2	19
33	Reaction and substrate specificity of recombinant pig kidney Dopa decarboxylase under aerobic and anaerobic conditions. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1647, 42-47.	1.1	20
34	Mutation of Tyrosine 332 to Phenylalanine Converts Dopa Decarboxylase into a Decarboxylation-dependent Oxidative Deaminase. Journal of Biological Chemistry, 2002, 277, 36357-36362.	1.6	60
35	Green Tea Polyphenols: Novel Irreversible Inhibitors of Dopa Decarboxylase. Biochemical and Biophysical Research Communications, 2001, 284, 90-93.	1.0	54
36	Mutation of residues in the coenzyme binding pocket of Dopa decarboxylase. FEBS Journal, 2001, 268, 2975-2981.	0.2	25

Mariarita Bertoldi

#	Article	IF	CITATIONS
37	Dopa decarboxylase exhibits low pH half-transaminase and high pH oxidative deaminase activities toward serotonin (5-hydroxytryptamine). Protein Science, 2001, 10, 1178-1186.	3.1	16
38	Reaction of dopa decarboxylase with l-aromatic amino acids under aerobic and anaerobic conditions. Biochemical Journal, 2000, 352, 533.	1.7	15
39	Reaction of dopa decarboxylase with L-aromatic amino acids under aerobic and anaerobic conditions. Biochemical Journal, 2000, 352, 533-538.	1.7	32
40	Reaction Specificity of Native and Nicked 3,4-Dihydroxyphenylalanine Decarboxylase. Journal of Biological Chemistry, 1999, 274, 5514-5521.	1.6	47
41	Ornithine and glutamate decarboxylases catalyse an oxidative deamination of their α-methyl substrates. Biochemical Journal, 1999, 342, 509-512.	1.7	27
42	Reaction of Dopa Decarboxylase with α-Methyldopa Leads to an Oxidative Deamination Producing 3,4-Dihydroxyphenylacetone, an Active Site Directed Affinity Labelâ€. Biochemistry, 1998, 37, 6552-6561.	1.2	45
43	Aromatic amino acid methyl ester analogs form quinonoidal species with Dopa decarboxylase. FEBS Letters, 1997, 412, 245-248.	1.3	13
44	Mutation of cysteine 111 in Dopa decarboxylase leads to active site perturbation. Protein Science, 1997, 6, 2007-2015.	3.1	23
45	Mechanism-based Inactivation of Dopa Decarboxylase by Serotonin. Journal of Biological Chemistry, 1996, 271, 23954-23959.	1.6	39