
David J Nikolic-Paterson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/351453/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TGF-Î ² : the master regulator of fibrosis. Nature Reviews Nephrology, 2016, 12, 325-338.	9.6	2,269
2	Macrophages: versatile players in renal inflammation and fibrosis. Nature Reviews Nephrology, 2019, 15, 144-158.	9.6	551
3	Inflammatory processes in renal fibrosis. Nature Reviews Nephrology, 2014, 10, 493-503.	9.6	531
4	Tubular epithelial-myofibroblast transdifferentiation in progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats. Kidney International, 1998, 54, 864-876.	5.2	349
5	Macrophage-to-Myofibroblast Transition Contributes to Interstitial Fibrosis in Chronic Renal Allograft Injury. Journal of the American Society of Nephrology: JASN, 2017, 28, 2053-2067.	6.1	250
6	Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis. Cell Death and Disease, 2016, 7, e2495-e2495.	6.3	215
7	The Role of p38α Mitogen-Activated Protein Kinase Activation in Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2004, 15, 370-379.	6.1	184
8	Macrophages promote renal fibrosis through direct and indirect mechanisms. Kidney International Supplements, 2014, 4, 34-38.	14.2	177
9	TGF-β/Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis. Oncotarget, 2016, 7, 8809-8822.	1.8	172
10	The JNK Signaling Pathway in Renal Fibrosis. Frontiers in Physiology, 2017, 8, 829.	2.8	156
11	A Pathogenic Role for c-Jun Amino-Terminal Kinase Signaling in Renal Fibrosis and Tubular Cell Apoptosis. Journal of the American Society of Nephrology: JASN, 2007, 18, 472-484.	6.1	152
12	Suppression of experimental crescentic glomerulonephritis by the interleukin-1 receptor antagonist. Kidney International, 1993, 43, 479-485.	5.2	140
13	Adoptive transfer studies demonstrate that macrophages can induce proteinuria and mesangial cell proliferation. Kidney International, 2003, 63, 83-95.	5.2	135
14	Disease-dependent mechanisms of albuminuria. American Journal of Physiology - Renal Physiology, 2008, 295, F1589-F1600.	2.7	130
15	Tubular phenotypic change in progressive tubulointerstitial fibrosis in human glomerulonephritis. American Journal of Kidney Diseases, 2001, 38, 761-769.	1.9	128
16	ASK1 contributes to fibrosis and dysfunction in models of kidney disease. Journal of Clinical Investigation, 2018, 128, 4485-4500.	8.2	104
17	Blockade of p38α MAPK Ameliorates Acute Inflammatory Renal Injury in Rat Anti-GBM Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2003, 14, 338-351.	6.1	101
18	In Vivo Administration of a Nuclear Transcription Factor-κB Decoy Suppresses Experimental Crescentic Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2000, 11, 1244-1252.	6.1	101

DAVID J NIKOLIC-PATERSON

#	Article	IF	CITATIONS
19	TGF-β1-activated kinase-1 regulates inflammation and fibrosis in the obstructed kidney. American Journal of Physiology - Renal Physiology, 2011, 300, F1410-F1421.	2.7	92
20	Activation of the ERK pathway precedes tubular proliferation in the obstructed rat kidney. Kidney International, 2003, 63, 1256-1264.	5.2	90
21	ASK1/p38 signaling in renal tubular epithelial cells promotes renal fibrosis in the mouse obstructed kidney. American Journal of Physiology - Renal Physiology, 2014, 307, F1263-F1273.	2.7	87
22	Resolvins E1 and D1 inhibit interstitial fibrosis in the obstructed kidney via inhibition of local fibroblast proliferation. Journal of Pathology, 2012, 228, 506-519.	4.5	85
23	p38 Mitogen-Activated Protein Kinase Activation and Cell Localization in Human Glomerulonephritis: Correlation with Renal Injury. Journal of the American Society of Nephrology: JASN, 2004, 15, 326-336.	6.1	84
24	ASK1 Inhibitor Halts Progression of Diabetic Nephropathy in <i>Nos3</i> -Deficient Mice. Diabetes, 2015, 64, 3903-3913.	0.6	76
25	Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage–myofibroblast transition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20741-20752.	7.1	76
26	De novo glomerular osteopontin expression in rat crescentic glomerulonephritis. Kidney International, 1998, 53, 136-145.	5.2	72
27	Tubules are the major site of M-CSF production in experimental kidney disease: Correlation with local macrophage proliferation11See Editorial by Rovin, p. 797. Kidney International, 2001, 60, 614-625.	5.2	72
28	mTOR-mediated podocyte hypertrophy regulates glomerular integrity in mice and humans. JCI Insight, 2019, 4, .	5.0	69
29	Activation of the Extracellular-Signal Regulated Protein Kinase Pathway in Human Glomerulopathies. Journal of the American Society of Nephrology: JASN, 2004, 15, 1835-1843.	6.1	65
30	Role of macrophages in the fibrotic phase of rat crescentic glomerulonephritis. American Journal of Physiology - Renal Physiology, 2013, 304, F1043-F1053.	2.7	63
31	Myeloid Mineralocorticoid Receptor Activation Contributes to Progressive Kidney Disease. Journal of the American Society of Nephrology: JASN, 2014, 25, 2231-2240.	6.1	60
32	Activation and cellular localization of the p38 and JNK MAPK pathways in rat crescentic glomerulonephritis. Kidney International, 2003, 64, 2121-2132.	5.2	58
33	Blockade of the c-Jun amino terminal kinase prevents crescent formation and halts established anti-GBM glomerulonephritis in the rat. Laboratory Investigation, 2009, 89, 470-484.	3.7	58
34	c-fms blockade reverses glomerular macrophage infiltration and halts development of crescentic anti-GBM glomerulonephritis in the rat. Laboratory Investigation, 2011, 91, 978-991.	3.7	54
35	Macrophage accumulation at a site of renal inflammation is dependent on the M-CSF/c-fms pathway. Journal of Leukocyte Biology, 2002, 72, 530-7.	3.3	54
36	ASK1: a new therapeutic target for kidney disease. American Journal of Physiology - Renal Physiology, 2016, 311, F373-F381.	2.7	53

#	Article	IF	CITATIONS
37	Macrophage-Mediated Renal Injury Is Dependent on Signaling via the JNK Pathway. Journal of the American Society of Nephrology: JASN, 2004, 15, 1775-1784.	6.1	51
38	MKK3-p38 signaling promotes apoptosis and the early inflammatory response in the obstructed mouse kidney. American Journal of Physiology - Renal Physiology, 2007, 293, F1556-F1563.	2.7	51
39	Representing the Process of Inflammation as Key Events in Adverse Outcome Pathways. Toxicological Sciences, 2018, 163, 346-352.	3.1	49
40	<scp>ASK</scp> 1 inhibitor treatment suppresses p38/ <scp>JNK</scp> signalling with reduced kidney inflammation and fibrosis in rat crescentic glomerulonephritis. Journal of Cellular and Molecular Medicine, 2018, 22, 4522-4533.	3.6	47
41	CD44-mediated neutrophil apoptosis in the rat. Kidney International, 2000, 58, 1920-1930.	5.2	40
42	Smad4 promotes diabetic nephropathy by modulating glycolysis and <scp>OXPHOS</scp> . EMBO Reports, 2020, 21, e48781.	4.5	39
43	Novel 3D analysis using optical tissue clearing documents the evolution of murine rapidly progressive glomerulonephritis. Kidney International, 2019, 96, 505-516.	5.2	35
44	Evaluation of JNK Blockade as an Early Intervention Treatment for Type 1 Diabetic Nephropathy in Hypertensive Rats. American Journal of Nephrology, 2011, 34, 337-346.	3.1	34
45	In vivo visualization of albumin degradation in the proximal tubule. Kidney International, 2008, 74, 1480-1486.	5.2	33
46	CD4+ T cells: a potential player in renal fibrosis. Kidney International, 2010, 78, 333-335.	5.2	31
47	Endothelial Dysfunction Exacerbates Renal Interstitial Fibrosis through Enhancing Fibroblast Smad3 Linker Phosphorylation in the Mouse Obstructed Kidney. PLoS ONE, 2013, 8, e84063.	2.5	29
48	Spleen tyrosine kinase promotes acute neutrophil-mediated glomerular injury via activation of JNK and p38 MAPK in rat nephrotoxic serum nephritis. Laboratory Investigation, 2011, 91, 1727-1738.	3.7	25
49	Regulation of Renal Fibrosis by Smad3 Thr388 Phosphorylation. American Journal of Pathology, 2014, 184, 944-952.	3.8	24
50	IgA Nephropathy Benefits from Compound K Treatment by Inhibiting NF-κB/NLRP3 Inflammasome and Enhancing Autophagy and SIRT1. Journal of Immunology, 2020, 205, 202-212.	0.8	22
51	Spleen Tyrosine Kinase Signaling Promotes Myeloid Cell Recruitment and Kidney Damage after Renal Ischemia/Reperfusion Injury. American Journal of Pathology, 2016, 186, 2032-2042.	3.8	20
52	Myeloid cellâ€mediated renal injury in rapidly progressive glomerulonephritis depends upon spleen tyrosine kinase. Journal of Pathology, 2016, 238, 10-20.	4.5	19
53	The Smad3/Smad4/CDK9 complex promotes renal fibrosis in mice with unilateral ureteral obstruction. Kidney International, 2015, 88, 1323-1335.	5.2	18
54	Cyclophilin D promotes tubular cell damage and the development of interstitial fibrosis in the obstructed kidney. Clinical and Experimental Pharmacology and Physiology, 2018, 45, 250-260.	1.9	18

DAVID J NIKOLIC-PATERSON

#	Article	IF	CITATIONS
55	Cyclophilin A Promotes Inflammation in Acute Kidney Injury but Not in Renal Fibrosis. International Journal of Molecular Sciences, 2020, 21, 3667.	4.1	18
56	Cyclophilin Inhibition Protects Against Experimental Acute Kidney Injury and Renal Interstitial Fibrosis. International Journal of Molecular Sciences, 2021, 22, 271.	4.1	17
57	Up-regulation of ICAM-1 and VCAM-1 expression during macrophage recruitment in lipid induced glomerular injury in ExHC rats. Nephrology, 1995, 1, 221-232.	1.6	15
58	Local macrophage proliferation in experimental Goodpasture's syndrome. Nephrology, 1995, 1, 151-156.	1.6	13
59	A role for spleen tyrosine kinase in renal fibrosis in the mouse obstructed kidney. Life Sciences, 2016, 146, 192-200.	4.3	13
60	Matrix metalloproteinaseâ€12 deficiency attenuates experimental crescentic antiâ€glomerular basement membrane glomerulonephritis. Nephrology, 2018, 23, 183-189.	1.6	13
61	JUN Amino-Terminal Kinase 1 Signaling in the Proximal Tubule Causes Cell Death and Acute Renal Failure in Rat and Mouse Models of Renal Ischemia/Reperfusion Injury. American Journal of Pathology, 2021, 191, 817-828.	3.8	12
62	Suppression of Rapidly Progressive Mouse Glomerulonephritis with the Non-Steroidal Mineralocorticoid Receptor Antagonist BR-4628. PLoS ONE, 2015, 10, e0145666.	2.5	12
63	Longâ€ŧerm graft survival in patients with chronic antibodyâ€mediated rejection with persistent peritubular capillaritis treated with intravenous immunoglobulin and rituximab. Clinical Transplantation, 2017, 31, e13037.	1.6	11
64	Inhibition of Spleen Tyrosine Kinase Reduces Renal Allograft Injury in a Rat Model of Acute Antibody-Mediated Rejection in Sensitized Recipients. Transplantation, 2017, 101, e240-e248.	1.0	10
65	Human Kidney Organoids and Tubuloids as Models of Complex Kidney Disease. American Journal of Pathology, 2022, 192, 738-749.	3.8	10
66	Establishing equivalent diabetes in male and female Nos3â€deficient mice results in a comparable onset of diabetic kidney injury. Physiological Reports, 2019, 7, e14197.	1.7	9
67	Mitogen-Activated Protein Kinases: Functions in Signal Transduction and Human Diseases. International Journal of Molecular Sciences, 2019, 20, 4844.	4.1	9
68	Steroid treatment promotes an M2 anti-inflammatory macrophage phenotype in childhood lupus nephritis. Pediatric Nephrology, 2021, 36, 349-359.	1.7	9
69	Expression of basic fibroblast growth factor and its receptor in the progression of rat crescentic glomerulonephritis. Nephrology, 1995, 1, 569-575.	1.6	8
70	Delayed-type hypersensitivity mediates Bowman's capsule rupture in Tamm?Horsfall protein-induced tubulointerstitial nephritis in the rat. Nephrology, 1996, 2, 417-427.	1.6	8
71	Chloride channel ClC-5 binds to aspartyl aminopeptidase to regulate renal albumin endocytosis. American Journal of Physiology - Renal Physiology, 2015, 308, F784-F792.	2.7	8
72	Editorial: Advances in Mechanisms of Renal Fibrosis. Frontiers in Physiology, 2018, 9, 284.	2.8	8

5

#	Article	IF	CITATIONS
73	Combined inhibition of CCR2 and ACE provides added protection against progression of diabetic nephropathy in <i>Nos3</i> -deficient mice. American Journal of Physiology - Renal Physiology, 2019, 317, F1439-F1449.	2.7	8
74	Pharmacological inhibition of proteaseâ€activated receptorâ€⊋ reduces crescent formation in rat nephrotoxic serum nephritis. Clinical and Experimental Pharmacology and Physiology, 2019, 46, 456-464.	1.9	8
75	Targeting apoptosis signalâ€regulating kinase 1 in acute and chronic kidney disease. Anatomical Record, 2020, 303, 2553-2560.	1.4	8
76	Tubulointerstitial injury in glomerulonephritis. Nephrology, 1996, 2, s2-s6.	1.6	7
77	Spleen tyrosine kinase contributes to acute renal allograft rejection in the rat. International Journal of Experimental Pathology, 2015, 96, 54-62.	1.3	7
78	Methods in renal research: kidney transplantation in the rat. Nephrology, 2016, 21, 451-456.	1.6	7
79	PAR2 Activation on Human Kidney Tubular Epithelial Cells Induces Tissue Factor Synthesis, That Enhances Blood Clotting. Frontiers in Physiology, 2021, 12, 615428.	2.8	7
80	Intercellular adhesion molecule-1 and tumour necrosis factor-? expression in human glomerulonephritis. Nephrology, 1997, 3, 329-337.	1.6	6
81	An inhibitor of spleen tyrosine kinase suppresses experimental crescentic glomerulonephritis. International Journal of Immunopathology and Pharmacology, 2018, 32, 205873841878340.	2.1	6
82	Omics technologies for kidney disease research. Anatomical Record, 2020, 303, 2729-2742.	1.4	6
83	c-Jun Amino Terminal Kinase Signaling Promotes Aristolochic Acid-Induced Acute Kidney Injury. Frontiers in Physiology, 2021, 12, 599114.	2.8	6
84	Intrarenal synthesis of IL-6 in IgA nephropathy. Nephrology, 1997, 3, 421-430.	1.6	5
85	Cathepsin S–Dependent Protease–Activated Receptor-2 Activation: A New Mechanism of Endothelial Dysfunction. Journal of the American Society of Nephrology: JASN, 2016, 27, 1577-1579.	6.1	5
86	Reduced tubular degradation of glomerular filtered plasma albumin is a common feature in acute and chronic kidney disease. Clinical and Experimental Pharmacology and Physiology, 2018, 45, 241-249.	1.9	5
87	Cyclophilin D Promotes Acute, but Not Chronic, Kidney Injury in a Mouse Model of Aristolochic Acid Toxicity. Toxins, 2021, 13, 700.	3.4	5
88	EGF and EGF-receptor expression in rat anti-Thy-1 mesangial proliferative nephritis. Nephrology, 1995, 1, 83-93.	1.6	4
89	Interleukin-10: Is it good or bad for the kidney?. Nephrology, 1998, 4, 331-338.	1.6	4
90	The proximal tubule and albuminuria—at last a starring role. Nature Reviews Nephrology, 2015, 11, 573-575.	9.6	4

DAVID J NIKOLIC-PATERSON

#	Article	IF	CITATIONS
91	Proteaseâ€activated receptor 2 does not contribute to renal inflammation or fibrosis in the obstructed kidney. Nephrology, 2019, 24, 983-991.	1.6	3
92	The ability of remaining glomerular podocytes to adapt to the loss of their neighbours decreases with age. Cell and Tissue Research, 2022, 388, 439-451.	2.9	3
93	ASK1 is a novel molecular target for preventing aminoglycoside-induced hair cell death. Journal of Molecular Medicine, 2022, 100, 797-813.	3.9	3
94	The application of microwave techniques in multiple immunostaining and in situ hybridization. Nephrology, 1996, 2, s116-s121.	1.6	2
95	Do macrophages participate in mesangial cell proliferation?. Nephrology, 1997, 3, 501-507.	1.6	2
96	PAR2-Induced Tissue Factor Synthesis by Primary Cultures of Human Kidney Tubular Epithelial Cells Is Modified by Glucose Availability. International Journal of Molecular Sciences, 2021, 22, 7532.	4.1	2
97	Mice with Established Diabetes Show Increased Susceptibility to Renal Ischemia/Reperfusion Injury. American Journal of Pathology, 2022, 192, 441-453.	3.8	2
98	Cell-mediated tubulointerstitial nephritis. Clinical and Experimental Nephrology, 1998, 2, 289-294.	1.6	1
99	Long-term anti-glomerular basement membrane disease in the rat: a model of chronic glomerulonephritis with nephrosis, hypertension and progressive renal failure. Nephrology, 2002, 7, 145-154.	1.6	1
100	Monocytes and Macrophages. , 2009, , 267-287.		1
101	Editorial: Immune Landscape of Kidney Pathology. Frontiers in Physiology, 2021, 12, 827537.	2.8	1
102	Molecular analysis of human glomerulonephritis. Nephrology, 1997, 3, s647-s651.	1.6	0
103	Interleukin 1 induces renal CD44 expression in vivo and in vitro: role of the transcription factor Egr-1. Nephrology, 2002, 7, 136-144.	1.6	0
104	MIF in the Pathogenesis of Kidney Disease. , 2007, , 153-168.		0
105	Proximal tubular epithelial cells preferentially endocytose covalentlyâ€modified albumin compared to native albumin. Nephrology, 2019, 24, 121-126.	1.6	Ο