Shahram Salek-Ardakani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3514258/publications.pdf

Version: 2024-02-01

51 papers

2,679 citations

28 h-index 233338 45 g-index

52 all docs 52 docs citations

times ranked

52

3614 citing authors

#	Article	IF	CITATIONS
1	Reversing T-cell Exhaustion in Cancer: Lessons Learned from PD-1/PD-L1 Immune Checkpoint Blockade. Cancer Immunology Research, 2022, 10, 146-153.	1.6	87
2	CXCL9-expressing tumor-associated macrophages: new players in the fight against cancer. , 2021, 9, e002045.		59
3	CD8+ T Cell Exhaustion in Cancer. Frontiers in Immunology, 2021, 12, 715234.	2.2	163
4	Intra-Tumoral Activation of Endosomal TLR Pathways Reveals a Distinct Role for TLR3 Agonist Dependent Type-1 Interferons in Shaping the Tumor Immune Microenvironment. Frontiers in Oncology, 2021, 11, 711673.	1.3	10
5	Dual checkpoint blockade of CD47 and PD-L1 using an affinity-tuned bispecific antibody maximizes antitumor immunity., 2021, 9, e003464.		60
6	EZH2 Inhibition Compromises $\hat{l}\pm 4$ -1BB-Mediated Antitumor Efficacy by Reducing the Survival and Effector Programming of CD8+ T Cells. Frontiers in Immunology, 2021, 12, 770080.	2.2	0
7	Combinatorial immunotherapy induces tumor-infiltrating CD8 ⁺ T cells with distinct functional, migratory, and stem-like properties., 2021, 9, e003614.		11
8	Baseline Frequency of Inflammatory Cxcl9-Expressing Tumor-Associated Macrophages Predicts Response to Avelumab Treatment. Cell Reports, 2020, 32, 107873.	2.9	42
9	Editorial: Follicular Helper T Cells in Immunity and Autoimmunity. Frontiers in Immunology, 2020, 11, 1042.	2.2	11
10	EZH2 as a Regulator of CD8+ T Cell Fate and Function. Frontiers in Immunology, 2020, 11, 593203.	2.2	26
11	Pharmacologic Properties and Preclinical Activity of Sasanlimab, A High-affinity Engineered Anti-Human PD-1 Antibody. Molecular Cancer Therapeutics, 2020, 19, 2105-2116.	1.9	10
12	Fc \hat{I}^3 RIIB engagement drives agonistic activity of Fc-engineered $\hat{I}\pm OX40$ antibody to stimulate human tumor-infiltrating T cells. , 2020, 8, e000816.		11
13	CD40 agonist-induced IL-12p40 potentiates hepatotoxicity. , 2020, 8, e000624.		12
14	Lack of B Lymphocytes Enhances CD8 T Cell-Mediated Resistance against Respiratory Viral Infection but Compromises Memory Cell Formation. Journal of Virology, 2020, 94, .	1.5	3
15	Ligand-Blocking and Membrane-Proximal Domain Targeting Anti-OX40 Antibodies Mediate Potent T Cell-Stimulatory and Anti-Tumor Activity. Cell Reports, 2019, 27, 3117-3123.e5.	2.9	18
16	Stem cell–derived tissue-associated regulatory T cells suppress the activity of pathogenic cells in autoimmune diabetes. JCl Insight, 2019, 4, .	2.3	19
17	The TNF Superfamily Molecule LIGHT Promotes the Generation of Circulating and Lung-Resident Memory CD8 T Cells following an Acute Respiratory Virus Infection. Journal of Immunology, 2018, 200, 2894-2904.	0.4	23
18	Inflammatory monocytes contribute to the persistence of <scp>CXCR</scp> 3 ^{hi} <scp>CX</scp> 3 <scp>CR</scp> 1 ^{lo} circulating and lungâ€resident memory <scp>CD</scp> 8 ⁺ T cells following respiratory virus infection. Immunology and Cell Biology, 2018, 96, 370-378.	1.0	31

#	Article	IF	CITATIONS
19	Structure of the 4-1BB/4-1BBL complex and distinct binding and functional properties of utomilumab and urelumab. Nature Communications, 2018, 9, 4679.	5.8	95
20	Inhibition of glucose metabolism selectively targets autoreactive follicular helper T cells. Nature Communications, 2018, 9, 4369.	5.8	94
21	Batf3-Dependent Dendritic Cells Promote Optimal CD8 T Cell Responses against Respiratory Poxvirus Infection. Journal of Virology, 2018, 92, .	1.5	24
22	Dynamics of influenza-induced lung-resident memory T cells underlie waning heterosubtypic immunity. Science Immunology, 2017, 2, .	5.6	250
23	OX40 Cooperates with ICOS To Amplify Follicular Th Cell Development and Germinal Center Reactions during Infection. Journal of Immunology, 2017, 198, 218-228.	0.4	70
24	Protein tyrosine phosphatase PTPN22 has dual roles in promoting pathogen versus homeostaticâ€driven CD8 Tâ€cell responses. Immunology and Cell Biology, 2017, 95, 121-128.	1.0	10
25	HVEM Imprints Memory Potential on Effector CD8 T Cells Required for Protective Mucosal Immunity. Journal of Immunology, 2017, 199, 2968-2975.	0.4	26
26	Extrinsic Protein Tyrosine Phosphatase Non-Receptor 22 Signals Contribute to CD8 T Cell Exhaustion and Promote Persistence of Chronic Lymphocytic Choriomeningitis Virus Infection. Frontiers in Immunology, 2017, 8, 811.	2.2	10
27	Transcription Factor Bcl11b Controls Effector and Memory CD8 T cell Fate Decision and Function during Poxvirus Infection. Frontiers in Immunology, 2016, 7, 425.	2.2	18
28	Rapid control of pandemic H1N1 influenza by targeting NKT-cells. Scientific Reports, 2016, 6, 37999.	1.6	23
29	Tissue-specific programming of memory CD8 T cell subsets impacts protection against lethal respiratory virus infection. Journal of Experimental Medicine, 2016, 213, 2897-2911.	4.2	22
30	C-Myc regulation by costimulatory signals modulates the generation of CD8 ⁺ memory T cells during viral infection. Open Biology, 2016, 6, 150208.	1.5	25
31	α-Galactosylceramide protects swine against influenza infection when administered as a vaccine adjuvant. Scientific Reports, 2016, 6, 23593.	1.6	39
32	The Lupus Susceptibility Gene <i>Pbx1</i> Regulates the Balance between Follicular Helper T Cell and Regulatory T Cell Differentiation. Journal of Immunology, 2016, 197, 458-469.	0.4	30
33	Natural Killer Cells and Innate Interferon Gamma Participate in the Host Defense against Respiratory Vaccinia Virus Infection. Journal of Virology, 2016, 90, 129-141.	1.5	54
34	CD8 T Cells Use IFN-Î ³ To Protect against the Lethal Effects of a Respiratory Poxvirus Infection. Journal of Immunology, 2014, 192, 5415-5425.	0.4	33
35	CD8 T Cell Memory to a Viral Pathogen Requires Trans Cosignaling between HVEM and BTLA. PLoS ONE, 2013, 8, e77991.	1.1	64
36	CD8 T Cells Are Essential for Recovery from a Respiratory Vaccinia Virus Infection. Journal of Immunology, 2012, 189, 2432-2440.	0.4	39

#	Article	IF	CITATIONS
37	OX40 Facilitates Control of a Persistent Virus Infection. PLoS Pathogens, 2012, 8, e1002913.	2.1	57
38	OX40:OX40L axis: emerging targets for improving poxvirusâ€based CD8 ⁺ T ell vaccines against respiratory viruses. Immunological Reviews, 2011, 244, 149-168.	2.8	20
39	Targeting OX40 Promotes Lung-Resident Memory CD8 T Cell Populations That Protect against Respiratory Poxvirus Infection. Journal of Virology, 2011, 85, 9051-9059.	1.5	36
40	B Cell-Specific Expression of B7-2 Is Required for Follicular Th Cell Function in Response to Vaccinia Virus. Journal of Immunology, 2011, 186, 5294-5303.	0.4	68
41	The TNFR family members OX40 and CD27 link viral virulence to protective T cell vaccines in mice. Journal of Clinical Investigation, 2011, 121, 296-307.	3.9	65
42	Tumor Necrosis Factor Receptor/Tumor Necrosis Factor Family Members in Antiviral CD8 T-Cell Immunity. Journal of Interferon and Cytokine Research, 2010, 30, 205-218.	0.5	33
43	Preferential Use of B7.2 and Not B7.1 in Priming of Vaccinia Virus-Specific CD8 T Cells. Journal of Immunology, 2009, 182, 2909-2918.	0.4	32
44	The Adaptor Molecule MyD88 Directly Promotes CD8 T Cell Responses to Vaccinia Virus. Journal of Immunology, 2009, 182, 6278-6286.	0.4	52
45	OX40 Drives Protective Vaccinia Virus-Specific CD8 T Cells. Journal of Immunology, 2008, 181, 7969-7976.	0.4	71
46	Correlates of protection efficacy induced by VACVâ€specific CD8+ T cell epitopes in the murine intranasal challenge model. FASEB Journal, 2008, 22, 859.7.	0.2	0
47	Regulation of CD4 T cell memory by OX40 (CD134). Vaccine, 2006, 24, 872-883.	1.7	60
48	Protein Kinase \hat{Cl} Controls Th1 Cells in Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2005, 175, 7635-7641.	0.4	101
49	Differential Regulation of Th2 and Th1 Lung Inflammatory Responses by Protein Kinase CÎ, Journal of Immunology, 2004, 173, 6440-6447.	0.4	121
50	The costimulation-regulated duration of PKB activation controls T cell longevity. Nature Immunology, 2004, 5, 150-158.	7.0	178
51	OX40 (CD134) Controls Memory T Helper 2 Cells that Drive Lung Inflammation. Journal of Experimental Medicine, 2003, 198, 315-324.	4.2	226