
Efrosyni Themistou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3513535/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wholly Biobased, Highly Stretchable, Hydrophobic, and Self-healing Thermoplastic Elastomer. ACS Applied Materials & Interfaces, 2021, 13, 6720-6730.	8.0	60
2	Evaluation of the in vitro cytotoxicity and modulation of the inflammatory response by the bioresorbable polymers poly(D,L-lactide-co-glycolide) and poly(L-lactide-co-glycolide). Acta Biomaterialia, 2021, 134, 261-275.	8.3	10
3	Novel Biobased Polyamide Thermoplastic Elastomer with Medium Hardness. Macromolecular Chemistry and Physics, 2021, 222, 2100218.	2.2	11
4	Star polymers with acid-labile diacetal-based cores synthesized by aqueous RAFT polymerization for intracellular DNA delivery. Polymer Chemistry, 2020, 11, 344-357.	3.9	25
5	pH-Responsive benzaldehyde-functionalized PEC-based polymeric nanoparticles for drug delivery: Effect of preparation method on morphology, dye encapsulation and attachment. European Polymer Journal, 2020, 124, 109471.	5.4	13
6	Targeting triple-negative breast cancer cells using Dengue virus-mimicking pH-responsive framboidal triblock copolymer vesicles. Chemical Science, 2019, 10, 4811-4821.	7.4	36
7	Electrosprayed cysteine-functionalized degradable amphiphilic block copolymer microparticles for low pH-triggered drug delivery. Polymer Chemistry, 2019, 10, 5814-5820.	3.9	4
8	Low temperature gamma sterilization of a bioresorbable polymer, PLGA. Radiation Physics and Chemistry, 2018, 143, 27-32.	2.8	11
9	Single-Domain Antibody-Functionalized pH-Responsive Amphiphilic Block Copolymer Nanoparticles for Epidermal Growth Factor Receptor Targeted Cancer Therapy. ACS Macro Letters, 2018, 7, 1010-1015.	4.8	12
10	pH-Responsive diblock copolymers with two different fluorescent labels for simultaneous monitoring of micellar self-assembly and degree of protonation. Polymer Chemistry, 2018, 9, 2964-2976.	3.9	13
11	Development of amphiphilic block copolymers as silica optical fiber overlayers for BSA protein detection. Materials Chemistry and Physics, 2018, 216, 421-428.	4.0	10
12	Amphiphilic block copolymer-based photonic platform towards efficient protein detection. , 2016, , .		0
13	Nanoscale detection of metal-labeled copolymers in patchy polymersomes. Polymer Chemistry, 2015, 6, 2065-2068.	3.9	26
14	Controlling Surface Topology and Functionality of Electrospun Fibers on the Nanoscale using Amphiphilic Block Copolymers To Direct Mesenchymal Progenitor Cell Adhesion. Biomacromolecules, 2015, 16, 66-75.	5.4	46
15	Targeting Siglecs with a sialic acid–decorated nanoparticle abrogates inflammation. Science Translational Medicine, 2015, 7, 303ra140.	12.4	142
16	Facile synthesis of thiol-functionalized amphiphilic polylactide–methacrylic diblock copolymers. Polymer Chemistry, 2014, 5, 1405-1417.	3.9	38
17	Nile Blue-Based Nanosized pH Sensors for Simultaneous Far-Red and Near-Infrared Live Bioimaging. Journal of the American Chemical Society, 2013, 135, 14863-14870.	13.7	119
18	Facile Synthesis and Visualization of Janus Double-Brush Copolymers. ACS Macro Letters, 2012, 1, 52-56.	4.8	116

2

EFROSYNI THEMISTOU

#	Article	IF	CITATIONS
19	Polyelectrolyte nanocages via crystallized miniemulsion droplets. Chemical Communications, 2011, 47, 11697.	4.1	15
20	pH-Sensitive brush polymer-drug conjugates by ring-opening metathesis copolymerization. Chemical Communications, 2011, 47, 4493.	4.1	95
21	Clicking Wellâ€Defined Biodegradable Nanoparticles and Nanocapsules by UVâ€Induced Thiolâ€Ene Crossâ€Linking in Transparent Miniemulsions. Advanced Materials, 2011, 23, 4274-4277.	21.0	87
22	Structure and dynamics of dextran in binary mixtures of a good and a bad solvent. Colloid and Polymer Science, 2010, 288, 1301-1312.	2.1	56
23	Degradable polymer networks and star polymers based on mixtures of two cleavable dimethacrylate crosslinkers: Synthesis, characterization, and degradation. Journal of Polymer Science Part A, 2009, 47, 5853-5870.	2.3	11
24	Fluid Shear Induces Conformation Change in Human Blood Protein von Willebrand Factor in Solution. Biophysical Journal, 2009, 96, 2313-2320.	0.5	88
25	Application of Fluorescence Spectroscopy to Quantify Shear-Induced Protein Conformation Change. Biophysical Journal, 2009, 97, 2567-2576.	0.5	29
26	A Cleavable Network Based on Crosslinked Star Polymers Containing Acid‣abile Diacetal Crosslinks: Synthesis, Characterization and Hydrolysis. Macromolecular Chemistry and Physics, 2008, 209, 1021-1028.	2.2	18
27	Star Polymers and Polymer Networks Containing a Novel, Hydrolyzable Diacetal-Based Dimethacrylate Cross-Linker:Â Synthesis, Characterization, and Hydrolysis Kinetics. Macromolecules, 2007, 40, 5231-5234.	4.8	29
28	Synthesis and characterization of amphiphilic star copolymers of 2-(dimethylamino)ethyl methacrylate and methyl methacrylate: Effects of architecture and composition. European Polymer Journal, 2007, 43, 84-92.	5.4	11
29	Thermolyzable polymer networks and star polymers containing a novel, compact, degradable acylalâ€based dimethacrylate crossâ€linker: Synthesis, characterization, and thermolysis. Journal of Polymer Science Part A, 2007, 45, 5811-5823.	2.3	22
30	Three different types of quasi-model networks: synthesis by group transfer polymerization and characterization. Polymer Bulletin, 2007, 58, 185-190.	3.3	32
31	Synthesis and Characterization of Star Polymers and Cross-Linked Star Polymer Model Networks with Cores Based on an Asymmetric, Hydrolyzable Dimethacrylate Cross-Linker. Chemistry of Materials, 2006, 18, 85-93.	6.7	48
32	Synthesis and Characterization of Polymer Networks and Star Polymers Containing a Novel, Hydrolyzable Acetal-Based Dimethacrylate Cross-Linker. Macromolecules, 2006, 39, 73-80.	4.8	47
33	Synthesis and Characterization of Star Polymers and Cross-Linked Star Polymer Model Networks Containing a Novel, Silicon-Based, Hydrolyzable Cross-Linker. Macromolecules, 2004, 37, 6734-6743.	4.8	44