Tsuyoshi Ohnishi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3512761/publications.pdf

Version: 2024-02-01

140 papers

5,326 citations

42 h-index 91712 69 g-index

142 all docs

 $\begin{array}{c} 142 \\ \text{docs citations} \end{array}$

142 times ranked 5506 citing authors

#	Article	IF	CITATIONS
1	Atomicâ€scale formation of ultrasmooth surfaces on sapphire substrates for highâ€quality thinâ€film fabrication. Applied Physics Letters, 1995, 67, 2615-2617.	1.5	378
2	Defects and transport in complex oxide thin films. Journal of Applied Physics, 2008, 103, .	1.1	289
3	Improved stoichiometry and misfit control in perovskite thin film formation at a critical fluence by pulsed laser deposition. Applied Physics Letters, 2005, 87, 241919.	1.5	226
4	Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte. Solid State Ionics, 2012, 225, 594-597.	1.3	161
5	Transparent cubic garnet-type solid electrolyte of Al2O3-doped Li7La3Zr2O12. Solid State Ionics, 2015, 278, 172-176.	1.3	151
6	Determination of surface polarity of c-axis oriented ZnO films by coaxial impact-collision ion scattering spectroscopy. Applied Physics Letters, 1998, 72, 824-826.	1.5	145
7	Thickness-dependent electronic structure of ultrathin SrRuO3 films studied by in situ photoemission spectroscopy. Applied Physics Letters, 2005, 87, 162508.	1.5	123
8	A-site layer terminated perovskite substrate: NdGaO3. Applied Physics Letters, 1999, 74, 2531-2533.	1.5	116
9	Preparation of thermally stable TiO2-terminated SrTiO3(100) substrate surfaces. Applied Physics Letters, 2004, 85, 272-274.	1.5	116
10	Analysis of the polar direction of GaN film growth by coaxial impact collision ion scattering spectroscopy. Applied Physics Letters, 1999, 75, 674-676.	1.5	110
11	In situ growth of superconducting MgB2 thin films with preferential orientation by molecular-beam epitaxy. Applied Physics Letters, 2002, 80, 3563-3565.	1.5	109
12	Porous amorphous silicon film anodes for high-capacity and stable all-solid-state lithium batteries. Communications Chemistry, 2018, 1 , .	2.0	109
13	Room-Temperature Epitaxial Growth of G_{2} Thin Films on Si(111) Substrates for Fabrication of Sharp Oxide/Silicon Interface. Japanese Journal of Applied Physics, 1995, 34, L688-L690.	0.8	106
14	Trap-controlled space-charge-limited current mechanism in resistance switching at Alâ^•Pr0.7Ca0.3MnO3 interface. Applied Physics Letters, 2008, 92, .	1.5	106
15	In-plane and polar orientations of ZnO thin films grown on atomically flat sapphire. Surface Science, 1999, 443, L1043-L1048.	0.8	94
16	Local switching of two-dimensional superconductivity using the ferroelectric field effect. Nature, 2006, 441, 195-198.	13.7	94
17	Positive and Negative Aspects of Interfaces in Solid-State Batteries. ACS Energy Letters, 2018, 3, 98-103.	8.8	93
18	High-Throughput Characterization of Metal Electrode Performance for Electric-Field-Induced Resistance Switching in Metal/Pr0.7Ca0.3MnO3/Metal Structures. Advanced Materials, 2007, 19, 1711-1713.	11.1	88

#	Article	IF	Citations
19	High performance silicon-based anodes in solid-state lithium batteries. Energy and Environmental Science, 2014, 7, 662-666.	15.6	84
20	An amorphous Si film anode for all-solid-state lithium batteries. Journal of Power Sources, 2014, 272, 541-545.	4.0	78
21	Tantalum oxide nanomesh as self-standing one nanometre thick electrolyte. Energy and Environmental Science, 2011, 4, 3509.	15. 6	64
22	Self-Organized Core–Shell Structure for High-Power Electrode in Solid-State Lithium Batteries. Chemistry of Materials, 2011, 23, 3798-3804.	3.2	63
23	Investigation of ZnO/sapphire interface and formation of ZnO nanocrystalline by laser MBE. Applied Surface Science, 2000, 159-160, 514-519.	3.1	59
24	Parallel integration and characterization of nanoscaled epitaxial lattices by concurrent molecular layer epitaxy and diffractometry. Applied Physics Letters, 2001, 79, 536-538.	1.5	58
25	N-polarity GaN on sapphire substrate grown by MOVPE. Physica Status Solidi (B): Basic Research, 2006, 243, 1446-1450.	0.7	58
26	Versatile van der Waals epitaxy-like growth of crystal films using two-dimensional nanosheets as a seed layer: orientation tuning of SrTiO3 films along three important axes on glass substrates. Journal of Materials Chemistry C, 2014, 2, 441-449.	2.7	58
27	Orientation-defined molecular layer epitaxy of \hat{l} ±-Al2O3 thin films. Journal of Crystal Growth, 1997, 177, 95-101.	0.7	57
28	Concurrent x-ray diffractometer for high throughput structural diagnosis of epitaxial thin films. Applied Physics Letters, 2001, 79, 3594-3596.	1.5	55
29	Single crystal SrTiO3 field-effect transistor with an atomically flat amorphous CaHfO3 gate insulator. Applied Physics Letters, 2004, 85, 425-427.	1.5	54
30	Pulsed laser deposition of oxide thin films. Applied Surface Science, 2006, 252, 2466-2471.	3.1	53
31	Epitaxial growth and surface metallic nature of LaNiO3 thin films. Applied Physics Letters, 2008, 92, .	1.5	52
32	Anode properties of silicon-rich amorphous silicon suboxide films in all-solid-state lithium batteries. Journal of Power Sources, 2016, 329, 41-49.	4.0	47
33	Band structure and Fermi surface ofLa0.6Sr0.4MnO3thin films studied byin situangle-resolved photoemission spectroscopy. Physical Review B, 2006, 73, .	1.1	46
34	Sulfur passivation of Ge (001) surfaces and its effects on Schottky barrier contact. Materials Science in Semiconductor Processing, 2006, 9, 706-710.	1.9	46
35	High-resolution synchrotron-radiation photoemission characterization for atomically-controlled SrTiO3(001) substrate surfaces subjected to various surface treatments. Journal of Applied Physics, 2004, 96, 7183-7188.	1.1	45
36	Epitaxial Thin-Film Growth of SrRuO3, Sr3Ru2O7, and Sr2RuO4from a SrRuO3Target by Pulsed Laser Deposition. Applied Physics Express, 2011, 4, 025501.	1.1	45

#	Article	IF	CITATIONS
37	Direct Observation of Helical Polysilane Nanostructures by Atomic Force Microscopy. Japanese Journal of Applied Physics, 1997, 36, L1211-L1213.	0.8	44
38	Metallic conductivity at the CaHfO3â^•SrTiO3 interface. Applied Physics Letters, 2007, 91, .	1.5	44
39	Magnetic Properties of Strain-Controlled SrRuO3Thin Films. Japanese Journal of Applied Physics, 2004, 43, L227-L229.	0.8	43
40	Inherent charge transfer layer formation at La0.6Sr0.4FeO3â^La0.6Sr0.4MnO3 heterointerface. Applied Physics Letters, 2004, 84, 5353-5355.	1.5	43
41	Quality control of epitaxial LiCoO2 thin films grown by pulsed laser deposition. Journal of Materials Research, 2010, 25, 1886-1889.	1.2	43
42	High Electron Mobility of Nb-Doped SrTiO ₃ Films Stemming from Rod-Type Sr Vacancy Clusters. ACS Nano, 2015, 9, 10769-10777.	7.3	43
43	Metallic LaTiO3/ SrTiO3Superlattice Films on the SrTiO3(100) Surface. Japanese Journal of Applied Physics, 2004, 43, L1178-L1180.	0.8	42
44	Continuous mapping of structure–property relations in Fe1â^'xNix metallic alloys fabricated by combinatorial synthesis. Intermetallics, 2001, 9, 541-545.	1.8	40
45	Anode Properties of Si Nanoparticles in All-Solid-State Li Batteries. ACS Applied Energy Materials, 2019, 2, 7005-7008.	2.5	40
46	Molecular Layer-by-Layer Growth of C ₆₀ Thin Films by Continuous-Wave Infrared Laser Deposition. Applied Physics Express, 2008, 1, 015005.	1,1	39
47	Field-effect modulation of the transport properties of nondoped SrTiO3. Applied Physics Letters, 2006, 88, 212116.	1.5	38
48	Crystal orientation of epitaxial LiCoO 2 films grown on SrTiO 3 substrates. Journal of Power Sources, 2014, 247, 687-691.	4.0	38
49	Electrostatic modulation of the electronic properties of Nb-doped SrTiO3 superconducting films. Applied Physics Letters, 2004, 84, 1722-1724.	1.5	37
50	Growth of Ruddlesden-Popper type faults in Sr-excess SrTiO3 homoepitaxial thin films by pulsed laser deposition. Applied Physics Letters, 2011, 99, .	1.5	35
51	Strontium vacancy clustering in Ti-excess SrTiO3 thin film. Applied Physics Letters, 2011, 99, .	1.5	35
52	Silicon nitride thin film electrode for lithium-ion batteries. Journal of Power Sources, 2013, 231, 186-189.	4.0	35
53	Epitaxial Growth and Polarity of ZnO Films on Sapphire (0001) Substrates by Low-Pressure Metal Organic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2003, 42, 2291-2295.	0.8	34
54	Domain structure of epitaxial CaHfO3 gate insulator films on SrTiO3. Applied Physics Letters, 2004, 84, 2142-2144.	1,5	34

#	Article	lF	CITATIONS
55	High-Rate Growth of High-Crystallinity LiCoO\$_{2}\$ Epitaxial Thin Films by Pulsed Laser Deposition. Applied Physics Express, 2012, 5, 055502.	1.1	34
56	Synthesis of LiCoO2 epitaxial thin films using a sol–gel method. Journal of Power Sources, 2015, 274, 417-423.	4.0	32
57	Synthesis and orientation control of Li-ion conducting epitaxial Li0.33La0.56TiO3 solid electrolyte thin films by pulsed laser deposition. Solid State Ionics, 2012, 228, 80-82.	1.3	31
58	In situ determination of the terminating layer of La0.7Sr0.3MnO3 thin films using coaxial impact-collision ion scattering spectroscopy. Applied Physics Letters, 1998, 73, 187-189.	1.5	30
59	Epitaxy of Li _{3<i>x</i>} La _{2/3â€"<i>x</i>} TiO ₃ Films and the Influence of La Ordering on Li-lon Conduction. Chemistry of Materials, 2015, 27, 1233-1241.	3.2	30
60	Unit cell layer-by-layer heteroepitaxy of BaO thin films at temperatures as low as 20 °C. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 2469-2472.	0.9	29
61	Robust Ti4+ states in SrTiO3 layers of La0.6Sr0.4MnO3â^•SrTiO3â^•La0.6Sr0.4MnO3 junctions. Applied Physics Letters, 2006, 88, 192504.	1.5	29
62	Change in polarity of zinc oxide films grown on sapphire substrates without insertion of any buffer layer. Journal of Materials Research, 2008, 23, 3269-3272.	1.2	29
63	Polarity of heavily doped ZnO films grown on sapphire and SiO2 glass substrates by pulsed laser deposition. Thin Solid Films, 2011, 519, 5875-5881.	0.8	29
64	<i>In Situ</i> Observation of Lithiation and Delithiation Reactions of a Silicon Thin Film Electrode for All-Solid-State Lithium-Ion Batteries by X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry Letters, 2020, 11, 6649-6654.	2.1	29
65	Well-Controlled Crystal Growth of Zinc Oxide Films on Plastics at Room Temperature Using 2D Nanosheet Seed Layer. Journal of Physical Chemistry C, 2009, 113, 19096-19101.	1.5	28
66	Ferromagnetism stabilization of ultrathin SrRuO3 films: Thickness-dependent physical properties. Journal of Applied Physics, 2006, 99, 08N505.	1.1	27
67	High Rate in situ YBa2Cu3O7 Film Growth Assisted by Liquid Phase. Journal of Materials Research, 2004, 19, 977-981.	1.2	26
68	Fabrication of Anatase Thin Film with Perfect <i></i> -Axis Orientation on Glass Substrate Promoted by a Two-Dimensional Perovskite Nanosheet Seed Layer. Crystal Growth and Design, 2010, 10, 3787-3793.	1.4	25
69	Coaxial impact-collision ion scattering spectroscopy analysis of ZnO thin films and single crystals. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1998, 56, 256-262.	1.7	24
70	Parallel fabrication of artificially designed superlattices by combinatorial laser MBE. Applied Physics A: Materials Science and Processing, 1999, 69, S29-S31.	1.1	22
71	Lithium silicon sulfide as an anode material in all-solid-state lithium batteries. Journal of Power Sources, 2010, 195, 3323-3327.	4.0	22
72	Cation off-stoichiometric SrMnO3â^Î thin film grown by pulsed laser deposition. Journal of Materials Science, 2011, 46, 4354-4360.	1.7	21

#	Article	IF	Citations
73	Atom technology for Josephson tunnel junctions: SrTiO3 substrate surface. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1998, 56, 111-116.	1.7	20
74	Thermodynamic stability and kinetics of Y–Ba–Cu–O film growth at high rates in atomic and molecular oxygen. Journal of Crystal Growth, 2001, 225, 183-189.	0.7	19
75	Metal-insulator transition in SrTiO3 induced by field effect. Journal of Applied Physics, 2007, 102, 083713.	1.1	19
76	Self-formed silicon quantum wires on ultrasmooth sapphire substrates. Applied Physics Letters, 1997, 71, 1409-1411.	1.5	18
77	Fabrication of SrTiO3Field Effect Transistors with SrTiO3-δSource and Drain Electrodes. Japanese Journal of Applied Physics, 2007, 46, L515-L518.	0.8	18
78	Influences of high deposition rate on LiCoO2 epitaxial films prepared by pulsed laser deposition. Solid State Ionics, 2016, 285, 91-95.	1.3	16
79	Low-energy ion scattering spectroscopy and reflection high-energy electron diffraction of native oxides on GaN(0001). Japanese Journal of Applied Physics, 2017, 56, 128004.	0.8	16
80	Hetero-Epitaxial Growth of ZnO Film by Temperature-Modulated Metalorganic Chemical Vapor Deposition. Applied Physics Express, 0, 2, 045502.	1.1	15
81	High-Rate Capability of LiCoO ₂ Cathodes. ACS Applied Energy Materials, 2020, 3, 11803-11810.	2.5	15
82	In-Plane Orientation and Polarity of ZnO Epitaxial Films on As-Polished Sapphire (α-Al2O3) (0001) Substrates Grown by Metal Organic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2003, 42, L264-L266.	0.8	14
83	Elements of informatics for combinatorial solid-state materials science. Measurement Science and Technology, 2005, 16, 309-316.	1.4	14
84	Pulsed laser ablation and deposition of complex oxides. Journal of Physics: Conference Series, 2007, 59, 514-519.	0.3	14
85	Epitaxial BaTiO3 thin films grown in unit-cell layer-by-layer mode by laser molecular beam epitaxy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1998, 56, 213-217.	1.7	13
86	Convergent-beam parallel detection x-ray diffraction system for characterizing combinatorial epitaxial thin films., 2000, 3941, 84.		13
87	Epitaxial growth of LiCoO2 thin films with (001) orientation. AIP Advances, 2017, 7, .	0.6	13
88	Molecular layer-by-layer growth of SrTiO3 and BaTiO3 films by laser molecular beam epitaxy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 41, 134-137.	1.7	12
89	In situ high rate growth of high temperature superconductor tapes. IEEE Transactions on Applied Superconductivity, 2001, 11, 3375-3378.	1.1	12
90	In situ photoemission spectroscopic study on La1â^xSrxMnO3 thin films grown by combinatorial laser-MBE. Journal of Electron Spectroscopy and Related Phenomena, 2004, 136, 31-36.	0.8	12

#	Article	IF	CITATIONS
91	Sr surface segregation and water cleaning for atomically controlled SrTiO3 (001) substrates studied by photoemission spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 443-446.	0.8	12
92	Composition-spread thin films of pentacene and 6,13-pentacenequinone fabricated by using continuous-wave laser molecular beam epitaxy. Applied Surface Science, 2008, 254, 2336-2341.	3.1	12
93	High throughput oxide lattice engineering by parallel laser molecular-beam epitaxy and concurrent x-ray diffraction. Review of Scientific Instruments, 2005, 76, 062218.	0.6	11
94	In Situ X-ray Diffraction of LiCoO ₂ in Thin-Film Batteries under High-Voltage Charging. ACS Applied Energy Materials, 2021, 4, 14372-14379.	2.5	11
95	Growth and Characterization of FerroelectricPb(Zr,Ti)O3Films on Interface-ControlledCeO2(111)/Si(111)Structures. Japanese Journal of Applied Physics, 1997, 36, 6500-6503.	0.8	9
96	Orientation alignment of epitaxial LiCoO2 thin films on vicinal SrTiO3 (100) substrates. Journal of Power Sources, 2016, 325, 306-310.	4.0	9
97	Strain-driven domain structure control and ferroelectric properties of BaTiO3 thin films. Thin Solid Films, 2005, 486, 158-161.	0.8	8
98	Spectral evidence for inherent "dead layer―formation at La1â^'ySryFeO3/La1â^'xSrxMnO3 heterointerface. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 479-481.	0.8	8
99	Observation of SrTiO3 in-gap states by depletion mode field effect. Applied Physics Letters, 2008, 92, .	1.5	8
100	Nazca Lines by La ordering in La2/3â^'xLi3xTiO3 ion-conductive perovskite. Applied Physics Letters, 2012, 101, 073903.	1.5	8
101	Development of a new laser heating system for thin film growth by chemical vapor deposition. Review of Scientific Instruments, 2012, 83, 094701.	0.6	8
102	Electron microscopy and ultraviolet photoemission spectroscopy studies of native oxides on GaN(0001). Japanese Journal of Applied Physics, 2018, 57, 098003.	0.8	8
103	The effect of annealing on SrTiO3 field-effect transistor devices. Thin Solid Films, 2005, 486, 195-199.	0.8	7
104	Oriented Film Growth of Ba _{1â€"<i>x</i>} Sr _{<i>x</i>} TiO ₃ Dielectrics on Glass Substrates Using 2D Nanosheet Seed Layer. ACS Applied Materials & Therfaces, 2013, 5, 4592-4596.	4.0	7
105	Sputter-Deposited Amorphous Li ₃ PO ₄ Solid Electrolyte Films. ACS Omega, 2022, 7, 21199-21206.	1.6	7
106	Atomic scale identification of the terminating structure of compound materials by CAICISS (coaxial) Tj ETQq0 0 C	rgBT /Ove	erlock 10 Tf 5
107	Growth and structure of wide-gap insulator films on SrTiO3. Solid-State Electronics, 2003, 47, 2211-2214.	0.8	6
108	Two-dimensional Gaussian fitting for precise measurement of lattice constant deviation from a selected-area diffraction map. Microscopy (Oxford, England), 2018, 67, i142-i149.	0.7	6

#	Article	IF	CITATIONS
109	In situ resonant photoemission characterization of La0.6Sr0.4MnO3 layers buried in insulating perovskite oxides. Journal of Applied Physics, 2006, 99, 08S903.	1.1	5
110	XML-based data management system for combinatorial solid-state materials science. Applied Surface Science, 2006, 252, 2634-2639.	3.1	5
111	An in situ transport measurement of interfaces between SrTiO3(100) surface and an amorphous wide-gap insulator. Applied Surface Science, 2006, 252, 8147-8150.	3.1	5
112	Growth and Characterization of Epitaxial DyScO3Films on SrTiO3. Japanese Journal of Applied Physics, 2006, 45, L830-L832.	0.8	5
113	Field-induced resistance switching at metal/perovskite manganese oxide interface. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 148, 13-15.	1.7	5
114	Thickness dependence of critical currents and depth profiling of transport properties in high rate in-situ grown YBa/sub 2/Cu/sub 3/O/sub 7-x/ films. IEEE Transactions on Applied Superconductivity, 2003, 13, 2817-2820.	1.1	4
115	Polarity replication across m-plane GaN/ZnO interfaces. Applied Physics Letters, 2011, 99, 181910.	1.5	4
116	Instrumentation for tracking electrochemical reactions by x-ray photoelectron spectroscopy under conventional vacuum conditions. Journal of Physics Communications, 2021, 5, 015001.	0.5	4
117	Crystallinity and Polarity of Indium Nitride Films Grown on the c-face of Zinc Oxide. Journal of the Ceramic Society of Japan, 2007, 115, 414-418.	1.3	3
118	Modification of reflection high-energy electron diffraction system for in situ monitoring of oxide epitaxy at high oxygen pressure. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 148, 16-18.	1.7	3
119	Analysis of polar direction of AlN grown on (0001) sapphire and 6Hâ€SiC substrates by highâ€temperature metalâ€organic vapor phase epitaxy using coaxial impact collision ion scattering spectroscopy. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2365-2367.	0.8	3
120	In situ angle-resolved photoemission study on La1â^'xSrxMnO3 thin films grown by laser MBE. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 511-514.	0.8	2
121	Development of microscopy for lithium analysis using medium-energy ion-stimulated desorption. Applied Physics Express, 2014, 7, 106601.	1.1	2
122	Composition controlled LiCoO2epitaxial thin film growth by pulsed laser deposition., 2015,,.		2
123	Fabrication of atomically defined oxide films on Si by laser molecular beam epitaxy. Physica B: Condensed Matter, 1996, 227, 323-325.	1.3	1
124	Transport properties of ultrathin oxide films and nanostructures. Thin Solid Films, 2005, 486, 63-66.	0.8	1
125	On-line Data Management for High-throughput Experimentation. Materials Research Society Symposia Proceedings, 2005, 894, 1.	0.1	1
126	Device size dependence of resistance switching performance in metal/manganite/metal trilayers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 173, 3-6.	1.7	1

#	Article	IF	CITATIONS
127	Accurate determination of strains at layered materials by selected area electron diffraction mapping. Japanese Journal of Applied Physics, 2019, 58, SIIA03.	0.8	1
128	Growth of InGaN films on hardness-controlled bulk GaN substrates. Applied Physics Letters, 2019, 115, 172102.	1.5	1
129	RHEED Intensity Oscillation during Oxide Thin Film Growth. Hyomen Kagaku, 2007, 28, 223-226.	0.0	1
130	Thin Film Superconducting MgB2 Grown by MBE without Post-Anneal. Materials Research Society Symposia Proceedings, 2001, 689, 1.	0.1	0
131	Combinatorial Synthesis of Transition Metal Oxide Superlattices. Hyomen Kagaku, 2004, 25, 672-677.	0.0	0
132	In situ angle-resolved photoemission study of half-metallic thin films. Journal of Magnetism and Magnetic Materials, 2007, 310, 1030-1032.	1.0	0
133	Study of oxygen diffusion in dense lanthanum oxide ceramics. Journal of the Ceramic Society of Japan, 2021, 129, 79-82.	0.5	O
134	Surface and Interface of Double Oxides. Characterization and Application of the Ultrasmooth Surface Nanostructure of Metal Oxides Hyomen Kagaku, 2000, 21, 71-80.	0.0	0
135	Synthesis of High Quality Complex Oxide Thin Films by Pulsed Laser Deposition. Hyomen Kagaku, 2017, 38, 216-221.	0.0	0
136	Novel electron microscopy method for accurate measurements of the lattice constant changes in layered structures. Journal of Surface Analysis (Online), 2019, 26, 190-191.	0.1	0
137	Research Development of All Solid-state Battery by Using Thin Film Technology. Materia Japan, 2019, 58, 311-319.	0.1	O
138	In Situ X-Ray Photoelectron Spectroscopy for All-Solid-State Batteries: Analysis of Lithiation and Delithiation Reactions of Silicon Thin-Film Electrode. ECS Meeting Abstracts, 2020, MA2020-02, 992-992.	0.0	0
139	(Invited) Epitaxial Thin Films of Solid-State Battery Material. ECS Meeting Abstracts, 2020, MA2020-02, 2548-2548.	0.0	0
140	Lithiation/delithiation of a Silicon Thin Film Electrode for All-Solid-State Batteries Using Operando X-ray Photoelectron Spectroscopy Apparatus. Vacuum and Surface Science, 2021, 64, 552-555.	0.0	0